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Abstract: In recent years, many different biosensors are being used to monitor physical health.
Electrospun nanofiber materials have the advantages of high specific surface area, large porosity and
simple operation. These properties play a vital role in biosensors. However, the mechanical properties
of electrospun nanofibers are poor relative to other techniques of nanofiber production. At the same
time, the organic solvents used in electrospinning are generally toxic and expensive. Meanwhile,
the excellent performance of electrospun nanofibers brings about higher levels of sensitivity and
detection range of biosensors. This paper summarizes the principle and application of electrospinning
technology in biosensors and its comparison with other technologies.
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1. Introduction

Globally, it has been observed that improvement in standards of living has also caused
the rise of diseases. Biosensors that can monitor our physical health in real time are
particularly important. Electrospinning technology has developed rapidly in recent years,
and there are several nanofiber membranes that can be used in biosensors. The biosensor
has high biocompatibility, good flexibility, remarkable mechanical properties and high
sensitivity. For example, biosensors can assess the activity of enzymes in the body to
determine the health of stem cells [1]. In recent years, such biosensors and bioelectronics
devices that can monitor human health have developed rapidly. However, poor stability
and short life span are the main problems in the current development of biosensors [2].

With the continuous advancement of current technology, there are many manufactur-
ing methods for nanofiber membranes, with electrospinning being the easiest and relatively
low-cost method. The nanofiber membrane made by electrospinning can form a typical
network structure with high surface area and high porosity [3]. The process parameters
can be modified to change the morphology and performance of the fiber membrane [4].
Due to these outstanding features, electrospun nanofiber membranes are more applicable
in biosensors [5]. Figure 1 shows the main development history of biosensors. This paper
reviews the principles and applications of electrospinning in biosensors.
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Figure 1. The main development history of biosensors: (a) electrochemical biosensors [6]; (b) 
microthermal biosensors [7]; (c) biofield effect transistors [8]; (d) fiber-optic biosensors [9]; (e) 
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biosensors [12]; (h) biological chips [13]; (i) optic biosensors [14]; (j) nano cantilever biosensors [15]; 
(k) nano-biosensors [16]; (l) molecular biosensors [17]; (m) portable biosensors [18]; (n) wearable 
biosensors [19]; (o) in vivo biosensors [20]. 

2. Electrospinning 
2.1. Principle of Electrospinning 

Electrospinning is a high-throughput technology that can produce nanofiber 
membranes with controllable fiber orientation [21]. In the whole working process, the 
Taylor cone formed by the solution is stretched by the electrostatic force to form a jet. 
When the jet is flying in the air, the solvent evaporates and the final solute is deposited on 
the receiving plate to form nanofibers. Figure 2 is a schematic diagram of the working 
principle of electrospinning [22,23]. The whole electrospinning equipment mainly 
includes three parts: a high voltage supply device, an injector and a receiving board. 
However, different requirements for nanofibers may lead to changes in one or several 
pieces of equipment. The change of the equipment is only to get the nanofibers needed 
while maintaining the working principle. 

 
Figure 2. Schematic diagram of electrospinning work [22,23]. 

The influencing factors of electrospinning mainly include: solution concentration and 
viscosity, voltage intensity, receiving distance, air humidity and temperature. The 
viscosity and concentration of the solution play an important role in the morphology and 
performance of the fiber [24]. Voltage and receiving distance directly affect the thickness 

Figure 1. The main development history of biosensors: (a) electrochemical biosensors [6]; (b) mi-
crothermal biosensors [7]; (c) biofield effect transistors [8]; (d) fiber-optic biosensors [9]; (e) acoustic
biosensors [10]; (f) surface plasmon resonance biosensors [11]; (g) molecularly imprinted biosen-
sors [12]; (h) biological chips [13]; (i) optic biosensors [14]; (j) nano cantilever biosensors [15];
(k) nano-biosensors [16]; (l) molecular biosensors [17]; (m) portable biosensors [18]; (n) wearable
biosensors [19]; (o) in vivo biosensors [20].

