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Abstract: Nanozymes are highly desired to overcome the shortcomings of natural enzymes, such as
low stability, high cost and difficult storage during biosensing applications. Herein, by imitating the
structure of natural enzymes, we propose a one-pot annealing process to synthesis imidazole-ring-
modified graphitic carbon nitride (g-C3N4-Im) with enhanced peroxidase-like activity. g-C3N4-Im
shows enhanced peroxidase-like activity by 46.5 times compared to unmodified g-C3N4. Furthermore,
imidazole rings of g-C3N4-Im make it possible to anchor Cu(II) active sites on it to produce g-C3N4-
Im-Cu, which shows a further increase in peroxidase-like activity by three times. It should be noted
that the as-prepared g-C3N4-Im-Cu could show obvious peroxidase-like activity over a broad range
of pH values and at a low temperature (5 ◦C). The ultrahigh peroxidase-like activity is attributed
to the electronic effect of imidazole rings and the active sites of Cu(II) for ·OH production. Based
on the enhanced peroxidase-like activity, a H2O2 and glucose biosensor was developed with a high
sensitivity (limit of detection, 10 nM) and selectivity. Therefore, the biosensor shows potential for
applications in diabetic diagnoses in clinical practice.

Keywords: nanozymes; biosensors; 2D materials; diabetic; colorimetric detection

1. Introduction

Natural enzymes have been widely used in industrial, medical, environmental and
biosensing applications, owing to their high catalytic activity and substrate specificity.
However, the high-cost processing, difficulties of recycling and poor stability limit its
applications. Compared with natural enzymes, nanozymes exhibit significant advantages,
such as low cost, adjustable catalytic activities and flexibility in structure design, which
make them gradually become substitutes for natural enzymes and be gradually applied to
lots of fields, especially in biosensing [1–8]. Because Fe3O4 nanoparticles were first reported
in 2007 to show intrinsic peroxidase-like activity by Yan’s group [9], lots of nanozymes, such
as noble metal [10–14], metallic oxide [15,16], metal sulfide [17,18], graphene oxide [19–21],
and carbon quantum dots [22,23], have been reported. Among them, two-dimensional (2D)
materials, such as GO, have been widely explored as nanozymes, owing to its large specific
surface area and high atomic utilization [24,25]. Although GO-based materials have been
widely explored as efficient nanozymes, the development of a two-dimensional artificial
enzyme with a low cost and by a simple and convenient method is still highly desired.

Graphite-phase carbon nitride (g-C3N4) is the most stable allotrope of carbon nitride
under ambient conditions [26–28]. g-C3N4 consists of carbon and nitrogen, which are
abundant elements, and is relatively environmentally friendly, sustainable and can be
produced on a large scale with low costs. Especially, g-C3N4 can be used for the detection
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of H2O2 and glucose because of its intrinsic peroxidase-like activity [29]. However, the
catalytic activity of g-C3N4 is far from satisfactory, compared with natural peroxidase.
As such, it is essential to design highly efficient g-C3N4-based nanozymes. In previous
reports, many strategies, such as composites, element doping, and modifications, have been
proposed to enhance the activity of g-C3N4 [30,31]. However, it still remains a challenge
to prepare g-C3N4-based nanozymes with high catalytic activity in a wide pH range and
at a low temperature; thus, they could be used for the sensitive detection of glucose in
human urine.

Herein, by imitating the structure of natural enzymes [9,32,33], a one-pot anneal-
ing process was proposed to construct imidazole-ring-modified graphitic carbon nitride
(g-C3N4-Im) with enhanced peroxidase-like activity (Figure 1). In this system, histidine
was added during calcination to produce g-C3N4-Im, showing enhanced peroxidase-like
activity by 46.5 times compared to unmodified g-C3N4. Furthermore, imidazole rings of
g-C3N4-Im make it possible to anchor Cu(II) active sites onto it to produce g-C3N4-Im-Cu,
which shows a further increase in peroxidase-like activity by three times. It was demon-
strated that the g-C3N4-Im-Cu nanozyme could work efficiently in wide pH values (4–9)
and at a low temperature (5 ◦C). The ultrahigh peroxidase-like activity was attributed to the
electronic effect of imidazole rings and the active sites of Cu(II) for ·OH production. Based
on the enhanced peroxidase-like activity, a H2O2 and glucose biosensor was developed
with high sensitivity and selectivity. g-C3N4-Im-Cu was further applied to detect glucose
in human urine samples with high sensitivity and selectivity.
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Figure 1. Schematic illustration of one-pot annealing preparation of g-C3N4-Im (a) and g-C3N4 (b)
with enhanced peroxidase-like activity for H2O2 detection.

