Supplementary Materials

Graphene–Perfluoroalkoxy Nanocomposite with High Through-Plane Thermal Conductivity Fabricated by Hot-Pressing

Xinru Zhang,^{1,2} Xiaoyu Xie ¹ Xinzhi Cai,¹ Zeyi Jiang ^{1,3,*} Ting Gao ¹ Yujie Ren ⁴ Jian Hu ⁵ and Xinxin Zhang ^{1,3}

- ¹ School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- ² Beijing Engineering Research Center of Energy Saving and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China
- ³ Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China
- ⁴ China Energy Conservation and Environmental Protection Group, Beijing 100082, China
- ⁵ China Energy Conservation and Environmental Protection Group National Machinery United Electric Power (Ningxia) Co., Ltd., Yinchuan 750011, China
- * Correspondence: zyjiang@ustb.edu.cn; Tel.: 86-10-62334971

Figure S1. The optical densities of GNs dispersions obtained by exfoliating graphite in a series ethanol–water mixtures. It was found that the highest concentration of GNs dispersions was obtained in 45 vol% ethanol–water mixture. Therefore, in the study, the GNs were produced by exfoliating graphite in 45 vol% ethanol–water mixture.

1 Base, 2 Electronic testing machine, 3 Heating furnace, 4 Pressure bar,
5 Indenter 6 Sensor, 7 Thermocouple, 8 Composite sample, 9 Switch,
10 Pressure control system 11 Temperature control system

Figure S2. The hot-pressing system used in this work.

Samples	Weight loss temperature ($^{\circ}\!\mathbb{C}$)		The heat resistance index (THRI)
	T5	T30	(°C)
Pure PFA	540.9	575.6	275.2
1% GNs	539.2	573.5	274.3
5% GNs	539.9	565.7	271.0
10% GNs	533.8	567.0	271.3
15% GNs	537.6	567.9	272.3
20% GNs	532.6	567.5	271.2
25% GNs	543.2	571.9	274.6
30% GNs	529.1	568.2	270.7

Table S1. The heat resistance index (THRI) for pure PFA and the GNs–PFA nanocomposites.

Note: T_5 and T_{30} are the temperature at 5% and 30% weight loss, respectively.