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Abstract: The blood ammonia (NH3) level is one of the most important hepatic biomarkers for the di-
agnosis and monitoring of liver pathologies and infections. In this work, we developed an optimized
optical biosensing method to extract and quantify the ammonia contained in complex-matrix samples
emulating the blood serum. First, the approach was tested with solutions of phosphate-buffered
saline (PBS) and ammonia chloride. Then, further trials were carried out with solutions of fetal
bovine serum (FBS). The ammonia was extracted from the tested samples through a customized cell,
and it was optically quantified by exploiting the indophenol reaction. The extraction cell included
a cation-exchange membrane in Nafion, which was chemically pre-treated through cleaning proce-
dures of sulfuric acid and hydrogen peroxide to keep a basic pH in the ammonia solution and to
avoid contaminants in the membrane. From the NH3 solution, the indophenol reaction produced
light-reactive indophenol dye molecules, which were used as colorimetric indicators. Through ab-
sorbance measurements of the indophenol dye solution at 670 nm wavelength, we were able to detect
and quantify the ammonia level in the samples both with a spectrophotometer and a customized
miniaturized read-out system, obtaining a detection limit of 0.029 µmol/mL.

Keywords: absorbance; ammonia extraction; Berthelot reaction; optical biosensing; Nafion

1. Introduction

High concentrations of ammonia (NH3) in the blood may indicate severe pathologies
and/or metabolic disturbances related to the liver [1–4]. Thus, the timely detection and the
continuous monitoring of the ammonia levels in blood samples is fundamental to ensure
the well-being of patients.

In the last decades, the development of highly sensitive and selective sensing methods
for the detection of biomarkers has received ever-increasing interest [5,6]. The sensing
methods of well-known biomarkers are typically performed in specialized biomolecular
laboratories through the employment of bulky clinical analyzers. These procedures often
result in being lengthy, expensive, and complex. On the other hand, the use of biosensors
offers rapid, accurate, and on-site detection, performed even by non-specialized users [7].
Biosensors have attracted considerable research efforts in recent years such as in clinical
diagnostics [8–10] and agri-food quality monitoring [11,12], allowing for the develop-
ment of easily integrated systems to analyze biological samples directly at the point of
care [13–15]. In particular, optical biosensors are considered valuable resources in clinical
analysis since they allow for the detection and quantification of the presence of specific
analytes in complex-matrix samples such as blood and urine, with high sensitivity, high
rejection to external interferences, stability, and low noise [16–18].

Recent studies have proposed several sensors capable of detecting ammonia at rel-
atively small volumes in air [19–29], focusing mostly on environmental application and
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the agri-food sector [20,21]. However, only a few works have proposed approaches that
are specific for the point-of-care analysis of ammonia in blood samples. Furthermore, they
are mainly based on electrical measurements [22–24], not considering the clinic environ-
ment, which prefers optical techniques. Few studies have reported on the detection of
ammonia based on optical methods [25–29]. Most optical detection systems first include
the separation of the ammonia from the blood, taking advantage of the ammonia volatility
in alkaline conditions. Then, the ammonia is measured using different analytical methods,
whose main results are summarized in Table 1. The most consolidated methods are based
on colorimetric reactions such as ninhydrin [26], Nessler’s reagent [27], and the indophenol
reaction [28,29]. Meanwhile, in [30], the ammonia level is quantified through the mea-
surements in the pH variation. However, these proposed optical systems result in being
quite complex and impractical nowadays, as they require lengthy and expensive setup
procedures, and multiple chemical reactions that need to be performed in a controlled
environment by trained personnel.

Table 1. Summary of the results of the optical ammonia sensors.

Detection Method Linear Detection Range LOD Ref.

Chemiresistive 2 mM–8 mM 2 mM [20]
ZnO/NiO nanocomposites N/A 58 µM [21]

Gas-phase sensor 25 µM–100 µM 4 µM [22]
Impedimetric 25 µM–200 µM 12 µM [23]

Ninhydrine reaction 200 µM–1400 µM 88 µM [26]
Berthelot’s reaction 0.1 µM–10 µM N/A [28]

In this work, we propose an optimized sensing system, suitable for non-specialized
users, to quantify the ammonia in blood-serum samples at the point of care. The system
is composed of an extraction cell, based on a Nafion membrane, and by a miniaturized
optical module to measure the absorbance. We introduced a new chemical treatment to
the Nafion membrane with sulfuric acid and hydrogen peroxide to avoid undesired effects
such as shifts induced by contaminants and by strong changes in the pH of the sample
under test. The quantity of the extracted ammonia was then determined by applying
indophenol, or the Berthelot reaction, which produces a light-reactive indophenol dye
molecule with an absorbance peak at 670 nm. The proposed system was validated through
a spectrophotometer with samples based on water, sodium acetate and blood serum.

