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Abstract: Bladder cancer (BCa) and prostate cancer (PCa) are some of the most common cancers in the
world. In both BCa and PCa, the diagnosis is often confirmed with an invasive technique that carries
a risk to the patient. Consequently, a non-invasive diagnostic approach would be medically desirable
and beneficial to the patient. The use of volatile organic compounds (VOCs) for disease diagnosis,
including cancer, is a promising research area that could support the diagnosis process. In this study,
we investigated the urinary VOC profiles in BCa, PCa patients and non-cancerous controls by using
gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography time-of-flight
mass spectrometry (GC-TOF-MS) to analyse patient samples. GC-IMS separated BCa from PCa
(area under the curve: AUC: 0.97 (0.93-1.00)), BCa vs. non-cancerous (AUC: 0.95 (0.90-0.99)) and
PCa vs. non-cancerous (AUC: 0.89 (0.83-0.94)) whereas GC-TOF-MS differentiated BCa from PCa
(AUC: 0.84 (0.73-0.93)), BCa vs. non-cancerous (AUC: 0.81 (0.70-0.90)) and PCa vs. non-cancerous
(AUC: 0.94 (0.90-0.97)). According to our study, a total of 34 biomarkers were found using GC-TOF-MS
data, of which 13 VOCs were associated with BCa, seven were associated with PCa, and 14 VOCs
were found in the comparison of BCa and PCa.

Keywords: bladder cancer; prostate cancer; urinary biomarkers; urinary VOCs; machine olfaction;
GC-IMS; GC-TOF-MS

1. Introduction

Early detection and diagnosis of cancer remains a key goal to improve the prognosis
and life expectancy of patients [1-4]. Globally, cancer results in some of the highest
mortality rates for any disease. In 2020 alone there were more than 19 million new cancer
diagnoses and almost 10 million deaths [5]. The UK is a major contributor to this, with
some of the highest cancer rates in the world. It is amongst the top 10% of countries, with
the highest number of new cases of cancer [6]. These figures emphasize the importance of
using screening methods to improve disease diagnosis and to reduce cancer morbidity [7].

Bladder cancer (BCa) is the ninth most common cancer worldwide and is also one of
the most difficult cancers to diagnose and clinically manage [8,9]. Cystoscopy followed
by transurethral resection of a bladder tumour (TURBT) with biopsy and histological
assessments are considered to be the ‘Gold Standard’ for the diagnosis of BCa [10]. How-
ever, cystoscopy is invasive in nature, and can cause pain, urinary infections, and blood
loss in some cases [11,12]. To aid in the diagnosis of BCa, a range of urine tests have
been developed including the bladder tumour antigen (BTA) test, nuclear matrix protein
22 (NMP22), urinary bladder cancer antigen (UBC), and fibrin degradation products (FDP).
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Unfortunately, none of these tests have demonstrated sufficient specificity or sensitivity as
a screening test [13].

Prostate cancer (PCa) occurs in men and is the sixth most common cancer worldwide [14-16].
For prostate cancer, PSA (prostate-specific antigen) is a commonly used blood test. How-
ever, it lacks sensitivity and specificity. PSA can be used for monitoring PC progression in
both symptomatic and asymptomatic patients [17]. The downsides of PSA, as a diagnostic
test for PCa patients, are mainly related to the high false-positive rate. PSA can be raised in
urinary and prostate infections or other conditions such as benign prostatic hyperplasia
(BHP) [18]. Therefore, a raised PSA level can lead to unnecessary biopsies, which may end
up causing fever, pain, bleeding, and infection to the patient [19-21]. Recent European As-
sociation of Urology guidelines advise undertaking a multiparametric magnetic resonance
scan on all patients prior to confirmatory biopsies; however, this is not always accessible,
especially in low-resource settings [22].

One area receiving significant interest is in the use of volatile organic compounds
(VOCs) to diagnose and monitor cancer. VOCs are chemical compounds that are either
produced in vitro or are introduced externally and can indicate the presence, or absence,
of disease in the body. The concept first emerged after reports indicated that dogs could
recognise cancer by sniffing biological samples [23]. Since this discovery, researchers have
reported that VOCs could be used to detect a broad range of cancers including lung,
colorectal and pancreatic cancer [24-27].