2. Electrospinning
2.1. Principle of Electrospinning

Electrospinning is a high-throughput technology that can produce nanofiber mem-
branes with controllable fiber orientation [21]. In the whole working process, the Taylor
cone formed by the solution is stretched by the electrostatic force to form a jet. When
the jet is flying in the air, the solvent evaporates and the final solute is deposited on the
receiving plate to form nanofibers. Figure 2 is a schematic diagram of the working principle
of electrospinning [22,23]. The whole electrospinning equipment mainly includes three
parts: a high voltage supply device, an injector and a receiving board. However, different
requirements for nanofibers may lead to changes in one or several pieces of equipment.
The change of the equipment is only to get the nanofibers needed while maintaining the
working principle.
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The influencing factors of electrospinning mainly include: solution concentration
and viscosity, voltage intensity, receiving distance, air humidity and temperature. The
viscosity and concentration of the solution play an important role in the morphology and
performance of the fiber [24]. Voltage and receiving distance directly affect the thickness
of the fiber [25]. The humidity and temperature of the air affect the volatilization of the
solvent during the jet flight, which ultimately affects the formation of the fibers [26].

2.2. Types of Nanofibers

Different parameters and methods of electrospinning lead to different morphology of
nanofibers. For example, core-shell nanofibers can be obtained by coaxial electrospinning.
Different kinds of nanofibers have different characteristics such as oriented nanofibers
with high axial mechanical properties and good dimensional stability. High porosity
and large specific surface area are key properties that contribute to a successful biosen-
sor, hence the wide use of electrospun nanofibers [27]. Meanwhile, biosensors based on
nanofibers have the advantages of high responsiveness, high sensitivity, wide detection
object and cost effectiveness [28]. Figure 3 shows the morphological characteristics of
different kinds of nanofibers.
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(e) pine-needle nanofibers [33]; (f) patterned nanofibers [34]; (g) cobweb nanofibers [35]; (h) hollow
nanofibers [36].
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2.3. Preparation and Characteristics of Nanofibers

The types of nanofibers are described above and the preparation techniques used for
different nanofibers are also different. The preparation technology and characteristics of
different fibers are described in detail below.

1. Randomly distributed nanofibers: The preparation of such fibers is the simplest form
by direct drawing of the instabilities of the jet. This results in a relatively small range of
applications and poor mechanical properties for such fibers. However, the advantage
is that the preparation is simple and there is no complicated process.

2. Aligned nanofibers: This fiber is obtained by suppressing the instability of the jet
on the basis of randomly distributed nanofibers. This makes the fibers have the
advantages of high axial mechanical strength, good dimensional stability and high
application value in tissue engineering, composite reinforcement, electrical and optical
fields. However, due to the different methods used, the collection speed may be slow
and the amount of fibers is relatively small.

3. Core-shell nanofibers: Fibers of this structure are mostly obtained by coaxial elec-
trospinning devices. Core-shell structured nanofibers solve the problem that some
materials are not spinnable. Core-shell structured nanofibers solve the problem that
some materials are not spinnable. This also makes this fiber widely used in biomedical
fields such as drug release systems, tissue engineering scaffolds, drug-loaded medical
dressings and sutures.

4. Multispace nanofibers: The preparation of such fibers is mostly used to induce phase
separation. For example, solvent evaporation and heating can induce phase separation
to form multispace nanofibers. This fiber is characterized by a substantial increase in
the specific surface area of the fiber.

5. Pine-needle nanofibers: Such fibers are formed based on randomly distributed
nanofibers. Then, other materials are generally grown on randomly distributed
fibers by hydrothermal method.

6. Patterned nanofibers: This fiber is obtained by changing the shape, movement mode
and material of the collecting device. Its physical and chemical properties are basically
the same as those of disordered fibers.

7. Cobweb nanofibers: This fiber is a two-dimensional mesh fiber membrane material
with ultrafine electrospun fibers as a scaffold. It has the advantages of large specific
surface area, good adsorption and stable mechanical properties.