2. Materials and Methods
2.1. Chemicals

All chemicals were of analytical grade and the water was ultrapure Milli-Q laboratory
grade (MQ). Phosphate-buffered saline (PBS), hydrogen peroxide, sulfuric acid, ethylenedi-
aminetetraacetic acid (EDTA), and fetal bovine serum (FBS) were purchased from Sigma
Aldrich (St. Louis, MO, USA). The ammonia (NH3) was obtained from a solution of am-
monia chloride (NH4Cl) in an alkaline solution of 1 M sodium acetate by applying an
Ammonia Assay Kit (55R-1410, Fitzgerald, West Springfield, MA, USA), a non-enzymatic
assay with a limit of detection (LOD) of 1 nmol of ammonia. The ammonia assay was based
on a Berthelot reaction and the necessary phenolic reagents (R1 and R2) were included in
the used kit. The rapid separation of plasma and the ammonia testing were not an issue in
this application since we aimed to ultimately develop a completely closed system to avoid
eventual evaporation problems.

2.2. Instruments and Setup

Optical absorbance measurements were carried out with a spectrophotometer from
Mapada Instruments, model UV-1600, in the wavelength range from 650 nm to 700 nm (see
Figure 1a). The same optical measurements were also performed through a custom-made
miniaturized optical system, as shown in Figure 1b. The system was composed of a 670 nm
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laser beam (Thorlabs, Newton, NJ, USA, CPS670F) and a cuvette mounted in a dedicated
holder that assured the correct alignment between the light and the liquid inside the cuvette.
The incident laser light was acquired by a CCD camera (Basler acA1300-60gc) and analyzed
through a custom graphic-user interface. All of the data from the optical measurements
were normalized to obtain an absorbance value between 0 and 1.

Biosensors 2022, 12, x FOR PEER REVIEW 3 of 13 
 

2.2. Instruments and Setup 
Optical absorbance measurements were carried out with a spectrophotometer from 

Mapada Instruments, model UV-1600, in the wavelength range from 650 nm to 700 nm 
(see Figure 1a). The same optical measurements were also performed through a custom-
made miniaturized optical system, as shown in Figure 1b. The system was composed of a 
670 nm laser beam (Thorlabs, CPS670F) and a cuvette mounted in a dedicated holder that 
assured the correct alignment between the light and the liquid inside the cuvette. The 
incident laser light was acquired by a CCD camera (Basler acA1300-60gc) and analyzed 
through a custom graphic-user interface. All of the data from the optical measurements 
were normalized to obtain an absorbance value between 0 and 1. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) The commercial spectrophotometer from Mapada Instruments, model UV-1600. (b) 
The proposed miniaturized optical system setup for the optical absorbance measurement, as 
evidenced in the green color. The image includes another SPR setup in the red color. (c) Functional 
scheme of the optical absorbance system. 

2.3. The Berthelot Reaction 
The Ammonia Assay Kit 55R-1410 (Fitzgerald) was applied to carry out the ammonia 

detection with a colorimetric approach based on the Berthelot, or indophenol, reaction. In 
this chemical process, a basic pH solution of ammonia first reacts with a hypochlorite 
(OCl−) to obtain a monochloramine. Then, the compound reacts with two phenols (R1 and 
R2), forming an indophenol dye molecule, which is light-reactive at 670 nm and easily 
quantifiable by colorimetry using a plate reader or a spectrophotometer. Therefore, the 

Figure 1. (a) The commercial spectrophotometer from Mapada Instruments, model UV-1600. (b) The
proposed miniaturized optical system setup for the optical absorbance measurement, as evidenced in
the green color. The image includes another SPR setup in the red color. (c) Functional scheme of the
optical absorbance system.

2.3. The Berthelot Reaction

The Ammonia Assay Kit 55R-1410 (Fitzgerald, West Springfield, MA, USA) was
applied to carry out the ammonia detection with a colorimetric approach based on the
Berthelot, or indophenol, reaction. In this chemical process, a basic pH solution of ammonia
first reacts with a hypochlorite (OCl−) to obtain a monochloramine. Then, the compound
reacts with two phenols (R1 and R2), forming an indophenol dye molecule, which is
light-reactive at 670 nm and easily quantifiable by colorimetry using a plate reader or a
spectrophotometer. Therefore, the concentration of NH3 can be determined by monitoring
the absorbance of the final indophenol product of the Berthelot reaction. This reaction
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has been studied extensively for a variety of absorbing phenolic species and hypohalite
sources. It has been reported in the literature that phenols in the Berthelot reaction can
be replaced by several phenolic reagents such as sodium salicylate, which is non-toxic,
reduces interferences, and improves color stability at slightly lower pH compared to those
of phenols [31].