Urine is a common biological source of VOCs, as the components present are either
the intermediate products or end products of metabolic activities occurring inside the
human body [28]. A study published in 2016 provided significant evidence for the use of
urinary VOCs for distinguishing BCa, from a total of 72 urine samples the results showed
an accuracy of 89%, 90% sensitivity, and 88% specificity using PLS-DA (partial least squares
discriminant analysis) on GC-MS (gas chromatography-mass spectrometry) data [29].

Urine cytology is a non-invasive test which uses urine as biological modality for the
presence of cancer. Several studies showed that though it exhibits high specificity, the
sensitivity and specificity highly depend on collection method and cancer grade [30-32].

The gold standard for the analysis of VOCs remains GC-MS, but it is expensive,
requiring specialised equipment and trained staff, making it difficult to implement in
a point of care scenario. A variant of this is GC-TOF-MS (gas chromatography-time of
flight-mass spectrometry), which is a similar technique used for multidimensional analysis
of complex samples with the potential to identify an even greater number of VOCs [33,34].
However, more recently a range of other techniques have been reported that have the
potential to be used at the point of care. GC-IMS (gas chromatography-ion mobility
spectrometry) is one such technique, it provides high sensitivity and selectivity, and the
GC-IMS can be created in a portable form factor and can use nitrogen or air as the carrier
gas. However, it is less able to identify specific biomarkers and it is unable to identify
chemicals with a low proton affinity. Our group has reported the use of this method with
a range of different diseases [35,36]. Thus, the combination of GC-TOF-MS, which can
provide a means of identifying specific biomarkers, with GC-IMS, a lower cost platform,
using air as the carrier and thus facilitating ward use, is advantageous.

The study aimed to identify and test the potential of urinary biomarkers to distinguish
between two different cancers and healthy controls using both GC-TOF-MS and GC-IMS.
We believe this is the first time that GC-IMS has been used with these cancers in combination
with GC-TOF-MS.

2. Materials and Methods
2.1. Urine Samples

A total of 106 patients were recruited after providing informed consent at University
Hospital Coventry and Warwickshire NHS Trust, UK. Patients were recruited prior to
anti-cancer treatment. This study was approved by Coventry and Warwickshire and
North-East Yorkshire NHS Ethics Committees (Ref 18717 and Ref 260179). Urine samples
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were collected in standard universal sterile specimen containers and frozen within 2 h at
—80 °C for subsequent batch analysis and according to standard operating procedures,
compliant with tissue bank requirements under Human Tissue Act 2004. No chemicals
were added to the urine before freezing, as we have previously shown that urine samples
remain stable for extended periods of time at this temperature [37]. Prior to analysis the
samples were transferred to the University of Warwick and briefly stored at —20 °C. The
samples were defrosted in a laboratory fridge at 4 °C and aliquoted into 20 mL glass
sample vials with a crimp cap. We used 5 mL of each urine sample for the analysis with
GC-IMS and GC-TOF-MS. Of the 106 urine samples collected, 15 patients had confirmed
BCa, 55 were confirmed PCa, and there were 36 non-cancerous controls. The mean age
of the BCa patients was 70 years and the mean age of the PCa patients was 72 years. The
demographic data of the subjects are illustrated in Table 1.

Table 1. Demographic data for subject groups.

Group Bladder Cancer Prostate Cancer Non-Cancerous
Number of samples 15 55 36
Mean Age (years) 70.0 71.9 62.5
Sex: Male/Female 12:3 All Male 24:12
Mean BMI (Kg/m? 244 27.5 30.9
Current Smoker 1(6.7%) 6 (10.9%) 3 (8.3%)

n (% of patients)
Mean PSA level (ng/mL)

Gleason score

- 20.6 (3.6-153.90) -
Case(01 4+5=9
Case(02 3+4=7
Case03 3+3=6
Case04 4+5=9
Case(05 4+5=9
Case06 3+4=7
Case07 3+4=7
Case(08 3+5=8
Case(09 5+4=9
Casel0 3+4=7
Casell 3+3=6
Casel12 3+4=7
Casel3 3+3=6
Casel4d 4+5=9
Casel5 3+4=7
Casel6 3+4=7
Casel7 3+4=7
Casel18 3+4=7
Casel1l9 3+4=7
Case20 3+3=6
Case21 4+5=9
Case22 3+3=6
Case23 4+3=7
Case24 3+4=7
Case25 4+4=8
Case26 3+3=6
Case27 4+5=9
Case28 4+4=8
Case29 3+3=6
Case30 3+3=6
Case31l 4+4=8
Case32 3+4=7
Case33 4+5=9
Case34 3+4=7
Case35 3+4=7
Case36 3+4=7
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Table 1. Cont.