2. Experimental
2.1. Reagents and Materials

The purity of reagent was analytically pure. Copper (II) acetate monohydrate and
histidine were obtained from Aladdin Reagent Co., Ltd. (Shanghai, China). Urea, a
30 wt% H2O2 solution, terephthalic acid (TA) and glucose were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). 3,3′,5,5′-tetramethylbenzidine (TMB),
methylene blue (MB), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and
o-phenylenediamine (OPD) were a product of J&K Chemical Reagent Ltd. (Shanghai,
China). Glucose oxidase (GOx) was purchased from Sigma-Aldrich Reagent Ltd. (Burling-
ton, MA, USA). Urine samples of diabetic patients and healthy controls (20 samples) were
obtained from the Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology.

2.2. Preparation of g-C3N4-Im and g-C3N4-Im-Cu Nanosheets

The preparation of g-C3N4 was according to the previous literature [34,35]. The
preparation of g-C3N4-Im was as follows: firstly, 0.77g of histidine was mixed with 30 g of
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urea under grinding. Then, the mixture was transferred to an alumina crucible followed,
by heating in a muffle furnace from room temperature to 600 ◦C with a heating rate of
5 ◦C min−1, followed by calcination at 600 ◦C for 4 h. Finally, g-C3N4-Im was obtained
after natural cooling. g-C3N4-Im of different mole ratios can be obtained by changing the
mass ratio of urea to histidine. The preparation of g-C3N4-Im-Cu was obtained by mixing
copper (II) acetate (2 mM) and g-C3N4-Im (0.5 mg/mL) suspension in equal volumes under
stirring. This stable g-C3N4-Im-Cu suspension was dialyzed overnight to remove free Cu(II)
ions and other byproducts, and the final Cu(II) in g-C3N4-Im-Cu was diluted by 100 times
before being measured by the inductively coupled plasma mass spectrometry (ICP-MS)
technique and the energy-dispersive X-ray (EDX) spectrum.

2.3. Instruments and Characterization

The crystal structure was characterized by X-ray diffraction (XRD, Bruker D8 advance,
United States) at 40 kV and 40 mA. The morphology of the samples was observed by
a scanning electron microscope at 10 kV (SEM, Hitachi SU8010, Tokyo, Japan). FTIR
spectra (Bruker Alpha II, Billerica, MA, USA) and Raman spectra (Thermo Fischer DXR,
Waltham, MA, USA) were used to characterize the molecular structure of the samples.
X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI, Waltham, MA, USA)
was used to characterize the fine structure of the products. For thermogravimetric analysis,
20 mg of the dry sample was sealed, with the heating temperature increasing from room
temperature to 1000 ◦C at a heating rate of 10 ◦C·min−1 in nitrogen atmosphere.

2.4. Peroxidase-like Activity Assays of g-C3N4-Im-Cu Nanosheets

The peroxidase-like activity of g-C3N4-Im-Cu nanosheets was evaluated as follows:
500 µL of g-C3N4-Im-Cu suspension, 500 µL of H2O2 (100 mM), 500 µL of TMB (2 mM) and
1.5 mL of NaAc/Hac buffer (10 mM, pH = 7) were mixed in a cuvette before the UV–Vis
spectra were collected from 400~800 nm. The assays were monitored in wavelength-scan
mode or in time-dependent mode at 652 nm under the optimal conditions as described
above, unless otherwise stated.