The three steps of the reaction are illustrated in Figure 2. In (a), the ammonia in
the solution reacts with a hypochlorite (OCl−) to obtain monochloramine at basic pH.
Then, in (b), the newly formed monochloramine reacts with the first phenol (R1) to form
benzoquinone chlorimine, using sodium nitroferricyanide(III) dihydrate as a coupling
reagent to increase the kinetics of the reaction. Finally, in (c), the product reacts with the
second phenol (R2) to form the indophenol dye and, after a final incubation of 30 min at
37 ◦C, the absorbance of the dye molecule in the solution is measured at 670 nm.
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Figure 2. The steps of the Berthelot reaction. (a) The ammonia reacts with a hypochlorite, obtaining
monochloramine; (b) Monochloramine reacts with R1, forming benzoquinone chlorimine, using
sodium nitroferricyanide(III) dihydrate as a coupling reagent; and (c) benzoquinone chlorimine reacts
with R2, forming the indophenol dye.

3. Design and Treatments
3.1. Extraction Cell Design

To perform the analysis, limiting the possibility of interferents, the blood samples
need to be filtered so that NH3 can be extracted and treated to obtain a light-reactive dye.
To reach this aim, a 3D-printed extraction cell based on a cationic-exchange membrane
in Nafion was designed (Figure 3). The Nafion membrane was previously subjected to a
pre-treatment based on sulfuric acid to eliminate eventual impurities to avoid potential
contaminations that may influence the basic pH of the solution.

The extraction cell was composed of two halves (1 and 2), separated by the mem-
brane: the half cockpit was filled with 150 µL of the sample and the other half was filled
with 150 µL of 1 M sodium acetate. To avoid fluid leakage during analysis, a 10% poly-
dimethylsiloxane (PDMS) layer (0.1 mm2) was placed on the two sections of the cell. In
these conditions, the NH3 extraction was obtained by incubating the cell for 30 min at
25 ◦C to allow for the complete passage of the ammonia from the sample to the second
half-cell. Finally, a 100 µL drop of the extracted solution was withdrawn and put into a
cuvette, where 80 µL of R1 and 40 µL of R2 were added to perform the assay, as previously
described in Section 2.3.
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Figure 3. (a) Extraction cell setup. (b) Functional scheme of the extraction cell. The cell sections are
made in PDMS (grey). The two wells are separated by the Nafion membrane (blue), through which
the ammonium ions are extracted (green). The half-cell 1 (red) was filled with the sample and the
half-cell 2 (yellow) was filled with 1 M sodium acetate.

3.2. Nafion Membrane as Ion-Exchange Barrier

Nafion is a tetrafluoroethylene sulfur copolymer used as a protonic conductor for
protonic membrane cells (PEMs) as fuel for its excellent thermal and mechanical stability.
When cast into films, the sulfonated block aggregates into long-range pores of sulfones
surrounded by a matrix of fluoropolymer. The pores usually have a size of 1–4 nm and are
highly negatively charged due to the sulfonic acid groups [32]. These pores allow for the
rapid diffusion of hydroxyl containing molecules and cations while inhibiting the diffusion
of anions and macromolecules.

In the extraction cell, the Nafion membrane was used as an ion-exchange barrier to
retrieve the ammonia from the sample (Figure 4). A sodium ion from the sodium acetate
well flows into the first well solution, trading places with an ammonium ion, effectively
extracting the ammonia from the sample. The dimension of the membrane was 2.25 cm2,
which is sufficiently large to avoid any contamination between the two wells.
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Chemical Pre-Treatment of Nafion

Nafion is a very strong acid with a pKa of −6 due to the combination of fluorinated
backbone, groups of sulfonic acid, and the stabilizing effect of the Nafion polymer matrix.
Since the Berthelot reaction needs to occur in a highly basic environment, the sodium
acetate solution pH was chosen to be 11, in order to mitigate the acidification effect due
to the contact with the membrane. Furthermore, before assembling the extraction cell,
Nafion was thoughtfully treated with chemical cleaning procedures to eliminate eventual
contaminants that could lower the pH of the final solution and interfere with the reaction.
The Nafion membrane was incubated initially in a 3% solution of hydrogen peroxide for



Biosensors 2022, 12, 1079 6 of 13

one hour, then soaked in water for two hours. Afterward, the Nafion was left in a solution
of 0.5 M sulfuric acid for one hour. Finally, the previous incubations were repeated first
with water and then with hydrogen peroxide. During the whole process, the membrane
and the solutions were kept at the temperature of 80 ◦C. The newly treated membrane was
then stored in 1 mM EDTA to avoid desiccation before utilization.