8. Hollow nanofibers: This fiber is obtained on the basis of the core-shell structure
fiber. Such fibers are generally obtained by coaxial electrospinning with a soluble
or volatile substance as the core layer and a polymer solution as the shell layer and
then removing the core layer by dissolving or heating. The disadvantage is that the
production efficiency is relatively low.

3. The Principle and Characteristics of Biosensors
3.1. Working Principle

A biosensor is mainly composed of a biosensor and signal transducer. The main
function of the biosensor is to select the substance to be measured. The main function of
signal transducers is to convert the chemical effects generated by the interaction between
the biological components and measured substances into electrical signals that can be
considered as output [37]. Thus, it works in two steps. Firstly, biological substances with
molecular recognition function are coated and fixed on the carrier by technical means (such
as electrospinning) to form a functional membrane. Secondly, in the working process,
the biological substances react with the measured substances and then carry out signal
conversion through the signal transmitter [38]. Figure 4 shows the main schematic diagram
of the biosensor.
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Electrospinning is also widely used in the field of biosensors. This is because the
nanofiber film obtained by electrospinning has a high specific surface area. This enables
more biological elements to be loaded on the fiber surface, which greatly improves its sensi-
tivity. This is why electrospinning technology has been widely used in the field of biosensors
in recent years. Table 1 lists several common biological elements and loading methods.

Table 1. Common biological elements and loading methods.

Biological Elements Loading Methods Purpose Refs.

scherichia coli
bacteriophage electrostatic interaction rapid detection of

Escherichia coli [39]

GOx
encapsulation of enzymes into
metal frameworks for in situ

growth
detect glucose [40]

red cabbage extract
(RCE) doping in PVA solution check pH [41]

DNA
oligonucleotides

soak the fiber membrane in the
DNA solution and stir detect p16INK4a gene [42]

burkholderia cepacia
lipase (BCL) crosslinking with nanofibers Detect 17α-

ethinylestradiol (EE2) [43]

3.2. Characteristics of Biosensors

There are four main characteristics of biosensors (selectivity, sensitivity, reproducibil-
ity and stability) [44]. Selectivity is an important characteristic to be considered when
biosensors select receptors. Only when biological elements interact with receptors can they
produce positive effects. Since general biological samples contain a variety of biological
information, selectivity is particularly important for sensors. Sensitivity is one of the impor-
tant indicators to measure the quality of sensors. High-sensitivity sensors can respond to
small fluctuations in sample concentration. Reproducibility can also be understood as the
accuracy of the sensor. Sensors with high reproducibility can get the same results under
multiple measurements. Stability is an important characteristic to ensure that the sensor
can be used for a long time [45].

4. Application of Electrospinning in Biosensors

In recent years, the development of electrospinning technology has been very rapid
and the fields of application are expanding. Compared with other technologies, electro-
spinning is relatively simple and versatile [46]. Therefore, electrospinning technology is
widely used in the fields of biosensors. However, medical care has been mostly passive
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in recent times, with patients not seeing a doctor until they experience significant dis-
comfort or symptoms [47]. This is very likely to cause aggravation of the disease. With
the development of biosensors getting better and better, the probability of predicting the
occurrence of diseases in advance is gradually increasing [48]. The biosensor can sense
the biological information of the human body to determine whether there is a possibility
of disease. It can also test human movement, heart rate, sweat, sleep, blood sugar, blood
pressure and temperature [49]. Biosensors can also be used as a bandage. According to
the principle of sensor device detection, they can be classified as: piezoelectric biosensor,
electrochemical biosensor, thermal biosensor, optical biosensor, acoustic channel biosen-
sor, field effect tube biosensor and mediator biosensor. Electrospinning technology is
widely used in the first four sensors but rarely applied in the latter three. So this paper
mainly introduces the first four biosensors. Figure 5 exemplifies a specific application of
electrospinning-based biosensors.
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with permission from ref. [50].Copyright 2020, American Chemical Society; (b) monitor body move-
ment [51]; (c) enzymatic biosensor for detecting glucose concentration [52]; (d) non-enzymatic
biosensor to detect glucose concentration [53]; (e) detect body temperature. Reprinted with permis-
sion from ref. [54]. Copyright 2021, American Chemical Society; (f) detect UV intensity. Reprinted
with permission from ref. [55]. Copyright 2021, American Chemical Society.

