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Figure S1. The color change of K3[Fe(CN)6] solutions before (a) and 30 s after (c) 

addition of catechol (CA) (b). 

 

Figure S2. The calibration plot for CA determined by PGM (n=3). 
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Figure S3. Effect of sodium benzoate (SBA) concentration with different 

incubation time on the PGM readout of CA (n=3). Conditions: 15.0 mM of CA, 

0–2000 ppm of SBA, incubation time of 5.0, 10.0, and 15.0 min, respectively. All 

the concentrations are final concentration. 
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Figure S4. HPLC chromatograms of SBA (10 ppm) and three carbonated 

beverages (Cola, Sprite, and Fanta) diluted 12, 15, and 20 times, respectively. 1, 

SBA. 
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Table S1. Some reported tyrosine-based biosensors for the TYR determination. 

Methods Materials Line range LOD References 

Fluorescence Lucigenin probe 0.67–67.0 U/mL 0.54 U/mL [1] 

Fluorescence Ag&Mn:ZnInS QDs 0.5–2.5 U/mL 0.09 U/mL [2] 

Electrochemistry WVFY-modified bio-FETs 10 fM–1 nM 1.9 fM [3] 

QDs: quantum dots; WVFY: tetrapeptide tryptophan–valine–phenylalanine–tyrosine; bio-FETs: field-effect transistor-based biosensors; LOD: limit of 

detection. 
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Table S2. Comparisons of the developed PGM-based method with the reported methods for the TYR determination. 

Methods Line range (U⋅mL
-1

) LOD / LOQ (U∙mL
-1

) Cost Operator References 

Colorimetry – 10 / – High Highly trained [4] 

Fluorescence 0–800 5 High Highly trained [5] 

Fluorescence 0–80 2.76 / – High Highly trained [6] 

Electrochemistry 2–50 0.83 / – High Highly trained [7] 

Electrochemistry 3.76–27.68 0.52/ – High Highly trained [8] 

PGM 1.0–103.3 – / 1.0 Low Minimally trained This work 

LOD: limit of detection; LOQ: limit of quantitation. 
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Table S3. Recovery studies of TYR in normal human serum detected by the PGM-based method. 

Sample Spiked tyrosinase 

(U/mL) 

Found tyrosinase 

(U/mL) 

Recovery (%) RSD (n = 3, %) 

Normal human 

serum 

0a 
– – – 

26.38 27.64 ±0.74 104.8 2.7 

52.75 51.91 ± 0.98 98.4 1.9 

79.13 77.49 ± 0.37 97.9 0.5 

a There is no TYR or its content lower than the quantification limit of the PGM-based method. 
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Table S4. Comparisons of the developed PGM-based method with reported methods for the SBA determination. 

Methods Analytes Line range (ppm) LOD / LOQ (ppm) References 

CIC-CD BA 0.25–20 4.1 / 12.6 [9] 

IC-CD BA - 16.5 / 54.5 [10] 

DLLME-SERS SBA 10–500 0.56 / – [11] 

Paper-based BA 100–700 73.6 [12] 

MCA system  SBA 500–5000 50 / – [13] 

PGM-based SBA 6.25–1000 – / 6.25 This work 

CIC-CD: Capillary ion chromatography with conductivity detection; IC-CD: Ion chromatography with conductivity detection; DLLME-SERS: Dispersive liquid-

liquid microextraction combined with surface enhanced Raman scattering; MCA: Microfluidic colorimetric analysis 
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Table S5. The PGM readout of the three beverages spiked with SBA. 

 

  

Spiked (ppm) (n=3) 
PGM Readout (mM) 

Cola Sprite Fanta 

0 12.1 ± 0.20 17.9 ± 0.12 16.6 ± 0.10 

50 15.1 ± 0.10 20.4 ± 0.06 18.8 ± 0.15 

100 16.2 ± 0.06 21.2 ± 0.15 19.9 ± 0.15 

200 17.5 ± 0.10 22.2 ± 0.06 20.9 ± 0.06 

Background readout 6.2 ± 0.25 11.0 ± 0.15 9.5 ± 0.36 
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