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Abstract: The quantitative detection of critical biomolecules and in particular low-abundance
biomarkers in biofluids is crucial for early-stage diagnosis and management but remains a challenge
largely owing to the insufficient sensitivity of existing ensemble-sensing methods. The single-particle
imaging technique has emerged as an important tool to analyze ultralow-abundance biomolecules by
engineering and exploiting the distinct physical and chemical property of individual luminescent
particles. In this review, we focus and survey the latest advances in single-particle optical imaging
(OSPI) for ultrasensitive bioanalysis pertaining to basic biological studies and clinical applications.
We first introduce state-of-the-art OSPI techniques, including fluorescence, surface-enhanced Raman
scattering, electrochemiluminescence, and dark-field scattering, with emphasis on the contributions
of various metal and nonmetal nano-labels to the improvement of the signal-to-noise ratio. During the
discussion of individual techniques, we also highlight their applications in spatial–temporal measure-
ment of key biomarkers such as proteins, nucleic acids and extracellular vesicles with single-entity
sensitivity. To that end, we discuss the current challenges and prospective trends of single-particle
optical-imaging-based bioanalysis.
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1. Introduction

Despite tremendous progress in modern biomedical science, many major malignancies,
including but not limited to infectious diseases, neurodegenerative diseases, and cancer,
continue to threaten human health [1–3]. For example, incidence rates of malignant brain
tumors increased by 0.7% and 0.5% per year from 2008 to 2017 among children and
adolescents in the United States [4], and such an increasing trend was also found in China
and West Europe [5,6]. Early detection is crucial to reduce cancer mortality; the average
five-year survival at early stage is 91% but drops to 26% at advanced stage [3]. Currently,
cancer is diagnosed by clinical presentation and imaging findings with final confirmation
by tissue biopsy. Despite being the gold standard, the single-lesion tumor biopsy has
several limitations such as invasiveness, potential patient morbidity, procedural costs, and
inability to capture cancer heterogeneity [7–9]. Existing clinical imaging modalities suffer
from either low sensitivity (e.g., magnetic resonance imaging) or insufficient specificity
(e.g., low dose computed tomography), and in some cases, may arouse concerns regarding
potential harm from radiation exposure [10–12]. As such, these unmet clinical needs
provide motivation to develop novel non-invasive tools for early detection and tracking of
malignancies. Recent multi-omics studies have offered solid and conclusive evidence that
molecular alterations of the genome, transcriptome, proteome and metabolome precede
symptom onset [13–16]. Moreover, these molecular substances derived from abnormal cells
and other microenvironment factors, such as immune cells, can be actively released into the
extracellular space and further into body fluids (e.g., blood) in soluble, membrane-bound
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or -encapsulated forms, proving rich clues for disease occurrence and evolution [17–20].
Analysis of these circulating species, therefore, holds great potential as a non-invasive
‘liquid biopsy’ approach to enable early diagnosis, dynamic monitoring and accurate
predication of therapeutic response in the context of precision medicine.

To date, a large variety of biochemical methodologies, such as polymerase chain reac-
tion (PCR), enzyme-linked immunosorbent assay (ELISA), colorimetric and luminescent
assays, have been established for the qualitative and quantitative analysis of circulating
biomolecules [21–28]. Generally, the average response of a large amount of analytes is
measured as an assay signal. Although widely used for decades, these ensemble methods
may suffer from inadequate sensitivity to detect low analyte concentrations. For example,
classical ELISA approaches show the limits of detection at concentrations above 10−12 M,
whereas the circulating levels of many protein biomarkers associated with cancer, neu-
rological disorders, and the early stages of infection frequently fall in the femtomolar
(10−15 M) range and below [29–32]. The weak detection signal combined with the intense
background interference leads to the unsatisfied assay performance of these ensemble
approaches at low analyte concentrations. Therefore, great efforts have been devoted to the
enhancement of detection signals by preconcentration, and more commonly, introducing a
signal amplification element (e.g., enzyme) into the assay system [33–35]. However, this
may in turn complicate the assay procedure and result in an increased background along
with improved sensitivity. In this context, alternative strategies capable of creasing the
signal-to-noise ratio (SNR), thereby enhancing the analytical sensitivity, should be pursued.