4.1. Piezoelectric Biosensor

Piezoelectric biosensors are often used to test whether the heart rate, pulse and limb
movements are normal. The detection principle is based on the deformation of the sensor
to drive the resistance to change to reflect the health of the body. For example, when
detecting a pulse, the resistance response is normally stable and fluctuating. However,
if the resistance response suddenly appears abnormal, it means that the pulse beat is
abnormal. The same is true when detecting body movement.



Biosensors 2022, 12, 876 7 of 20

4.1.1. Monitoring Heart Rate

Heart rate is a very important indicator of the human body and its abnormality can
threaten life. Therefore, it is particularly important to invent a sensor that can monitor heart
rate in real time. There are many sports bracelets on the market that can monitor heart
rate in real time. However, the stability and sensitivity of this equipment are generally not
high enough to reflect abnormal conditions in time [56]. This greatly limits its application
in clinical medicine, and the clinical demand for low-cost and easy-to-use sensors has not
yet been met [57]. The low-cost and easy operation of electrospinning greatly expands the
application of this technology in the field of biosensors.

In recent years, the development of sensors for monitoring heart rate has advanced
rapidly. Mainly manifested in increased functions, increased sensitivity and ease of produc-
tion [58]. Studies have shown that many cardiovascular parameters can be obtained from
heart rate, which provides a basis for early treatment of diseases [59]. Piezoelectric biosen-
sors can respond well to heart rate conditions. The principle is to deform the dielectric in
the sensor through vibration and then output a visual electrical signal. Li et al. [60] created a
highly sensitive pressure sensor to monitor heart rate. Figure 6 shows the principle diagram
of this sensor and the heart rate fluctuations. The electronic skin consists of Cu–Ni-plated
fine-knit polyester fabric attached to both sides of the composite nanofibers to prepare the
top and bottom electrodes. The electrodes are then connected via conductive copper wires.
Finally, PDMS (polydimethylsiloxane) is used for external encapsulation. The electronic
skin monitors pulse and heart rate changes that can be observed using smart devices. The
composite nanofibers that form the core of the electronic skin show that the fibers are
evenly distributed and have a uniform diameter. This allows the sensor to withstand high
temperatures up to 341.0 ◦C. Its maximum open circuit voltage and short circuit current
can reach 184.6 V and 10.8 µA, respectively. Experimental results show that it monitors the
number of pulse beats consistent with normal human heart rate intervals.
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4.1.2. Monitoring Body Movement

The movement changes of human joints are also one of the important indicators to
reflect the physical condition. Under normal circumstances, the changes of human joints
are regular and do not undergo long-term mutations. However, when the changes in the
joints are so abrupt that they do not stick to the same pattern, it is important to consider the
health of the body to avoid getting worse. Such real-time surveillance is crucial for the early
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detection and treatment of disease [61]. In recent years, the piezoelectric biosensor has
developed rapidly and can meet the needs of capturing abnormal human motion signals. It
can also monitor movements such as pronunciation, chewing and swallowing.