Group Bladder Cancer Prostate Cancer Non-Cancerous

Case37 3+4=7
Case38 3+5=8
Case39 4+5=9
Cased40 3+4=7
Cased4l 3+4=7
Case42 3+4=7
Case43 3+5=8
Cased44 3+4=7
Case45 5+5=10
Cased6 4+5=9 -
Cased47 4+4=8
Cased48 3+4=7
Case49 4+3=7
Case50 3+3=6
Caseb51 4+5=9
Caseb52 4+4+8
Caseb3 3+3=6
Caseb4d 3+4=7
Caseb55 3+3=6

Case 01 G2

Case02 G3

Case 03 G3

Case 04 Gl

Case 05 G2

Case 06 G3

Case 07 Gl1

WHO 1973 Grade Case 08 G3 - -

Case 09 G3

Case 10 Gl1

Casel1l G3

Case12 Gl

Case 13 Gl1

Case14 G2

Case 15 G1

Prostate cancer Gleason grading:

Score < 6, pattern < 3 + 3. This refers to Grade 1. Tumour cells look like normal prostate cells with only individual discrete

well-formed glands.

Score 7, pattern 3 + 4. This refers to Grade 2. Tumour with well-form glands and lesser component of poorly differentiated glands.
Score 7, pattern 4 + 3. This refers to Grade 3. Tumour has predominantly poorly formed/fused/cribriform glands with lesser
component of well-formed glands.

Score 8, pattern 4 + 4, 3 + 5 and 5 + 3. This refers to Grade 4. Tumour with only poorly formed/fused/cribriform glands.

Score 9 or 10, pattern 4 + 5,5 + 4 and 5 + 5. This refers to Grade 5. Tumour lacking gland formation (or with necrosis) with or

without poorly formed/fused/cribriform glands [38].

G1 low grade differentiation, G2 moderate grade differentiation and G3 is high grade differentiation [39].

2.2. Analytical Devices
2.2.1. G.AS. FlavourSpec Gas Chromatography-lon Mobility Spectrometry (GC-IMS)

The G.A.S FlavourSpec (Germany) uses a GC-IMS measurement technique to analyse
VOCs. GC-IMS is a method used in various applications, such as detection of explosives and
chemicals [40—42], air quality [43], health and disease detection [44—46] and food [47-49].
The method is formed of two stages. The first stage is a GC component that pre-separates
chemicals based on their interaction with a retentive coating on the inside of a GC column.
Thus, chemicals elude from the GC at different times [50]. These chemicals are further
analysed using a drift-tube IMS method. Here, the chemicals are ionised (using a tritium
source in our case) and pass along a drift-tube, propelled by a high electric field. Against
the flow of ions, a buffer gas (using nitrogen in this case) is passed. The buffer gas and



Biosensors 2021, 11, 437

50f16

the ions collide resulting in a loss of momentum of the ions. Thus, the transit time along
the tube is a function of the interaction of the ion with the electric field and the number of
collisions with the buffer gas. This provides two-dimensional separation of the chemical
components [48,51].

For analysis, glass vials containing samples were transferred to an autosampler fit-
ted to the GC-IMS. The sample tray was chilled to 4 °C to reduce sample degradation
during sample analysis. Each sample was heated to 40 °C and agitated for 10 min before
sampling. The autosampler then took 0.5 mL of sample headspace and directly injected
it into the GC-IMS. Urinary headspace was defined as the volume of gas above the urine
sample inside the vial, which was in chemical equilibrium with liquid phase urine. The
machine settings for analysis were as follows: E1: 150 mL/min (for the drift tube IMS),
E2: 20 mL/min (for the GC column), and the pump was set to 25%. The total run time per
sample was 10 min. The temperatures were set to T1 (IMS): 45 °C, T2 (column): 80 °C, and
T3 (injector): 70 °C.