The last decades have witnessed rapid evolution of bioanalytical studies from the
ensemble-averaged measurements to so-called single-entity studies [36–38]. Compared
to the former, the single-entity approaches offer major benefits, not only in the field of
fundamental biomedicine science to enable examination of heterogeneity across individual
targets within a population [39,40], but also as promising tools for medical diagnostics by
detecting single targets, including single cells, single vesicles, and single molecules, which,
at first sight, represent the ultimate sensitivity [41–44]. Although the ability to detect a
single cell or biomolecule does not mean the most sensitive bioanalytical approach, the
signal-readout mode of single-entity detection is distinct for the reduction of background
signals when significantly decreasing the detection volume. Since the signal arising from a
single target analyte can be reliably distinguished from the background noise, the assay is
independent of background fluctuations, which makes the assay more robust and indirectly
results in lower detection limits [45]. Among various techniques [46–48], optical spectro-
scopic/microscopic methods were first employed [49] and are still the main analytical tools
allowing for single-entity investigation. In practical analysis, two measurement modes
can be adopted: in label-free analysis, the adsorption/desorption of a single target on the
detection zone leads to an optical signal response that can be directly measured [50]. Alter-
natively, individual entities of interest are labeled with signal reporters, the optical response
of which can be detected to indicate the status of the target analytes [51]. Fluorescent dyes
with a high emission quantum yield are the most common elements used for optical label-
ing owing to their small sizes and the well-established bioconjugation chemistry [52,53].
The imaging and analysis of individual dye-labeled cells, proteins, and nucleic acids have
greatly deepened our understanding of fundamental life processes [54–56]. However,
applying these strategies for in vitro quantification of circulating biomarkers in real-world
clinical settings remains difficult. The limited brightness of single fluorescent dyes means
that a microscopy imaging system integrating a high-cost advanced photon collection
and detection module (e.g., electron-multiplying charge-coupled device and objective lens
with a high numerical aperture) is required to excite and record the luminescent signals of
individual fluorophores. In the meantime, an optimized assay condition is desired to avoid
quenching, photobleaching and photodegradation. It is almost impossible for the majority
of medical testing laboratories and in particular those in resource-limited settings to meet
such requirements.
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Nanoparticles (NPs) may provide a solution for the above predicament. Due to their
high specific surface area, tunable physicochemical property, and ease of functionality, NPs
have attracted particular attention as labeling materials in affinity-based bioassays [57].
Plasmonic metal NPs, such as Au NPs and Ag NPs, strongly absorb and scatter light such
that direct observation of individual NPs under standard dark-field microscopy (DFM) is
feasible [58]. Apart from providing signals by their intrinsic ‘photo emission’, NPs with
plasmonic properties can also be used to enhance the ‘emission’ of molecules located near
their surfaces, giving birth to the field of plasmon-enhanced spectroscopy [59]. Compared
to organic molecular fluorophores, NPs such as quantum dots (QDs) and polymer dots
(PDs) are much brighter and more photostable, which are important features for single-
entity analysis by fluorescence imaging. On the other hand, NPs operating in the near-
infrared region or with photo-upconversion properties (excitation by near-infrared light,
anti-Stokes emission at shorter wavelength) are resistant to background interference from
biological samples [60]. In addition to using photoluminescent NPs as labeling elements,
the background-free detection can also be achieved by implementing nanolabels with other
emission ways such as electrochemiluminescence (ECL), a transduction process involving
the generation of species at electrode surfaces that then undergo electron-transfer reactions
to form excited states that emit light [61]. Since excitation light is not required in the
measurement, ECL analysis provides a completely dark background and allows optical
observation without interference from autofluorescence and scattering [62]. Due to the
above merits, the optical imaging of single luminescent particles (OSPI) after labeling them
to the individual analytes of interest provides a better alternative to classical single-molecule
imaging analysis of low analyte concentrations.