2.5. Detection of H2O2 and Glucose

For the detection of H2O2, 500 µL g-C3N4-Im-Cu, a 500 µL TMB (6 mM) solution and
a 1.5 mL NaAc/HAc buffer (10 mM, pH = 7) were added to a 500 µL H2O2 solution of
different concentrations. The absorbance of the mixed solution at 652 nm was recorded
with a UV–Vis–NIR spectrometer (Shimadzu UV-1900i, Kyoto, Japan).

Glucose detection methods were carried out as follows: firstly, 60 ul GOx solution
(10 mg/mL) with a 540 µL glucose solution of different concentrations were incubated at
37 ◦C for 40 min. Then, 10 µL H2SO4 (10%, v/v) was added into the mixture to stop the
reaction of glucose oxidation. Finally, 500 µL g-C3N4-Im-Cu, a 500 µL TMB (6 mM) solution
and a 1.5 mL NaAc/HAc buffer (10 mM, pH = 7) were added to the above glucose reaction
solution, and the absorbance (652 nm) of the mixture was collected at 15 ◦C.

2.6. Clinical Samples Analysis

The analysis of urine samples of diabetic patients and healthy controls was performed
as follows: 540 µL of urine was mixed with a 60 µL glucose oxidase solution (10 mg/mL),
followed by incubation at 37 ◦C for 40 min. Then, the mixture was mixed with 10 µL H2SO4
(10%, v/v) to stop reaction. Finally, the reaction mixture was centrifuged at 8000 rpm for
10 min to remove the precipitate and the supernatant was collected (500 µL) and mixed
with 500 µL g-C3N4-Im-Cu, a 500 µL TMB (6 mM) solution and 1.5 mL NaAc/HAc buffer
(10 mM, pH = 7), before the absorbance at 652 nm was recorded.

3. Results

The structure of g-C3N4-Im was characterized by X-ray diffraction (XRD). As shown
in Figure S1 (Supplementary Materials), the two typical peaks of g-C3N4-Im at 12.8◦ and
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27.1◦ exhibited a lower intensity than g-C3N4 [36]; meanwhile, the peak at 27.1◦ was
shifted to a low degree compared with g-C3N4, which indicates that the ordered triazine
structure was partly destructed [37]. The morphology and structure of g-C3N4 and g-C3N4-
Im were observed by SEM (Figure 2a,b). The structure of g-C3N4 comprised ultrathin
two-dimensional nanosheets of a large size (>1 µm), which is the typical structure of the
graphitic phase (Figure 2a). In contrast, there were many folds and holes for the structure
of g-C3N4-Im (Figure 2b), which further confirms the results from XRD. To figure out the
chemical structure of g-C3N4-Im, FTIR data were collected (Figure 2c). The spectra of
g-C3N4-Im showed two broad peaks, ranging from 1050 cm−1–1350 cm−1 and 1420 cm−1–
1630 cm−1, respectively, which are attributed to the imidazole ring (Figure S2) [38–41]. This
result was further confirmed by Raman spectra (Figure S3). The broad peaks, ranging from
1000 cm−1–1750 cm−1, are ascribed to superposition peak g-C3N4-Im and imidazole [42].
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Figure 2. SEM image of (a) g-C3N4 and (b) g-C3N4-Im. (c) FTIR spectra of g-C3N4, g-C3N4-Im and
annealed histidine. High-resolution (d) C1s and (e) N1s XPS spectra of g-C3N4-Im. (f) TGA curves of
g-C3N4 and g-C3N4-Im.

To further investigate the fine chemical structure of g-C3N4-Im, X-ray photoelectron
spectroscopy (XPS) was performed. As shown in Figure 2d, the peaks with binding
energies of 284.4 eV, 286.3 eV and 287.3 eV belong to N-C=(-C) on the imidazole ring,
N-C=N(-C) and C-N3 on g-C3N4, respectively [43]. For the high-resolution spectra of N1s
(Figure 2e), the typical peaks at 379.6 eV and 399.4 eV are attributed to C-N-C and N-C3,
respectively. The weak peak at 403.6 eV is attributed to the π excitation [44]. The above
results indicate that g-C3N4-Im was successfully prepared. To figure out the content of
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imidazole in g-C3N4-Im, TGA analysis was performed. As shown in Figures 2f and S4,
with the temperatures increase from 520 ◦C to 680 ◦C, g-C3N4 decreased rapidly and
finally decomposed totally [45]. In contrast, g-C3N4-Im started to decompose at 410 ◦C,
decomposed totally at 680 ◦C, and then 8 wt% of the carbide residue was collected. We
found that there were 17 wt% imidazole in the g-C3N4-Im samples.