The proposed Nafion treatment can also be a promising starting point for membrane
cleaning after ammonia extraction, in order to reuse the cell after one measurement. The
method needs to be further improved by possibly adding other chemical treatments to clean
all of the residual contaminants on the Nafion, ensuring the effectiveness of an ulterior
filtration using the same cell.

4. Results and Discussion
4.1. Calibration of the Ammonia Detection in Water-Based Solutions

The commercial Ammonia Assay Kit 55R-1410 was tested initially in aqueous solutions
at different concentrations of ammonia to evaluate its performance and obtain a preliminary
calibration curve. The spiked samples were prepared starting from a solution of 1 mM
ammonium chloride in PBS, generating the concentrations of ammonia reported in Table 2.
A volume of 100 µL of each sample was put in a reduced volume cuvette in UV-grade
plastic. Then, reagents R1 and R2 were added, and the solution was incubated for 30 min at
37 ◦C to perform the Berthelot reaction. At the end of the incubation time, the transparent
sample solutions assumed a gradient aquamarine coloration proportional to the ammonia
concentration (Figure 5).

Table 2. Water-based solution compositions for each ammonia concentration.

Solution
Composition

NH3
0 µM

NH3
20 µM

NH3
40 µM

NH3
60 µM

NH3
80 µM

NH3
100 µM

NH4Cl 1 mM [µL] 0 2 4 6 8 10
H2O [µL] 100 98 96 94 92 90
R1 [µL] 80 80 80 80 80 80
R2 [µL] 40 40 40 40 40 40

Total [µL] 220 220 220 220 220 220
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Figure 5. Color gradient obtained at different ammonia concentrations for the Berthelot reaction. The
transparent sample solution assumes a gradient from light yellow (0 µM) to deep light aquamarine
(100 µM) after the reaction by increasing the concentration. The quantity of ammonia present in the
solutions can be determined by monitoring the absorbance of the dye molecule at λ = 670 nm.

The optical measurements of the final solutions were carried out through a spectropho-
tometer, taking the absorbance value of the 0 µM solution as the baseline. The acquisition
was performed in a wider range of wavelengths as the results showed that the maximum
absorbance peak was not perfectly set at 670 nm, but it varied slightly as a function of
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concentration in a range between 650 nm and 700 nm. Nevertheless, the overall absorbance
of the solutions was evaluated at 670 nm, as suggested by the manufacturers of the kit.

Figure 6 shows the obtained calibration curve. The curve can be fitted by a linear
model (1) as expected. The slope of the linear fit (parameter p1) was estimated as 0.00903
with a 95% confidence interval and the correlation coefficient was 0.9965.

f (x) = p1·x, (1)

The assay was repeated multiple times at the same concentrations to assess its repeata-
bility, obtaining just a slight variation of 6.4% between the tests, showing the consistency of
the results.
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4.2. Calibration of the Ammonia Detection in Sodium Acetate Solutions

The alkaline solution in the second well of the extraction cell is necessary for the
ammonium ion exchange from the sample through the Nafion membrane. To assess its
influence on the Berthelot reaction and on the ammonia absorbance linearity, a calibration
curve was identified using an alkaline solution of sodium acetate (CH3COONa) to prepare
the spiked samples, confirming the system linearity, which allows one to avoid false positive
or false negative results.

The ammonia samples were prepared at a concentration of 20 µM, 60 µM, and 100 µM,
starting from a solution of 1 mM ammonium chloride in PBS using 1 M sodium acetate
instead of water as the diluent. A volume of 100 µL of each sample was put in a reduced
volume cuvette in UV-grade plastic before adding reagents R1 and R2 and incubating
for 30 min at 37 ◦C to obtain the indophenol dye molecule. At the end of the incubation
time, the alkaline solutions assumed a gradient coloration proportional to the ammonia
concentration similar to the aqueous solutions.

The optical measurements were carried out at the same previously described conditions,
evaluating the absorbance peaks in a range of wavelengths between 650 nm and 700 nm.