This review summarizes the technical advances of OSPI-based bioanalysis in the most
recent five years. Notably, we focus on the label-based studies in this review, although
several novel label-free optical imaging methods, such as plasmonic scattering microscopy
and interferometric scattering microscopy [50,63], have also gained great progress during
this period, with an ability to inspect individual analyte targets with high spatial and
temporal resolution. Readers interested in label-free techniques can refer to the outstanding
papers published recently [63–67]. According to the readout modality, we pay particular
attention to four types of OSPI approaches, which include fluorescence, ECL, surface-
enhanced Raman scattering (SERS), and dark-field scattering. For each technique, we first
introduce basic concepts that are important in understanding of the optical phenomenon.
Then, we elaborate on major progress in analyzing low-abundance biomolecules by the
corresponding OSPI techniques. Finally, we discuss the existing limitations and potential
future directions in OSPI-based bioanalyses. We expect that this review will offer valuable
insights into OSPI-based techniques and will be helpful for those engaged in developing
ultrasensitive reliable bioanalytical approaches to quantify low-concentration circulating
biomarker candidates, thereby spurring further interest in this research frontier.

2. Ultrasensitive Bioanalysis by Different OSPI Techniques
2.1. Single-Particle Fluorescence Imaging

Fluorescence is the emission of light by a photo-excited fluorophore that occurs within
nanoseconds. Fluorescence imaging is perhaps the most popular optical imaging modal-
ity that has long been employed in various biological and medical studies, initially for
observing molecular populations at diffraction-limited resolution and now capable of
probing single molecule dynamics at nanometer and millisecond spatial–temporal res-
olutions [68,69]. Single-particle fluorescent probes, such as dye-labeled NPs, QDs, and
upconversion NPs (UCNPs), have additional merits of biocompatibility and long-term
imaging ability. Taking the dye-labeled AuNPs as an example, the rational assembly of
hundreds of dye molecules on the surface of individual AuNPs contributes to the long-term
imaging application of the probes by providing a largely elevated overall luminescent
intensity of single particles under mild excitation conditions [70,71]. Moreover, it has been
reported that AuNPs could enhance fluorescence and photostability, as well as biocom-
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patibility [72,73]. In terms of QDs, the photostability of them is superior to various dyes,
making QDs excellent candidates for long-term single-particle imaging [74]. In this context,
a variety of functional QDs have been developed and applied for long-term imaging and
tracing of analytes, including cell-derived microvesicles [75], intracellular pH [76], pro-
teins [77], metal ions [78], and so on. As discussed above, one of the prominent advantages
of UCNPs is manifested in low autofluorescence, which makes them suitable for long-term
high-resolution imaging and tracking of biomolecules [79].

Owing to the small size and easy of bioconjugation, organic dyes are extensively
used as fluorescent imaging labels in biological laboratories [80–82]. For example, our
group reported a series of single-molecule fluorescence assays for high-sensitivity and high-
specificity detection of biomolecules [83–86]. In one of our recent works, a single-molecule
fluorescence imaging assay was proposed for the ultrasensitive dual-plex detection of
miRNAs using the S9.6 antibody to capture the dye-labeled DNA–RNA hybrids [83].
Considering the weak emission of organic dyes, a dual-color fluorescent nanoprobe was
constructed in our laboratory by using Au NPs as scaffolds to immobilize many dye-labeled
nucleic acid probes, which was then applied to detect the low-abundance miRNAs in
single cells (Figure 1a) [84]. In the assay, the self-assembly process between target miRNA
and the fluorescent probes improved the sensing accuracy, and the two-color imaging
mode effectively diminished the false-positive signals caused by chemical interference.
Unsurprisingly, the monitoring of miRNAs at femtomolar levels was achieved through a
combination of single-molecule fluorescence imaging and enzyme-free signal amplification.
The proposed method was further used for high-resolution three-dimensional analysis of
key miRNAs in single migrating cells [85,86]. Our results clearly showed the differential
expression and intracellular locations of miRNAs in different cell lines.