2.2.2. Markes Gas Chromatography Time-of-Flight Mass Spectrometry (GC-TOF-MS)

GC-TOE-MS operates by analysing the time of flight of ions and analyse them ac-
cording to their mass-to-charge ratio. The GC-TOF-MS system used was a combination of
a TRACE 1300 GC (Thermo Fisher Scientific, Loughborough, UK) and a BenchTOF-HD
TOF-MS (Markes Intl., Llantrisant, UK). This system also included a high-throughput au-
tosampler and a thermal desorption unit, ULTRA-xr and UNITY-xr, respectively (both from
Markes Intl.). The GC separated the chemicals in the same way as explained previously.
The separated chemicals were detected by TOF MS once they entered the TOF ‘flight box’.
TOEF-MS separates fragment ions instead of molecular ions as in an IMS. The ions are
detected depending upon the mass-to-charge ratio of the ions after passing through the
drift tube [52,53].

For analysis, a thermal desorption (TD) sorbent tube (C2-AXXX-5149, Markes Intl.,
Llantrisant, UK) was inserted through the septum and into the headspace above the sample
and then heated at 40 °C for 20 min. A pump was then attached to the TD tube, and
whilst still being heated to 40 °C, the headspace VOCs were then pulled onto the tubes at
20 mL/minute for a further 20 min. The sorbent tubes were then placed in an autosampler
for analysis. The analysis started with ULTRA-xr with a stand-by split set to 150 °C. The
GC run time for samples was 25 min with a programmed temperature ramp from 40 °C to
280 °C at 20 °C/min. Each sample was pre-purged for 1 min and then desorbed at 250 °C
for 10 min, with the trap purge time set to 1 min. These traps were then cooled at —30 °C
and the trap was purged for 3 min at a temperature of 300 °C. The temperature for both
transfer line and ion source were heated to 250 °C. The chemicals from GC-TOF-MS analysis
were identified using the national institute of standards and technology (NIST) list (2011).

2.3. Statistical Methods

For GC-IMS data analysis, the data were extracted using the G.A.S VOCal (v0.1.3, G.A.S,,
Dortmund, Germany) software. This was followed by pre-processing steps to reduce the
data’s dimensionality. Among all the data points, the central section contained all the
computationally significant chemical information and thus all the other data were removed
through a cropping process. This was followed by applying a small threshold to remove
the background information, which was a value just above the background noise level. The
same data cropping and threshold values were used on all the data, and it was undertaken
using an automated program. The data were then analysed using a 10-fold cross-validation,
undertaken using a bespoke R program (version 3.6.2). Within each fold training set,
feature selection was undertaken using a Wilcoxon rank-sum test between the different
cancer groups and non-cancerous group. That resulted in the identification of the 20 most
discriminatory features between the two groups and the features trained by three models,
XGBoost, logistic regression, and random forest. The model was then applied to the test
set to create class probabilities. Once all the samples had been within a test set, statistical
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results were generated from the probabilities, including a receiver operator characteristic
(ROC) curve, area under the curve (AUC), sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV).

An analogous approach was used for GC-TOF-MS data analysis. For GC-TOF-MS,
the chemicals and the abundance of the chemicals were identified. Using the TOF-DS
software, a background correction was applied, and the chromatogram was integrated,
and the peaks were identified using the NIST list which was exported. The data obtained
from GC-TOF-MS were converted into text files of chemical lists and abundances. The
data were then processed using an ‘R’ program that was like that used for GC-IMS, where
chemical components of discriminative power were identified. Figure 1 provides a flow
diagram of the data analysis steps.

Urine Sample

a

v

GC-IMS and GC-TOF-MS Analysis

Crop, Threshold and Alignment%n GC-IMS only
H

4

i> 10-Fold Cross-Validation
=

&

Feature Selection <@mn Wilcoxon Test

Classification Models
> Extreme Gradient Boosting
Classification Model Training 8B > Random Forest

e > Linear Regression

<m

fum

L """ Test Model Predictions

=

[
ROC Curve
=]
AUC
Performance Metrics II’ Sensitivity
Specificity

Figure 1. Data analysis pipeline.