The calibration curve is shown in Figure 7. While the measured values were slightly
lower than the aqueous solutions, the curve could still be fitted with the linear model
defined in (1), as expected. The slope was retrieved from the parameter p1 and was
estimated as 0.0764 with a 95% confidence interval and the correlation coefficient was
0.9914. From these results, it is clear that the alkaline solution influence is very limited and
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does not prevent the proper occurring of the Berthelot reaction, allowing us to effectively
detect and quantify the ammonia present in the samples.
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4.3. Influence of the Extraction Cell on the Ammonia Detection Effectiveness

After the calibration of the system in alkaline solution, the test was repeated using
the extraction cell, evaluating its influence on the absorbance measurements. A sample of
150 µL of 1 mM ammonium chloride in PBS was poured into the first well of the cell,
while 150 µL of 1 M sodium acetate was inserted into the second well. The cell was then
sealed, and the two solutions were left incubating for 30 min at 25 ◦C, permitting the
ammonium ions to flow toward the sodium acetate solution. Afterward, a 100 µL drop
was withdrawn from the second well and put into a cuvette, adding 80 µL of R1 and 40 µL
of R2, and incubating the final solution for 30 min at 37 ◦C, as required from the reaction
protocol described in Section 2.3. A sample solution without ammonia was used as the
negative control.

Six different solutions of ammonium chloride in sodium acetate, with an ammonia
concentration range varying between 0 µM and 800 µM, were tested to identify the ab-
sorbance detection sensitivity of the method at 670 nm with a spectrophotometer (Figure 8a).
The curve, fitted with the Lambert–Beer law (blue line), showed a linear behavior (red
dashed line) in the interval between 0 µM and 100 µM, which is an optimal range since
the normal blood ammonia level is usually between 11 µM and 32 µM and values above
50 µM are considered toxic for the human body. The linear range could be fitted with (1)
and the obtained slope (p1) was estimated as 0.00154. The recovery percentage of the spiked
samples in the linearity range was calculated to better understand the effects the extraction
cell on the measurements. Figure 8b shows an evident reduction in the absorbance values
obtained with the extraction cell with respect to the results without any solution filter-
ing, as expected. The higher recovery percentage was obtained for 25 µM (~40%), while
50 µM and 100 µM led to lower values (~15%). This may be due to the Nafion membrane
in the cell, which influences the flow of the ammonium ions during the 30-min incubation
needed for the extraction. Nevertheless, the presence of ammonia was easily detectable by
considering the final application concentration range.
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The same optical measurements were also performed through the custom-made
miniaturized optical system reported in Section 2.2. Seven different concentrations of
ammonia were analyzed in a range from 0 µM to 200 µM, setting the CCD camera exposure
time at 4500 µs. Figure 9 shows the detection curve obtained for these concentrations. The
detection limit was very low at about 0.028 µmol/mL, estimated considering 3*SD, where
SD is the standard deviation of 0 µM ammonia solution. The linear range, between 0 µM
and 50 µM, resulted in being lower than the one obtained through the spectrophotometer,
and can still be fitted through (1), with a slope value of 0.01535.

The miniaturized optical system showed a good detection capability and a similar
behavior to the spectrophotometer. While the linearity range of the instrument results was
quite low, a sample dilution was sufficient to reach a suitable ammonia concentration to
perform the detection. Hence, the customized optical system was capable of detecting the
presence of ammonia in an ideal solution, yielding promising results for the analysis of
more complex blood-based samples.
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Figure 9. Calibration curve for ammonia detection of the SNIPE system fitted with the Lambert–Beer
law (red line). The linearity (red dashed line) was maintained in a concentration range between 0 µM
and 50 µM. The limit of detection was 0.028252 µmol/mL.

4.4. Influence of Complex-Matrix Samples on the Ammonia Detection Effectiveness

To evaluate the effect of a more complex matrix on the detection capability of the
approach, a test in blood-like samples was performed using the extraction cell. The samples
were prepared by replacing the PBS with fetal bovine serum (FBS) to obtain a more complex
matrix simulating the serous component of the blood, as reported in Table 3. Control
solutions were prepared using PBS-based samples.

Table 3. Solution compositions based on fetal bovine serum (FBS) for each ammonia concentration.