Compared with traditional sensors, today’s sensors are more convenient and pro-
vide a more timely feedback. As time progresses, the requirements for sensors are get
higher. Not only should the sensitivity and stability be high, but also the cost should be
as low as possible [62]. Chen et al. [63] invented a breathable sensor to monitor human
movement. Figure 7 shows the fabrication process of the sensor and its real-time response
to body movement. This sensor is fabricated by shearing the prepared IL/TPU (ionic
liquid/thermoplastic polyurethane) nanofiber ionogel mat in different directions and then
adding electrodes at both ends. It can be seen from the figure that most of the nanofibers
are aligned. This enables the sensor to have a wide response range (>200%), fast response
and recovery (119 ms) and low detection limits (0.1%). It can also be used as a stretchable
temperature sensor. It has high sensitivity (2.75% ◦C–1), high precision (0.1 ◦C) and fast
response time (2.46 s).
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process of making the sensor; (b) SEM image of IL/TPU mat; (c) real-time response of elbow and
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2021, American Chemical Society.

The sensors described above are based on electrospinning. It can be seen from
the data that the sensor has excellent performance and it is versatile. Table 2 exempli-
fies the performance comparison of electrospinning piezoelectric biosensors with other
piezoelectric biosensors.
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Table 2. Performance of electrospinning in detecting heart rate and pulse with other techniques.

Methods Main
Material Sensitivity Linear Range Stability Refs.

Electrospinning

PVDF 18.376 kPa−1 0.002–10 kPa 7500 [64]
PVDF 0.38 V/N — — 6834 [65]
PVDF 5 kPa−1 0–5 kPa — — [66]

CA 60.28 kPa−1 0–24 kPa 13,000 [67]

P(VDF-TrFE) 437.5 mV/µm
41.7 mV/µm

0–2 µm
2–10 µm 2000 [68]

Fiber Optic POF 0.002 mV/µm
0.0004 mV/µm

150–650 µm
1400–3450 µm — — [69]

Sacrifice
template and
sandpaper-

treated

PDMS 39.077 kPa−1 0.0009–160 kPa 1400 [70]

Laser etching PVDF 0.24 V/N — — 4000 [71]

Coating PU 4.169 kPa−1 0.02–10.3 kPa 2300 [72]
TPU 1.02 kPa−1 0.0007–160 kPa 60,000 [73]

4.2. Electrochemical Biosensor

Electrochemical biosensors are composed of various biomolecules (enzymes, DNA,
microorganisms, antibodies) and electrochemical converters (amperometric, potentiomet-
ric, capacitive and conductometric). Its main principle is to convert chemical signals into
electrical signals through chemical reactions between the biological materials on the sen-
sitive components and the biological information in the measured object. Among them,
there are many sensors using enzymes as biological materials, but the disadvantage is that
the activity of enzymes is difficult to guarantee. There are many sensors based on other
biological materials, such as DNA, cells, nucleic acids, and microorganisms. However, due
to the peculiarity of these materials, they are not widely used in the field of electrospin-
ning. The more commonly used enzymatic biosensors and non-enzymatic biosensors are
introduced here.

4.2.1. Enzyme Biosensors

In recent years, the rapid development of non-invasive biosensors brings great conve-
nience to sensor detection [74]. Human sweat, saliva and tears contain a lot of biological
information. This enables the direct detection of these liquids by the enzymatic sen-
sor. The biological information contained in these fluids can directly reflect the health of
the body [75]. By detecting these liquids, you can know your physical condition more
conveniently and quickly. Compared with traditional blood sampling, this method is
non-invasive and cheaper. However, this method also has some disadvantages, such as the
direct contact between sweat and air may lead to inaccurate measurement results.

In recent years, the main reason for the slow development of enzymatic sensors is
that the inference from biological information carried in these liquids is not comprehensive
enough [76]. In addition, the preservation and activity screening of enzymes are also
difficult. Kim et al. [77] created a nanofiber hydrogel patch that can monitor glucose
concentrations. Figure 8 shows the structure of the nanofiber hydrogel patch. The PVA
NFs containing GOx/β-CD inclusion complexes with a crosslinking agent (BTCA) and
AuNPs were electrospun from the aqueous solution mixture. The hydrogel was then steam
treated with enzymes at 2 ◦C overnight. It can be seen from the figure that the fiber surface
is smooth without defects. Fibers adhere but do not change shape or morphology. This
gives the sensor a wide linear range (0.1 mM–0.5 mM), high sensitivity (47.2 µAmM−1)
and low detection limit (0.01 mM).
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4.2.2. Non-Enzymatic Biosensors