To evaluate the peroxidase-like activity of g-C3N4-Im, the TMB-H2O2 reaction was
used as model reaction because the colorless TMB can be oxidized by H2O2 to a blue product
in the presence of a nanozyme. The catalytic activity of g-C3N4-Im was firstly evaluated by
recording the spectra from 200–800 nm with a UV–Vis spectrometer (Figure 3a). Figure S5d
shows the peroxidase-like activity comparison of g-C3N4, histidine and g-C3N4-Im of
different concentrations, indicating that the preparation conditions of g-C3N4-Im can be
optimized to be 100 urea: 1 histidine, which exhibited the highest peroxidase-like activity
among all the samples. Therefore, a 100 urea: 1 histidine-derived g-C3N4-Im sample was
used in the following experiments, unless otherwise stated.
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Figure 3. (a) UV–Vis spectra of mixed solution of TMB, H2O2 and g-C3N4-Im-Cu with time increasing.
(b) The time-dependent absorbance changes at 652 nm of different catalysts. The determining factors
in the test of peroxidase-like activity of g-C3N4-Im-Cu were (c) temperature and (d) pH. (e) The
absorbance value of 652 nm at 10 min of TMB and H2O2 solution in the presence of g-C3N4 (black),
Cu(Ac)2 (purple), g-C3N4-Cu (blue), g-C3N4-Im (green) and g-C3N4-Im-Cu (red).
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To further enhance the catalytic activity of g-C3N4-Im, a Cu(II) ion was introduced
into the suspension of g-C3N4-Im to produce g-C3N4-Im-Cu (see details in Experimen-
tal Section 2.2). EDS mapping indicated that Cu(II) was uniformly dispersed on the
g-C3N4-Im-Cu nanosheets, and the Cu(II) content in g-C3N4-Im-Cu was measured to be
3.7 at% (Figures S5 and S6). The added concentration of Cu(II) was optimized to be 1 mM
(Figure S7a). As expected, upon Cu(II) ion adsorption, g-C3N4-Im-Cu obviously showed
three-times-enhanced catalytic activity (Figure S7e). To further confirm the peroxidase-like
activity of g-C3N4-Im-Cu, ABTS and OPD were used as a substitute for TMB (Figure S8a–c).
All results indicated that g-C3N4-Im-Cu shows an obvious peroxidase-like activity and that
the TMB-H2O2 reaction was the most suitable reaction (Figure S8d). Figure 3b demonstrates
that both H2O2 and g-C3N4-Im-Cu alone cannot oxidize TMB efficiently to produce a blue
color. Consequently, TMB oxidation resulted from the decomposition of H2O2 by g-C3N4-
Im-Cu. Figure 3c demonstrates that g-C3N4-Im-Cu showed intrinsic peroxidase-like activity
in wide pH values from 4 to 9. Unexpectedly, g-C3N4-Im-Cu showed obvious catalytic
activity, even under very low temperatures (<5 ◦C, Figure 3d). The above results indicate
that g-C3N4-Im-Cu showed outstanding peroxidase-like activity, breaking the limitations
of temperature and pH conditions.

To quantify the enhancement factor of catalytic activity for g-C3N4 before and after
imidazole modification, the peroxidase-like activity of g-C3N4, Cu(II), g-C3N4-Cu, g-C3N4-
Im and g-C3N4-Im-Cu are evaluated in Figure 3e. It was indicated that the peroxidase-like
activity of g-C3N4 can be increased by 46.5 times after the imidazole modification, which is
much better than bare g-C3N4 and Cu(II) under the same concentration. Furthermore, the
peroxidase-like activity of g-C3N4-Im could be further enhanced a further three times after
a simple Cu(II) coordination. Thus, the catalytic activity of g-C3N4 could be enhanced by
over two orders of magnitude by a simple modification.