3. Results

Figure 2 shows a typical output from the GC-IMS method from a urine sample in
which the x-axis represents the drift time of the IMS and the y-axis represents the retention
time of the GC. In the figure, the ‘dots” are the chemicals detected by the IMS and the
intensity of the peak represents the number of ions. Those ‘dots’ in red are the most intense.
The red line in the figure is the default output of the instrument where no chemicals
are present. G.A.S VOCal (v0.1.3, G.A.S., Dortmund, Germany) was used to view the
GC-IMS data.

Figure 3 provides an example output from the GC-TOF-MS method. Here, the x-axis
refers to the retention time, and the y-axis, the total ion count.

The results of the statistical analysis of the GC-IMS gathered results between different
cancer groups and the non-cancerous group are given in Table 2. The results demonstrate
high sensitivity and specificity, indicating that there are significant differences between
the VOC profiles of the different groups. Importantly, good separation between the two
different cancers, BCa vs. PCa, was also achieved. The false negative rate calculated for
the GC-IMS analytical method in the study was 0.40 for BCa versus the PCa comparison,
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0.13 for BCa versus the non-cancerous group and 0.24 for PCa versus the non-cancerous
group, whereas the false positive rate was 0.02 for BCa versus the PCa group, 0.08 for BCa
versus the non-cancerous group and 0.12 for PCa versus the non-cancerous group.

200
175
150
125
100

75

Retention time (s)

50

25

Drift time (ms)

Figure 2. Typical output plot from the gas chromatography-ion mobility spectrometry
(GC-IMS) instrument.

6x107
S 4x107 Heptanal
S
€
S
Lo) Pentadecane,
§ 2x10" 4 2,6,10,14-tetramethyl-
t_u .
k) Biphenyl
) mi
0 4
T T T T T . .
0 2 4 6 8 10 12 14

Time (min)

Figure 3. Figure illustrates a typical output plot of gas chromatography time-of-flight mass spectrom-
etry (GC-TOF-MS). The x-axis in the plot represents the retention time and y-axis lists the chemical
according to their abundance in the sample.

Table 2. GC-IMS diagnostic group results.

Comparisons Classifiers AUC Sensitivity Specificity PPV NPV
Logistic Regression with 0.97 0.60 0.98
BCavs. PCa Elastic Net Regularization ~ (0.93-1.00)  (0.38-0.80)  (0.95-1.00) 090 090
; Logistic Regression with 0.95 0.87 0.92
BCavs. non-Cancerous gy, ctic Net Regularization ~ (090-099)  (0.70-1.00)  (0.84-098) 081 095
PCa vs. non-Cancerous  Extreme Gradient Boosting 089 076 088 0.81 0.85

(0.83-0.94) (0.64-0.88) (0.80-0.95)
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The ROC curves obtained from GC-IMS data comparing BCa and the non-cancerous
group, BCa and PCa groups, and PCa and non-cancerous groups are shown in Figure 4.
The results indicate that among BCa patients and PCa patients, AUC (area under the curve)
was 0.97 (0.93-1.00) with sensitivity and specificity of 0.60 (0.38-0.80) and 0.98 (0.95-1.00),
respectively. However, the separation between BCa and non-cancerous samples was even
higher with a sensitivity of 0.87 (0.70-1.00), specificity of 0.92 (0.84-0.98) and AUC of
0.95 (0.90-0.99). Similarly, for PCa vs non-cancerous samples using GC-IMS, the separation
was significant with a sensitivity of 0.76 (0.64-0.88), specificity of 0.88 (0.80-0.95) and AUC
of 0.89 (0.83-0.94).

1,001 = 1.007
0.751 0.754
2 Z
> =
= 050 G 050
c f=4
[ Q
12 2
0.254 0.254
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 025 050 0.75 1.00
1 - specificity 1 - specificity

@ ®

1.001

0.754

sensitivity
o
o
g

0.25+

0.004 .

0.00 0.25 0.50 0.75 1.00
1 - specificity

(c)

Figure 4. Receiver operator characteristic for (a) bladder cancer vs. PCa; (b) bladder cancer vs.
non-cancerous group; and (c) prostate cancer vs. non-cancerous group using GC-IMS.