Solution
Composition

NH3
0 µM

NH3
25 µM

NH3
50 µM

NH3
100 µM

NH3
200 µM

NH3
400 µM

NH3
800 µM

NH3 1 mM (µL) 0 2.5 5 10 0 0 0
NH3 10 mM (µL) 0 0 0 0 2 4 8

FBS (µL) 90 90 90 90 90 90 90
H2O (µL) 10 7.5 5 0 8 6 2

Total (µL) 100 100 100 100 100 100 100

The ammonia extraction from the blood-like samples and the control solutions was
performed as described in Section 3.1. After the incubation procedures and occurring of the
Berthelot reaction to obtain the dye molecule, the absorbance measurements were carried
out at 670 nm with a spectrophotometer to outline the calibration curve for the FBS-based
samples (Figure 10). The experimental results obtained for the blood-like solutions (black
points) showed lower absorbance values than the controls (green points), meaning that
the presence of a more complex matrix partially affects the quantity of extracted ammonia.
Nevertheless, the curve assumes a behavior similar to the PBS-based control, following the
Lambert–Beer law, with a linear interval between 0 µM and 100 µM and a slope value of
0.00071, which is once again suitable to the application to blood ammonia detection. The
limit of detection was 0.029 µmol/mL, similar to the LOD retrieved for PBS. Moreover,
the LOD of the sensor result was satisfactory with respect to other methods present in the
literature [21–23,26], as the reported LOD values were in a range between 0.004 µmol/mL
and 0.088 µmol/mL. Therefore, the proposed method results were capable of detecting the
ammonia present in more complex solutions, emulating thee blood-based samples, with a
performance in the linear range similar to the ideal case.
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Figure 10. Ammonia calibration curve obtained with the spectrophotometer for FBS-based samples
fitted with the Lambert-Beer law (blue line). The linearity (red dashed line) is maintained in the
concentration range between 0 µM and 100 µM. The curve is compared with the calibration curve
obtained for control PBS-based samples (green line).

5. Conclusions

In this work, we proposed an optimized biosensing method to detect the extracted
ammonia in complex-matrix samples, aiming toward a final application on hepatic patients.
The system has been tested with ammonium chloride solutions in order to evaluate its
detection capability in ideal and blood-like conditions. We demonstrated that an extraction
cell, based on a Nafion membrane and an alkaline solution, is an effective method to
retrieve the ammonia from the samples. Moreover, we optimized the extraction process
by introducing a chemical pre-treatment of the membrane, based on sulfuric acid and
hydrogen peroxide, to avoid low pH values and any contaminant in the final solution.
After the extraction, a light-reactive molecule for the absorbance measurement was obtained
from the Berthelot reaction of the ammonia. The detection method was tested with both
a spectrophotometer and with a customized miniaturized optical system, yielding good
performances with an estimated limit of detection of 0.029 µmol/mL. The approach was also
successfully tested with complex-matrix samples to emulate the blood serum component,
obtaining similar performances. Future works will be aimed toward testing the ammonia
extraction approach with blood-based samples in order to evaluate the detection capability
of the method with a more complex biological sample matrix.

Author Contributions: Conceptualization, E.P., E.C., and M.S.; Methodology, E.C. and M.S.; Software,
E.P., L.F., and S.B.; Validation, E.P. and E.C.; Formal analysis, E.P., E.C., L.F., and S.B.; Investigation,
E.P., E.C., and M.S.; Resources, A.D.T. and A.P.; Data curation, E.P.; Writing—original draft prepara-
tion, L.F. and S.B.; Writing—review and editing, E.P., E.C., M.S., L.F., A.P. and S.B.; Visualization, L.F.
and S.B.; Supervision, A.D.T. and S.B.; Project administration, A.D.T.; Funding acquisition, A.D.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Cross4Health Project 2nd call, grant number 2019/A10-C.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Biosensors 2022, 12, 1079 12 of 13

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Shimamoto, C.; Hirata, I.; Katsu, K. Breath and blood ammonia in liver cirrhosis. Hepatogastroenterology 2000, 47, 443–445.

[PubMed]
2. Ong, J.P.; Aggarwal, A.; Krieger, D.; Easley, K.A.; Karafa, M.T.; Van Lente, F.; Arroliga, A.C.; Mullen, K.D. Correlation between

ammonia levels and the severity of hepatic encephalopathy. Am. J. Med. 2003, 114, 188–193. [CrossRef] [PubMed]
3. Shinozaki, K.; Oda, S.; Sadahiro, T.; Nakamura, M.; Hirayama, Y.; Watanabe, E.; Tateishi, Y.; Nakanishi, K.; Kitamura, N.; Sato, Y.;

et al. Blood ammonia and lactate levels on hospital arrival as a predictive biomarker in patients with out-of-hospital cardiac
arrest. Resuscitation 2011, 82, 404–409. [CrossRef] [PubMed]