Compared with organic molecular fluorophores, QDs have several unique advan-
tages: (1) Photostability. The single QDs is 20 times as bright, 100 times as stable against
photobleaching of Rhodamine [87] and even more stable than that of AlexaFluor 488 [88],
making it an ideal material for single molecule/particle imaging and tracking applications.
(2) Fluorescent activity. QDs exhibit strong fluorescent activity due to their high quantum
yield (0.1–0.8 under visible, 0.2–0.7 under near-infrared) [89] and high molar extinction
coefficient in the order of 5.5 × 106 M−1 cm−1 [90]. (3) Fluorescent lifetime. The fluorescent
lifetime of QDs (10–20 ns or greater) is longer than that of dye molecules (<5 ns) [91],
resulting in a fluorescent-signal-diminished background interference. (4) Biocompatibility.
QDs can be biofunctionalized with diverse chemical or biological ligands such as polyethy-
lene glycol, enhancing their biocompatibility. Accordingly, QDs can be used for biological
in vivo labeling and detection. (5) Stokes shift. The large Stokes shift (e.g., stokes shifts of
semiconductor QDs can be as large as 300–400 nm) [91] reduces the overlap of emission
spectrum and excitation spectrum, thus facilitating the detection of fluorescence spectrum
signals. (6) Size-tunable emission. The emission spectrum of QDs can be tuned by changing
their size and composition, in which one light source can be used to excite multiple colors of
fluorescence emission. (7) Wide excitation spectrum and narrow emission spectrum. Using
the same excitation light source can realize synchronous detection of QDs with different
sizes; thus, it can be used for multi-color labeling and greatly promotes the application in
fluorescent labeling [92]. In addition, the narrow and symmetrical fluorescence emission
peaks of QDs avoid the spectral overlap. Zhang’ group established many single QD-based
fluorescence imaging methods for biomarker quantification [93,94]. Using QDs as energy
donors, and integrating fluorescence resonance energy transfer (FRET) with single-particle
counting, they constructed a series of biosensors with high spatiotemporal resolution and
sensitivity [95–98]. Figure 1b shows a single QD-based FRET nanosensor [95]. In the
presence of target miRNAs, Cy5-labeled signal probes and biotinylated capture probes
were hybridized to form capture probe/signal probe duplexes. These duplexes can be
assembled on the 605QD surface by high affinity interaction, resulting in significant FRET
between 605QD and Cy5 in close proximity, allowing for easy and sensitive quantification
of the FRET signal by single particle counting for high-quality imaging analysis of miRNAs.
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In contrast, no FRET occurs without target miRNA. This single QD-based FRET nanosensor
can with femtomolar sensitivity allow for the detection of circulating miRNAs in clinical
serum samples and imaging target miRNA in living cells. Furthermore, using QDs (QS585)
as fluorescent labels, Liu et al. [99] developed a single-molecule counting-based ultra-
sensitive assay for facile and direct detection of DNA ethyltransferases. Combined with
the superior luminous intensity of QS585 and the ultrahigh sensitivity of single-molecule
counting, the proposed assay displays a lower detection limit of 0.0005 U/mL. Furthermore,
single QD sensitivity and high SNR have been realized [100]. Here, a nearly 3000-fold
signal enhancement was achieved through multiplicative effects of enhanced excitation,
highly directional extraction, quantum efficiency improvement, and blinking suppression.
Consequently, the proposed strategy was applied for highly specific analysis of miRNA
to provide digital resolution of individual target molecules, resulting in a low detection
limit (~10 aM), single base-pair mismatch selectivity, and a high dynamic range (nine
orders of magnitude). In the meantime, that imaging system was capable of recording the
dynamic trajectory of single QDs, which could discriminate a single base difference in a
target miRNA molecule in 10 min.