The disadvantage of enzyme sensors is that enzymes are affected by various environ-
mental factors, such as temperature, humidity, oxygen concentration and pH value. This
limits the application of enzymatic sensors in continuous detection [78]. The advent of
non-enzymatic biosensors avoids this disadvantage. However, compared with enzymatic
sensors, the specificity of non-enzymatic sensors is poor and the cost of some sensors is
relatively high. Xu et al. [53] designed a highly sensitive non-enzymatic glucose sensor
based on semiconductor nanocomposites by a simple electrospinning technique. Figure 9
shows the microstructure and performance characterization of this sensor. It designs a
highly sensitive non-enzymatic glucose sensor based on semiconductor nanocomposites
by a simple electrospinning technique. The fabrication characteristic of this sensor is that
the nanofiber membrane is calcined in a Muffle furnace for 1 h at 280 ◦C and then for
2 h continuously at 450 ◦C until the Muffle furnace is cooled to room temperature. The
diameter and length of the nanofibers decreased obviously during the whole calcination
process, and this special treatment of the fiber membrane makes the sensor have high
sensitivity (4022 µA mM−1 cm−2) and a low detection limit (0.08 µM).

It can be seen from the above that both the enzymatic and non-enzymatic sensors
have good resolution for glucose. This is because the electrospun nanofibers have a higher
specific surface area and can adsorb more biological elements to fully react with the analyte.
Table 3 exemplifies the performance comparison of electrospinning piezoelectric biosensors
with other piezoelectric biosensors.
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glucose [53].

Table 3. Performance comparison of electrospinning and other technologies in detecting body fluids.

Methods Main
Material Sensitivity Linear Range Stability Refs.

Electrospinning PAN 301.77 µAmM−1 cm−2 0.0003–4.5 mM 80 days [79]
PAN 1947.2 µAmM−1 cm−2 0.005–19.175 mM — — [80]

Coating
PVDF 5.18 µAmM−1 cm−2 — — — — [81]
fabric 105.93 µAmM−1 cm−2 0.05–1 mM — — [82]

PU 12.69 µAmM−1 cm−2 1–30 mM 16 days [83]

Hydrogel PEDOT:PSS 0.875 µAµM−1 cm−2 2.0–250 µmolL–1 25 days [84]

Chemical vapor
deposition nickel textile 14.45 µAµM−1 cm−2 — — — — [85]

Wet spinning
PU 140 µAmM−1 cm−2 — — 10,000 [86]
PU 425.9 µAmM−1 cm−2 10 µM–0.66 mM — — [87]

Ni(OH) 595.3 µAmM−1 cm−2 0.01–7.66 mM — — [88]

Deposition PDMS 253.4 µAmM−1 cm−2 — — 1000 [89]

In-situ synthesized fabric 1625 µAmM−1 cm−2 0.001–1 mM — — [90]
1325 µAmM−1 cm−2 1–10 mM

Dry Spinning SEBS 11.7 µAmM−1 cm−2 0–500 µM — — [91]

4.3. Thermosensitive Biosensors

Body temperature is one of the important signs for detecting human health [92]. The
traditional way of detecting body temperature is a mercury thermometer. However, this
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method takes a long time and is quite difficult to operate. Later, the body temperature gun
was invented which is more convenient than the traditional one.

However, the measurement results may be inaccurate compared with mercury ther-
mometers. In recent years, temperature sensors have developed rapidly. Sensors that can
feedback body temperature information in time and measure it accurately have emerged.