4. Ninan, J.; Feldman, L. Ammonia levels and hepatic encephalopathy in patients with known chronic liver disease. J. Hosp. Med.
2017, 12, 659–661. [CrossRef] [PubMed]

5. Arya, S.K.; Bhansali, S. Lung cancer and its early detection using biomarker-based biosensors. Chem. Rev. 2011, 111, 6783–6809.
[CrossRef]

6. Ricci, P.P.; Gregory, O.J. Sensors for the detection of ammonia as a potential biomarker for health screening. Sci. Rep. 2021,
11, 7185. [CrossRef]

7. Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent developments in biosensors for healthcare and biomedical
applications: A review. Measurement 2021, 167, 108293. [CrossRef]

8. Malhotra, B.D.; Chaubey, A. Biosensors for clinical diagnostics industry. Sens. Actuators B Chem. 2003, 91, 117–127. [CrossRef]
9. Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A high-performance electrochemical aptasensor based on graphene-decorated

rhodium nanoparticles to detect HER2-ECD oncomarker in liquid biopsy. Sci. Rep. 2022, 12, 3299. [CrossRef]
10. Parnianchi, F.; Kashanian, S.; Nazari, M.; Peacock, M.; Omidfar, K.; Varmira, K. Ultrasensitive electrochemical sensor based on

molecular imprinted polymer and ferromagnetic nanocomposite for bilirubin analysis in the saliva and serum of newborns.
Microchem. J. 2022, 179, 107474. [CrossRef]

11. Rosati, G.; Ravarotto, M.; Scaramuzza, M.; De Toni, A.; Paccagnella, A. Silver nanoparticles inkjet-printed flexible biosensor for
rapid label-free antibiotic detection in milk. Sens. Actuators B Chem. 2019, 280, 280–289. [CrossRef]

12. Bonaldo, S.; Franchin, L.; Pasqualotto, E.; Cretaio, E.; Losasso, C.; Peruzzo, A.; Paccagnella, A. Influence of BSA protein on
electrochemical response of genosensors. IEEE Sens. J. 2022. submitted.

13. Rosati, G.; Urban, M.; Zhao, L.; Yang, Q.; de Carvalho Castro e Silva, C.; Bonaldo, S.; Parolo, C.; Nguyen, E.P.; Ortega, G.;
Fornasiero, P.A.; et al. A plug, print & play inkjet printing and impedance-based biosensing technology operating through a
smartphone for clinical diagnostics. Biosens. Bioelectron. 2022, 196, 113737.

14. Senf, B.; Yeo, W.-H.; Kim, J.-H. Recent advances in portable biosensors for biomarker detection in body fluids. Biosensors 2020,
10, 127. [CrossRef]

15. Liu, F.; Nordin, A.N.; Li, F.; Voiculescu, I. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants. Lab Chip
2014, 14, 1270–1280. [CrossRef]

16. Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [CrossRef]
17. Sankiewicz, A.; Romanowicz, L.; Pyc, M.; Hermanowicz, A.; Gorodkiewicz, E. SPR imaging biosensor for the quantitation of

fibronectin concentration in blood samples. J. Pharm. Biomed. Anal. 2018, 150, 1–8. [CrossRef]
18. Hakimian, F.; Ghourchian, H.; Hashemi, A.s.; Arastoo, M.R.; Rad, M.R. Ultrasensitive optical biosensor for detection of miRNA-

155 using positively charged Au nanoparticles. Sci. Rep. 2018, 8, 2943. [CrossRef]
19. Timmer, B.; Olthuis, W.; Van Den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107,

666–677. [CrossRef]
20. Matindoust, S.; Farzi, A.; Baghaei Nejad, M.; Shahrokh Abadi, M.H.; Zou, Z.; Zheng, L.R. Ammonia gas sensor based on flexible

polyaniline films for rapid detection of spoilage in protein-rich foods. J. Mater. Sci. Mater. Electron. 2017, 28, 7760–7768. [CrossRef]
21. Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.R. Synthesis of ZnO/NiO nanocomposites for the rapid detection of ammonia at

room temperature. Mater. Sci. Semicond. Process. 2019, 102, 104591. [CrossRef]
22. Veltman, T.R.; Tsai, C.J.; Gomez-Ospina, N.; Kanan, M.W.; Chu, G. Point-of-Care analysis of blood ammonia with a gas-phase

sensor. ACS Sens. 2020, 5, 2415–2421. [CrossRef] [PubMed]
23. Brannelly, N.T.; Killard, A.J. An electrochemical sensor device for measuring blood ammonia at the point of care. Talanta 2017,

167, 296–301. [CrossRef] [PubMed]
24. Pandey, S.; Nanda, K.K. Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sens. 2016, 1, 55–62.