Upconversion nanoparticles (UCNPs) under near-infrared excitation are a class of
luminescent materials that could resist background interference from biological samples,
providing an excellent candidate for the labels of single-particle biosensing [101,102]. Based
on the FRET between Au NPs (as accepter) and UCNPs (as donors), a simple yet sensi-
tive sandwich-immunotype single particle counting assay for the visual quantification of
prostate-specific antigen (PSA) was constructed (Figure 1c) [103]. Target PSA triggered
the specific immunoreaction and brought the donor and acceptor into close proximity,
resulting in quenched luminescence. Through statistical counting of the target-dependent
fluorescent particles on the glass slide surface, the proposed method allowed for highly
sensitive (detection limit: 1.0 pM) detection of PSA in the solution. Notably, a lower de-
tection limit (2.3 pM) was also achieved in serum sample assays, providing assistance for
selective detection of cancer biomarkers in clinical diagnosis. Using a similar mechanism, a
sensitive single-particle aptasensor was proposed for the detection of aflatoxin B1 in peanut
samples [104]. Recently, Gorris et al. introduced a single-molecule upconversion-linked
immunosorbent assay to detect PSA, which could detect attomolar protein concentrations
over conventional immunoassays [105]. Specifically, the labeling system consisting of
biotin-PSA antibody and streptavidin-UCNPs ensured that the antibody has better access
to PSA bound to the surface of the microtiter plate. The strong affinity streptavidin–biotin
pairs can compensate for the sterically constrained access of the UCNP nanotags to the
biotinylated antibody on the microtiter plate surface. Consequently, the digital detection
of PSA provided a >16-fold lower detection limit compared with the respective analogue
detection, and the advantages of the digital mode became more distinctive when the level
of nonspecific binding was low.

In response to growing demands for reliability and practicality of imaging sensing,
organic/inorganic nanohybrids were developed [106]. Through rational design of the
structural parameters regarding composition, morphology and size, a variety of optical
properties and biological functions can be achieved [107]. Recently, Habuchi et al. [108] ob-
tained a series of shortwave infrared-emitting PDs with different sizes by nano-precipitating
a saturated solution of conjugated polymers in tetrahydrofuran and changing the mixing
volume ratio of the organic to aqueous phase. Due to its high fluorescence saturation inten-
sity and large absorption cross section, these PDs exhibited brighter fluorescence compared
to commonly used fluorescence materials and achieved millimeter-deep single-particle flu-
orescence imaging by the tissue phantom. Furthermore, a novel time-gated single-particle
imaging modality was developed due to its characteristic spectral properties. This work
represents an important step toward millimeter-deep imaging of the entire sample tissue at
the single-particle level.
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The single-molecule biosensors based on fluorescence imaging are quite simple and
sensitive, holding great potential for further application in clinical diagnosis and moni-
toring. However, great efforts should be put into expanding their reliability and utility.
First, improving the SNR of the fluorescent tags will contribute to improving the sensitivity
and accuracy of the sensors. Second, new fluorescent labeling strategies will be beneficial
to keeping high and stable performance of the biosensors. Third, more economical and
automated instruments are needed to be developed.

2.2. Single-Particle ECL Imaging

Apart from using photoluminescent NPs as labeling elements, the background-free
detection can also be achieved by implementing nanolabels with other emission ways.
For example, ECL is the phenomenon of light emission triggered by electrically excited
chemicals [61]. Due to its nearly zero-background signal and excellent controllability,
ECL has been used for the visualization of individual immobilized objects and entities
with spatiotemporal resolution, such as single cells [109,110], single NPs [111,112], single
microbeads [113,114], and single-molecule electrochemical reaction [115,116]. Shortly after
its debut, ECL has been implemented as a powerful imaging technique to visualize and
detect biomarkers at the single-molecule level.