To probe the enhanced mechanism of catalytic activity of g-C3N4-Im-Cu, the ther-
modynamic parameters were measured. As shown in Figure S7f, the thermodynamic of
H2O2 oxidation catalyzed by g-C3N4-Im-Cu was investigated under different temperatures
(5 ◦C, 15 ◦C and 25 ◦C). The activation energy (Ea) of g-C3N4-Im-Cu was 11.54 kJ·mol−1

(Table S1) [46–50], which was much lower than that of other reported catalysts (Table S2),
helping to understand the mechanisms of the high catalytic activity of g-C3N4-Im-Cu
from the viewpoint of thermodynamics. To acquire kinetic parameters, enzyme kinetic
experiments of g-C3N4-Im-Cu, with H2O2 and TMB as substrates, were performed. The
optimal pH, temperature, H2O2 concentration and TMB concentration were obtained
from Figure 3c,d and Figure S7b,c. Then, a series of kinetic experiments were carried out
by adjusting the concentration of one substrate and fixing the concentration of another
(Figure S9a,b). The Michaelis–Menten curve and Lineweaver–Burk curve (Figure S9c–f)
were plotted, and the kinetic parameters Km and Vmax can be obtained from Table 1. In
contrast to other reports, the Km value of g-C3N4-Im-Cu reached 0.034 mM−1 for TMB
and 0.022 mM−1 for H2O2, which is much lower than that of FeS [51] and HPR [9]. The
Vmax value of g-C3N4-Im-Cu for H2O2 and TMB were much higher than that of HPR,
respectively. Therefore, g-C3N4-Im-Cu exhibited a higher catalytic activity than that of
natural enzyme HRP.

To further investigate the catalytic mechanisms of TMB oxidation, radical trapping
experiments were performed. The decreased absorbance value and enhanced fluorescence
signal in Figure S10 indicated that ·OH radicals were produced during the catalytic re-
actions [48]. Based on the above experiments, the suggested catalytic mechanism was
proposed (Figures 4 and S11). The intercalation of the imidazole ring broke the ordered
structure of g-C3N4-Im and, upon adding Cu(II), the Cu(II) was captured by the imidazole
ring and C-N heterocycle as active sites. In the reaction of catalyzed TMB oxidation, Cu(II)
ions can be reversibly converted between Cu(II) and Cu(I) in H2O2 solutions [52,53]; mean-
while, ·OH could be stabilized on the imidazole ring, thus accelerating the decomposition
of hydrogen peroxide.
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Table 1. Kinetic parameters for TMB oxidation catalyzed by different catalysts.

Catalyst Km (mM−1) Vmax (10−8 M·s−1)
TMB H2O2 TMB H2O2

g-C3N4-Im-Cu 0.034 0.022 42.05 45.16
Ag@Fabric [54] 0.19 7.61 15.10 14.40

Fe3O4@MIL-100(Fe) [55] 0.112 0.077 11.42 17.95
BNNS@CuS [56] 0.175 25 3.76 12.5

HRP [57] 0.43 3.70 10.00 8.71

Owing to the outstanding peroxidase-like activity of g-C3N4-Im-Cu, a simple colori-
metric method was developed to detect H2O2. Figure 5a shows the response curve of H2O2
concentration to the absorbance of oxTMB. It can be observed from Figure 5b that a linear
relationship (y = 0.0092 × x + 0.0426) was established in the range of 0.01~50 mM, with a
correlation coefficient of 0.9941 and a detection limit of H2O2 of 10 nM (the signal-to-noise
ratio was two). As H2O2 is the product of the GOx-catalyzed oxidation of glucose when
combined with GOx (Figure S9), the proposed colorimetric strategy was developed for the
detection of glucose. As shown in Figure 5c, the response curve of glucose indicated that the
linear relationship (y = 0.0029 × x + 0.0473) of glucose concentration with the absorbance
of oxTMB ranged from 0.01 to 100 mM (R2 = 0.9941), and the detection limit was 10 nM
(the signal-to-noise ratio was two, Figure 5d and Table S3), which is more sensitive than
that of many other reports [31,58–88]. These results indicate that g-C3N4-Im-Cu exhibits
good sensitivity for glucose detection.