The results of the statistical analysis between different cancer groups for GC-TOF-IMS
are given in Table 3. The results demonstrate high sensitivity and specificity, indicating
that there are significant differences between the VOC profiles of different cancer groups,
which was also shown in the GC-IMS data. The results showed that the false negative rate
for BCa versus PCa comparison was 0.47, for BCa versus the non-cancerous group was
0.73 and for PCa versus the non-cancerous group was 0.22 for the GC-TOF-MS analytical
method. The false positive rate for BCa versus PCa comparison was 0.1, for BCa versus the
non-cancerous group it was 0.06, and for PCa versus the non-cancerous group it was 0.12.
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Table 3. GC-TOF-MS diagnostic group results.

Comparisons Classifiers AUC Sensitivity Specificity PPV NPV
Logistic Regression with 0.84 0.53 0.90
BCa vs. PCa Elastic Net Regularization ~ (0.73-0.93)  (0.33-0.75) (0.83-0.96) 0.62 0.87
BCa vs. non-Cancerous Random Forest 0.81 0.27 0.94 0.33 0.71
) (0.70-0.90) (0.09-0.46) (0.88-1.00) ’ )
0.94 0.78 0.88
PCa vs. Non-Cancerous Random Forest (0.90-0.97) (0.66-0.89) (0.80-0.95) 0.82 0.85

The ROC curves obtained from GC-TOF-MS data comparing BCa and non-cancerous
groups, BCa and PCa groups, and PCa and non-cancerous groups are shown in Figure 5.
The results indicate that GC-TOF-MS was able to differentiate BCa and PCa with AUC
0.84 (0.73-0.93), sensitivity and specificity of 0.53 (0.33-0.75) and 0.90 (0.83-0.96). The
separation between BCa and non-cancerous samples was very poor with sensitivity only
0.27 (0.9-0.46), specificity 0.94 (0.88-1.00) and AUC 0.82 (0.72-0.90). However, the separa-
tion was more significant with sensitivity 0.78 (0.66-0.89), specificity 0.88 (0.80-0.95) and
AUC 0.94 (0.90-0.97) for PCa and non-cancerous groups.

1.00+ ,— 1.004
0.757 0754
= 2
= =
2 2
3 050 g 0.50
5 g
B @
0251 0251
0.00 0.00
0.00 0.25 0.50 0.75 1.00 000 025 ] 0-5°,f, "
1 - specificity - speciticity
(a) (b)
1,004 =
0751
2
>
=
2 0.50+
=4
[}
12}
0251
0.004 .
- T T T T T
0.00 025 050 0.75 1.00
1 - specificity

(c)

0.75 1.00

Figure 5. ROC for (a) bladder cancer vs. PCa; (b) bladder cancer vs. non-cancerous group; and

(c) prostate cancer vs. non-cancerous group using GC-TOF-MS.
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In our results, we analysed different VOCs linked to BCa and PCa for the screening
and diagnosis of these cancers. A total of 34 biomarkers were found using TOF-DS software.
These VOCs were verified using PubChem, NIST (National Institute of Standards and
Technology), and previously published papers. Out of 34, 13 VOCs were found in the
comparison of BCa and non-cancerous groups specific to BCa, as shown in Table 4, seven
in PCa and non-cancerous groups specific to PCa, as shown in Table 5, and 14 VOCs were
found in the comparison of BCa and PCa group, as shown in Table 6, out of which 3 VOCs
do not overlap either with BCa or PCa, which may indicate that they are new markers.

Table 4. A list of possible biomarkers from the analysis of urine samples by GC-TOF-MS identified
using PubChem, NIST and publications significant to bladder cancer.

Chemicals p-Values Molecular Weight (g/mol)

1 Biphenyl <0.01 154.21
2 Nonanal <0.01 142.24
3 Tetradecane <0.01 198.39
4 Pentadecane, 2,6,10,14-tetramethyl- 0.012 268.5

5 2-Pentanone 0.012 86.13

6 Undecane 0.014 156.31
7 4-Heptanone 0.018 114.19
8 Dodecane 0.025 170.33
9 Hexadecane 0.026 226.44
10 Heptanal 0.026 114.19
11 Methyl Isobutyl Ketone 0.045 100.16
12 Naphthalene 0.046 128.169
13 Benzoic acid 0.049 122.12

Table 5. List of possible biomarkers from the analysis of urine samples by GC-TOF-MS identified
using PubChem, NIST and publications significant to PCa.