[CrossRef]
25. Burg, P.V.D.; HW Mook, H.W. A simple and rapid method for the determination of ammonia in blood. Clin. Chim. Acta 1963, 8,

162–164. [CrossRef]
26. Baker, H.M.; Alzboon, K.F. Spectrophotometric determination of ammonia using ninhydrin assay and kinetic studies. Eur. J.

Chem. 2015, 6, 135–140. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/10791209
http://doi.org/10.1016/S0002-9343(02)01477-8
http://www.ncbi.nlm.nih.gov/pubmed/12637132
http://doi.org/10.1016/j.resuscitation.2010.10.026
http://www.ncbi.nlm.nih.gov/pubmed/21227564
http://doi.org/10.12788/jhm.2794
http://www.ncbi.nlm.nih.gov/pubmed/28786433
http://doi.org/10.1021/cr100420s
http://doi.org/10.1038/s41598-021-86686-1
http://doi.org/10.1016/j.measurement.2020.108293
http://doi.org/10.1016/S0925-4005(03)00075-3
http://doi.org/10.1038/s41598-022-07230-3
http://doi.org/10.1016/j.microc.2022.107474
http://doi.org/10.1016/j.snb.2018.09.084
http://doi.org/10.3390/bios10090127
http://doi.org/10.1039/C3LC51085A
http://doi.org/10.1039/C9AN01998G
http://doi.org/10.1016/j.jpba.2017.11.070
http://doi.org/10.1038/s41598-018-20229-z
http://doi.org/10.1016/j.snb.2004.11.054
http://doi.org/10.1007/s10854-017-6471-z
http://doi.org/10.1016/j.mssp.2019.104591
http://doi.org/10.1021/acssensors.0c00480
http://www.ncbi.nlm.nih.gov/pubmed/32538083
http://doi.org/10.1016/j.talanta.2017.02.025
http://www.ncbi.nlm.nih.gov/pubmed/28340723
http://doi.org/10.1021/acssensors.5b00013
http://doi.org/10.1016/0009-8981(63)90219-5
http://doi.org/10.5155/eurjchem.6.2.135-140.1178


Biosensors 2022, 12, 1079 13 of 13

27. Krug, F.J.; Riliieka, J.; Hansen, E.H. Determination of ammonia in low concentrations with Nessler’s reagent by flow injection
analysis. Analyst 1979, 104, 47–54. [CrossRef]

28. Patton, C.J.; Crouch, S.R. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia.
Anal. Chem. 1977, 49, 464–469. [CrossRef]

29. Ayyub, O.B.; Behrens, A.M.; Heligman, B.T.; Natoli, M.E.; Ayoub, J.J.; Cunningham, G.; Summar, M.; Kofinas, P. Simple and
inexpensive quantification of ammonia in whole blood. Mol. Genet. Metab. 2015, 115, 95–100. [CrossRef]

30. Yimit, A.; Itoh, K.; Murabayashi, M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor.
Sens. Actuators B Chem. 2003, 88, 239–245. [CrossRef]

31. Kimble, K.W.; Walker, J.P.; Finegold, D.N.; Asher, A.S. Progress toward the development of a point-of-care photonic crystal
ammonia sensor. Anal. Bioanal. Chem. 2006, 385, 678–685. [CrossRef]

32. Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mater. 2008, 7, 75–83.
[CrossRef]

http://doi.org/10.1039/an9790400047
http://doi.org/10.1021/ac50011a034
http://doi.org/10.1016/j.ymgme.2015.04.004
http://doi.org/10.1016/S0925-4005(02)00324-6
http://doi.org/10.1007/s00216-006-0453-y
http://doi.org/10.1038/nmat2074

	Introduction 
	Materials and Methods 
	Chemicals 
	Instruments and Setup 
	The Berthelot Reaction 

	Design and Treatments 
	Extraction Cell Design 
	Nafion Membrane as Ion-Exchange Barrier 

	Results and Discussion 
	Calibration of the Ammonia Detection in Water-Based Solutions 
	Calibration of the Ammonia Detection in Sodium Acetate Solutions 
	Influence of the Extraction Cell on the Ammonia Detection Effectiveness 
	Influence of Complex-Matrix Samples on the Ammonia Detection Effectiveness 

	Conclusions 
	References