To explore the possibility of the use of biosensor for glucose detection in real samples,
lots of experiments were performed as follows: firstly, fructose, maltose, lactose, ascorbic
acid, dopamine and uric acid were used to investigate the selectivity and anti-interference
of this biosensor. Figure 6a demonstrates that the absorbance of oxidized products from
these glucose analogs and interfering substances were negligible in contrast to that of
glucose under the same concentration, indicating that this biosensor shows a satisfactory
selectivity and anti-interference for glucose, which resulted from the high affinity of glucose
oxidase for glucose. Meanwhile, 20 samples of clinical urine samples of diabetic patients
and healthy controls obtained from Union Hospital, Tongji Medical College were used
for the following analysis. As shown in Figure 6b–d, the absorbance (652 nm) of urine
samples from diabetic patients behaved over two orders of magnitude higher than that of
the healthy controls. Thus, we can easily distinguish the urine samples of normal people (no
color change) and diabetic patients (blue color) by the naked eye (Figure 6d). Consequently,
the results indicate that the g-C3N4-Im-Cu-based biosensor shows potential for applications
in the detection of glucose from clinical urine samples.
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4. Conclusions

In summary, a one-pot annealing process to prepare g-C3N4-Im with enhanced
peroxidase-like activity was demonstrated. Upon Cu(II) coordination, g-C3N4-Im-Cu
showed 139.5 times increased peroxidase-like activity compared to unmodified g-C3N4.
Interestingly, the as-prepared g-C3N4-Im-Cu could work in wide pH values (4–9) and at a
low temperature (5 ◦C). Then, a simple, sensitive and selective colorimetric biosensor was
constructed to sensitively detect H2O2 and glucose. Importantly, the biosensor was used
to determinate clinical urine samples of diabetes with satisfactory results. g-C3N4-Im-Cu
shows several advantages over natural enzymes and other existing alternatives, such as
easy preparation, low cost, high performance at low temperatures and a universal pH,
thus showing the potential applications in medical diagnostics, environmental monitoring
and catalysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12110930/s1, Figure S1: XRD pattern of histidine, g-C3N4, and
g-C3N4-Im of different mass ratios between urea and histidine (10:1; 100:1; 1000:1) after calcination;
Figure S2: (a) FTIR spectra of g-C3N4 before and after calcination; (b) FTIR spectra of histidine and
g-C3N4-Im of different mass ratios between urea and histidine (10:1; 100:1; 1000:1) after calcination;
Figure S3: Raman spectra of heating the g-C3N4 and the g-C3N4-Im; Figure S4: DTG curve of g-C3N4
and g-C3N4-Im; Figure S5: SEM image (a) and corresponding EDS mapping images (b–d) of g-C3N4-
Im-Cu nanosheets; Figure S6: EDX spectrum of g-C3N4-Im-Cu nanosheets showing the content of C,
N, Cu and O elements; Figure S7: Optimal reaction conditions for peroxidase-like activity of g-C3N4-
Im-Cu; Figure S8: Peroxidase-like activity of g-C3N4-Im-Cu with various substrates; Figure S9: Steady-
state kinetic assay of peroxidase-like activity of g-C3N4-Im-Cu; Figure S10: Detecting hydroxyl radical
(•OH) with UV-vis and fluorescence spectra; Figure S11: Schematic illustration of glucose detection
with glucose oxidase (GOx) and g-C3N4-Im-Cu catalyzed reactions. Table S1: Activation energy
calculation results; Table S2: Activation energy for H2O2 oxidation catalyzed by different catalysts;
Table S3: Limit of detection (LOD) of various nanozymes for glucose. References [31,46–50,58–85] are
cited in the supplementary materials.
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