Exploring novel ECL systems with significantly enhanced luminescence is an impor-
tant way to achieve ECL detection at the single-molecule level. Our group achieved the
first ECL imaging of a single protein on the cell membrane based on the surface confine-
ment of single ECL nanoemitters (Figure 2a) [117]. In that study, Ru(bpy)3

2+-doped silica
(RuDSNs)/Au NPs were developed as the ECL nanoprobe, where the ECL emission is
confined to the local surface of RuDSNs, which resulted in a significant enhancement in
the ECL signal intensity. As a proof of concept, the RuDSNs/Au NPs emitters were then
modified with antibodies to achieve spatially resolved imaging of individual proteins on
the single cell surface. Compared with PL images, an increase in the SNR of ~17-fold
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in the ECL images exhibited the improved contrast of single biomolecule imaging. The
successful visualization of a single protein at the electrode surface and cellular membrane
indicated that the local surface confinement effect enabled spatially resolved imaging of
single proteins, which opened up a new field in the biological application using ECL
imaging. Subsequently, inspired by the nanoconfinement effect and high reactivity in
the metal organic framework (MOF), Li et al. designed the Ru(bpy)3

2+-embedded MOFs
(RuMOFs) as ECL nanoemitters [118]. The unique multipole confined space in RuMOFs
facilitates the electron/proton transfer and improves the accumulation of intermediate
radicals, which permit high-quality imaging of individual ECL events and a stable ECL
emission up to 1 h. By labeling individual proteins of living cells with single RuMOFs, this
nanosystem achieves real-time ECL monitoring and dynamic mapping of protein molecules,
and effectively differentiates the heterogeneity of movement direction and velocity among
protein individuals in different regions. This work constitutes a valuable contribution
to steer meaningful exploration in this direction of ECL imaging and gain insightful vis-
ible information regarding cells or small biomolecules. Moreover, Paolucci et al. [113]
discovered an unexpected but highly efficient (signal enhancement, 128%) mechanistic
path for ECL generation using an innovative combination of ECL imaging techniques and
electrochemical mapping of radical generation. The ECL emissions from single-labeled
micromagnetic beads (MB) near the electrode surface (≤1 µm) were mapped, revealing
the contribution of an additional pathway to ECL generation. In particular, they coupled
streptavidin-coated MB with biotin-functionalized ruthenium-containing antibodies to
quantify multiple proteins.

Nevertheless, the toxicity and corrosiveness of the tripropylamine co-reactant limit its
application in bioanalysis [119]. In addition, in order to observe the whole basal contact,
in the above studies, cells have to be treated with reagents to change the permeability of
the cell membrane, which might lead to cell damage. Here, Ju et al. [120] designed a dual
intramolecular electron transfer strategy by introducing two tertiary amine groups to the
side chain of the polymer unit, which led to a co-reactant-embedded ECL system of PDs
for the first time. Encouragingly, the superstructure and intramolecular electron transfer
brought an unprecedented ECL emission, making it suitable for in situ ECL microimaging
of a membrane protein on single living cells without additional permeable treatment for
transporting the co-reactant.

Most current ECL imaging studies use labeling methods to identify target molecules
on the electrode surface, which is time-consuming, labor-intensive, and prone to interfer-
ence. Label-free ECL sensing methods have been paid gradual attention [121,122]. Thus,
label-free shadow ECL microscopy was reported [123]. Based on the spatial confinement
of the ECL-emitting reactive layer, the single living mitochondria deposited on the elec-
trode surface was imaged. For single protein detection, label-free ECL-based capacitance
microscopy was first established by Jiang et al. to visualize the analyte on the electrode
surface and even on the plasma membrane of single cells (Figure 2b) [124]. Upon binding
of species to the surface or to a cellular membrane, the drop in the local capacitance was
derived to induce a relatively larger potential drop, which was utilized to prompt enhanced
ECL at the binding position. Using this new detection principle and resultant capacitance
microscopy, target proteins at amounts of as low as 1 pg could be visualized. Further
application of this approach permitted the direct imaging of protein antigens on single cells
through the capacitance change after the formation of the antigen–antibody complex.