Chemicals p-Values Molecular Weight (g/mol)
1 Toluene <0.01 92.14
2 Phenol <0.01 325.4
3 Acetic acid <0.01 60.05
4 1-Hexanol, 2-ethyl- 0.011 130.229
5 Disulfide, dimethyl 0.012 94.2
6 Cyclopentanone, 2-methyl- 0.017 98.14
7 Pyrrole 0.033 67.09

Table 6. List of possible biomarkers from the analysis of urine samples by GC-TOF-MS identified
using PubChem, NIST and publications significant to PCa and bladder cancer.

Chemicals p-Values Molecular Weight (g/mol)
1 Toluene <0.01 92.14
2 Methyl Isobutyl Ketone <0.01 100.16
3 Dodecane <0.01 170.33
4 Phenol <0.01 325.4
5 Cyclopentanone, 2-methyl- <0.01 98.14
6 2-Hexanone <0.01 100.16
7 Heptanal <0.01 114.19
8 p-Xylene <0.01 106.16
9 Nonane, 3-methyl- <0.01 142.28
10 Tetradecane <0.01 198.39
11 Nonanal <0.01 142.24
12 Biphenyl 0.019 154.21
13 Acetic acid 0.025 60.05

14 2-Pentanone 0.032 86.13
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4. Discussion

In our study, we found that both GC-IMS and GC-TOF-MS were able to separate differ-
ent cancer groups from each other as well as non-cancerous group. The separation between
BCa from non-cancerous group was highest using GC-IMS with 0.95 AUC (0.87 sensitivity
and 0.92 specificity). A similar study conducted by Weber et al. [54] suggested overall
accuracy of 70% (70% sensitivity and 70% specificity) using urinary headspace for the
analysis of BCa using gas sensors. Another study conducted by Khalid et al. [55] showed
very high statistical results using an in-house GC-sensor device. They used two models
for analysis suggesting 100% sensitivity and 94.6% specificity using a linear discriminant
analysis (LDA) model and 95.8% sensitivity and 94.6% specificity using PLS-DA.

The separation between PCa and the non-cancerous group was highest using GC-TOF-MS
method with 0.94 AUC (0.78 sensitivity and 0.88 specificity) whereas the study conducted
by Gao et al. [56] for the analysis of urinary VOCs for prostate cancer calculated 0.92 AUC
(0.96 sensitivity and 0.80 specificity). Another study conducted by Lima et al. [57] used
PLS-DA to discriminate PCa from non-cancerous group with an AUC of 0.83 (84% sensitivity
and 80% specificity) using urine headspace.

In this study, we developed urinary VOC profiles linked with BCa and PCa. Table 4
consists of the chemicals that have been identified in our study and have been cross verified
using PubChem, NIST and previously published research, which may have relevance to
BCa diagnosis.

Out of 13 VOCs found to be noteworthy to BCa, biphenyl, heptanal, and 2,6,10,
14-tetramethyl-pentadecane were the three distinct biomarkers found in our study that
did not overlap with other studies. Biphenyl has been identified as the most significant
biomarker in our study. Biphenyl has been linked to various diseases, including carcinoma.
It has been proven that biphenyl is a promoter of BCa in rats [58]. Biphenyl has been found
to be metabolized in the liver [59]. Heptanal is reported to present in the blood of lung
cancer patients [60]. According to the HMBD (Human Metabolome Database), the biologi-
cal activity of heptanal inside humans can cause digestive disorder including associated
with the bladder [61]. 2,6,10,14-tetramethyl-pentadecane is reported as carcinogens but
is mentioned far less in the literature [62]. Nonanal, tetradecane, dodecane, hexadecane,
naphthalene, and methyl isobutyl ketone were suggested by Rodrigues et al. [63] in their
study using GC-MS on BCa cell lines whereas 2-pentanone and 4-heptanone overlap with
the findings of Cauchi et al. [29]. Benzoic acid was another chemical found in our study
that overlapped in both Rodrigues et al. [63] and Cauchi et al. [29].