As a wearable sensor, it must have a certain degree of biocompatibility and the material
should be non-toxic [93]. The current body temperature sensors are patch type, electronic
tattoo type and electronic bracelet type. These sensors are thermosensitive biosensors.
Thermosensitive biosensors mainly rely on thermistors to sense temperature changes and
thus lead to resistance changes. Jiang et al. [94] invented a multifunctional sensor that
detects strain and temperature. Figure 10 is a manufacturing schematic and characterization
of this multifunctional sensor. The sensor is made of TPU (thermoplastic polyurethane)
nanofibers decorated with IL (ionic liquid) by ultrasonic anchoring technology. As can
be seen from the element mapping diagram, the characteristic N, F and S elements of IL
are uniformly distributed on the fiber surface. This gives the multifunctional sensor many
good performances. As a strain sensor, it has a fast response time of 67 ms, ultra-low
detection limit (0.1%) and ultra-wide detection range (0.1–400%). As a temperature sensor,
its accuracy can reach 0.5 ◦C and the induction range from −40 ◦C to 80 ◦C. The sensor
also provides excellent repeatability (response curve under 1500 cycles) and durability (the
same signal can be obtained after 50 days).
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terization of multifunctional sensor, (b) fiber surface map and element map, (c) cyclic performance as
a function of 1500 loading-unloading cycles for the sensor, (d) the heat flow response of the sensor to
different gears of the blower, (e) sensor response to repeated finger bending [94].

Thermosensitive biosensors are becoming more sensitive to temperature, which results
in higher requirements for sensors. Electrospun nanofibers have attracted much attention



Biosensors 2022, 12, 876 13 of 20

due to their excellent properties. Table 4 exemplifies the performance comparison of
electrospinning thermosensitive biosensors with other thermosensitive biosensors.

Table 4. Performance of electrospinning for body temperature detection with other technologies.

Methods Main
Material Sensitivity Linear

Range Stability Refs.

Electrospinning PVDF
TPU

57.76/◦C
2.75%/◦C

24–48 ◦C
— —

5000
1000

[54]
[63]

Fiber Optic PANI 8.962 nm/◦C 33–43 ◦C — — [93]
PDMS 1.3%/◦C 20–50 ◦C — — [95]

Electrochemical Deposition GuHCl 1.75%/◦C 35–63 ◦C — — [96]

Wet-spinning PU 0.8%/◦C — — — — [97]

Spray-coated AgNW 0.47 Ω/◦C 25–60 ◦C 1000 [98]
PEDOT:PSS −0.99%/◦C 20–50 ◦C — — [99]

Free radical polymerization NIPAAm
−1.39%/◦C 30–37 ◦C — — [100]0.37%/◦C 37–43 ◦C

In situ synthesized TPU 0.95%/◦C 20–40 ◦C — — [101]

Drop coating PEDOT:PSS −0.803%/◦C 35–40 ◦C — — [102]

4.4. Optical Biosensors

Humans are exposed to excessive including ultraviolet rays, which are more harmful
to the human body. Long-term exposure to ultraviolet light may cause abnormalities such
as skin cancer and skin aging [103]. This brings a lot of trouble to our lives. There are many
ways to prevent ultraviolet radiation from having direct contact with the skin. Among them
are the application of sunscreen and holding an umbrella. Wearable sensors that can detect
the intensity of ultraviolet rays are relatively few. With the advancement of technology,
wearable ultraviolet sensors have more and more functions. Not only can they detect the
intensity of ultraviolet light, but it can also detect nearby environmental conditions. Most
of these sensors use materials that are sensitive to ultraviolet light. When the UV intensity
exceeds the normal level, it will cause the resistance of the sensor to change and remind the
wearer to pay attention to sun protection.