From the analysis of PCa urine samples, a total of seven distinct VOCs were identified
and are summarised in Table 5. In our study, we found toluene as the most significant
chemical for PCa. Toluene has been published previously as a significant biomarker for
PCa [64]. In addition, it has been reported that toluene has been found to be associated
with testicular diseases [65,66]. Pyrrole has been reported by Smith et al. in their study with
24 controls and 13 patients with PCa. They tested the urine samples to assess VOC profiles
and found pyrrole to be one of the significant markers for PCa [67]. 2-Ethyl-1-hexanol,
phenol and dimethyl disulphide [68], acetic acid [69], and 2-methyl cyclopentanone [70]
were also found in our study, which overlaps with previous studies.

Table 6 represents all the chemicals found in the analysis of urine samples for prostate
versus BCa. Most of the chemicals present in this list are like those found in Tables 4 and 5.
2-Hexanone, p-xylene, and 3-methyl nonane are the only significant chemicals out of 14 in
this list that are important for separating BCa and PCa. 2-Hexanone and p-xylene have
previously been reported as significant markers for the PCa [68,70]. There is no significant
evidence for both 2-hexanone and p-xylene as a potential biomarker for BCa. However,
3-methyl-Nonane has not yet been reported as a biomarker for either bladder or PCa,
although they have been reported as a biomarker for lung cancer in different studies [71,72].
This may signify the importance of 3-methyl-nonane as a potentially significant marker.
The results reported in this paper support the findings of other groups for the validation
of these chemicals as potential biomarkers in both PCa and BCa. It has been noted that
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the chemicals found in all the cancer groups were different and there was almost no
overlapping of the VOC fingerprints for BCa and PCa. This adds further support to the
unique VOC fingerprint in cancers of different cell origins [73].

The use of urinary VOC analysis is an attractive option due to the non-invasive nature.
It also has the potential to be used in early cancer diagnosis with further validation studies.
This approach may also prove to be efficient, whilst lowering the cost per patient, and
increasing patient compliance due to its non-invasive nature. The results of using GC-IMS
as an analysis tool are significant as the method is much simpler than using a high-end
analytical method, such as GC-MS, and without the need for a laboratory environment.
We believe that using VOCs to analyse human waste will be an important diagnostic tool
for the future. Cancer may well be one area of focus and may be used as part of the UK
2-week wait screening program to help reduce the number of unneeded procedures. The
key is to run more larger studies targeting these cancers and to have tools that are CE
marked (or equivalent) for cancer diagnosis. We plan to use urine VOCs in association
with other tests in future which help to improve the performance and achieve a more in
depth understanding of VOCs and their metabolic pathways.

Our results were limited by not accounting for the contributory factors that can also
lead to abnormal metabolism with subsequent excretion of differing concentrations of
these chemicals in the urine. These factors include stress, alcohol, smoking, certain food
products, medicines, and different environmental factors. Several studies have reported the
effect of smoking on VOCs [74,75]. Study conducted by A. McWilliams et al. showed that
active smoking had an impact on urinary VOC profiles associated with current smokers
and ex-smokers [76]. We aim to consider these further in the next study. We also did not
undertake full chemical identification with calibration standards. However, many of the
chemicals we found correlate with other studies and, therefore, there is evidence that these
are correct.

5. Conclusions

In this paper, GC-IMS and GC-TOF-MS methods were used to identify VOC finger-
prints using urine headspace and establish an interdependence between BCa, PCa and
non-cancerous samples. It was found that both GC-IMS and GC-TOF-MS have the po-
tential to differentiate between different cancer groups with respective AUC for different
diagnostic groups: For GC-IMS, BCa and PCa (0.97 (0.93-1)), BCa and non-cancerous
(0.95 (0.90-0.99)), PCa and non-cancerous (0.89 (0.83-0.94)) and for GC-TOF-MS, BCa and
PCa (0.84 (0.73-0.93)), BCa and non-cancerous (0.81(0.70-0.90)), PCa and non-cancerous
(0.94 (0.90-0.97)). A total of 35 VOCs were found to be relevant for identifying these
cancer groups, with several VOCs distinct to each cancer. VOCs from this study were
supported by findings from previous studies. This signifies that VOCs for both bladder
and prostate cancer have different profiles, which may be helpful in future to distinguish
them. In the future, the VOC profiles obtained from these analytical devices can be used as
a reference for developing low-cost devices. It is plausible that VOC profiles can be used as
an adjunct to diagnosis enabling selection of only high-risk groups to undergo cystoscopy
examinations which will be widely beneficial considering limited capacity and cost.
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