Today’s wearable UV sensors are sticker-shaped, which can change color according
to the intensity of UV rays [104]. They also compare the colors to get the UV intensity.
Veeralingam et al. [105] invented a low-cost, tactile, high-performance and multi-functional
sensing platform. Figure 11 shows the fabrication process and characterization of this
sensor. The electrospun NiO nanofiber membranes were annealed in Muffle furnace for 6 h
at 400 ◦C to decompose the polymer solution completely. Then the nanofiber membrane
was uniformly dispersed in DMF (dimethylformamide) solution. A cut MS (Melamine
sponge) was immersed in the solution for 1 h and then 4 h. After the fourth hour, MS was
removed and dried at 70 ◦C for 1 h. It can be seen from the figure that, NiO fibers are
interspersed evenly in the MS void. This gives the sensor numerous excellent performances.
The sensor still has relatively stable current response under 500 cycles. Used for UV filter,
UV protection coefficient can reach about 87.7. As a pressure sensor, the detection range is
50–700 N and the sensitivity can reach 3.75 kPa−1. As a strain sensor, the detection range is
7–74% and GF (gauge factor) can reach 34. Therefore, this sensor is feature-rich and has
excellent performance.

Biosensors based on electrospinning to monitor light intensity are still relatively few.
Electrospinning improves the performance of the sensor for light intensity detection to a
certain extent. Table 5 exemplifies the performance comparison of electrospinning optical
biosensors with other optical biosensors.
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Table 5. Performance comparison of electrospinning applied to detect UV and other technologies.

Methods Main
Material Sensitivity Linear Range Stability Refs.

Electrospinning PAN 0.0574% — — — — [55]
TPU 7.2% — — — — [106]

Fiber-Optic ZnO
ZnO

7.096 W/(mWcm−2)
— —

1527–1534 nm
1.5–12.5

mWcm−2

— —
— —

[107]
[108]

Spin-coated BaTiO3

23.11%
46.85%
67.92%

0.07 mWcm−2

0.3 mWcm−2

1.1 mWcm−2
— — [109]

Rf-sputtering ZnO 50 µW/cm2 — — 100 [110]

Hydrogels PVA
10.88% 365 nm — — [111]78.26% 650 nm

Ink-coating Cellulose
thread

4.76 mW/cm2 254 nm — — [112]
0.76% mW/cm2 365 nm

It can be seen from the above comparison that electrospinning technology has great
advantages over other technologies. Not only does it have a better sensitivity and stability,
but also its functions are broad. This is attributed to the high specific surface area of
electrospun nanofibers. This also enables electrospinning technology to be widely used in
the field of biosensors.

5. Conclusions

In recent years, electrospinning technology has developed rapidly and its application
in the field of biosensors has become extensive [113]. Electrospun nanofibers have many
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excellent properties such as high porosity, high specific surface area, easy modification and
low cost. These excellent characteristics also promote the wide application of electrospun
nanofibers in the field of biosensors. Biosensors are now popular, especially in the medical
field. The biosensor mainly acts on the human body to detect whether the physiological
information of the human body is normal. There are many types of biosensors, which can
detect various aspects of the human body’s physiological information and provide timely
feedback to prevent the occurrence of diseases. It is foreseeable that the future development
of electrospinning-based biosensors will have the following characteristics. (1) Diversified
functions: Future biosensor functions will be more diverse and will integrate multiple func-
tions. It can also detect physical diseases that people usually do not notice. (2) Convenience:
With the advancement of nanotechnology, biosensors will become more convenient and
more comfortable to wear. (3) Intelligence and integration: Future biosensors will be more
closely connected to smart devices, and can form automatic collection of samples, analysis
of samples and timely provide accurate results of the automated system. At the same time,
chip technology will increasingly enter the field of sensors to realize the integration of
detection system.

Although the development of electrospinning technology in the field of biosensors is
very extensive, biosensors themselves have certain limitations that prevent them from being
widely used. Because biological elements are the most important components in biosensors,
biological materials on the surface of biological components are easy to inactivate and have
poor reproducibility, making it difficult to guarantee their service life and storage. The
biological element is closely related to the performance of the sensor. The high specific
surface area of the electrospun nanofibers enables the attachment of a large number of
biomaterials and contributes to the enhanced sensor performance. At the same time,
electrospinning also has disadvantages, such as relatively unstable product consistency and
many control factors. I believe that with the continuous advancement of electrospinning
technology in future, more breakthroughs will be made in the field of biosensors.
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