Although there has been great progress in ECL imaging, it still remains challenging.
Novel ECL nanoprobes and reaction strategies with higher luminous efficiency should be
excavated to measure analytes at the single-molecule level. Great efforts to establish novel
ECL methods with higher stability and better reproducibility should be paid attention to
minimize chemical and electrical interference. It is desirable to develop an economical,
reliable, fast, and convenient SP ECL platform to afford large-scale clinical testing.
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2.3. Single-Particle SERS Imaging

Currently, SERS imaging technology for the visualization of life-related functional
molecules has attracted considerable interest due to its wider range of excitation wave-
length, high spectral resolution, low biological autofluorescence, and no quenching or
photobleaching [125]. In particular, taking advantage of the excitation of the localized
surface plasmon resonance on metal NPs, SERS offers an ultra-high sensitivity at the single-
molecule level and enables the precise localization and identification of single NPs, making
it a reliable method and imaging tool in biological analysis, environmental monitoring,
medical diagnosis, etc. [126–128].

Benefiting from the narrow line width of Raman spectra, Trau et al. [129] developed
a digital nanopillar SERS platform that enabled real-time single cytokine counting and
dynamic tracking of immune toxicities in cancer patients receiving immune checkpoint
inhibitor therapy. In this work, the adoption of the novel digital quantification mode in
SERS using Au–Ag alloy nanoboxes significantly improved the sensitivity, and the use
of digital SERS signals from the single-SERS-active nanoboxes on discrete pillar arrays
made the SERS analysis more accurate and reliable. More importantly, that assay could
resolve the highly distinctive spectral peaks of different tags, opening new gates to the
simultaneous detection of multiple biomolecules. In their other work, a SERS-based
single-molecule-resolution digital extracellular vesicle (EV) counting detection chip was
developed to create lung-cancer-associated EV molecular profiles [130]. In addition, a
multiple miRNA detection method based on SERS mapping on solely a single microbead
was developed, as shown in Figure 3 [131]. Specifically, a single microbead covered with
a plasmonic layer was employed as a microreactor for the multiplexed miRNA analysis
without nucleic acid amplification. On the plasmonic layer, the antibody was adopted
as the universal module for binding DNA/miRNA duplexes regardless of the sequence.
Meanwhile, other SERS probe-labeled Au NPs were used to identify the given miRNA.
The target miRNA would trigger the specific capture of the corresponding SERS probe-
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labeled Au NPs onto the plasmonic layer, which enormously enhanced the SERS signals.
Ultimately, the enhanced SERS signals concentrated on the microbead would be mapped
out by a confocal Raman microscope. Intracellular pH is also one of the key factors for
understanding various biological processes in biological cells. Several plasmonic NPs have
been extensively studied in SERS for pH sensing [132,133]. To determine pH value at
the single particle level, Kawata et al. [134] synthesized 18 types of Au and Ag NPs with
different morphologies and quantitatively compared their SERS performance efficiency for
fast pH sensing.
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SERS imaging realizes the visualization, quantification, and functional research of
biological molecules, which is of great significance in the fields of biomedical imaging and
clinical diagnosis [135]. However, there exists a long-term gap between laboratory research
and practical biomedical applications of SERS imaging. Generally, the authenticity and
stability of single-particle SERS imaging signals need to be improved. The interference of
nanoprobes on the equilibrium of the biological systems cannot be ignored. It is necessary
to combine with big data analysis for quickly obtaining stable and reliable results.

2.4. Single-Particle Dark-Field Scattering

DFM has several inherent advantages, including low background, simple optical
setup, and ease of operation [136]. Notably, depending on its structure, a single plasmonic
metal NP can be thousands to millions of times brighter than a single QDs or fluorescent
dye [137,138]. At present, the continuous development, application, and exploration of
DFM techniques have permitted direct acquisition of high-quality color photographs and
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the corresponding scattering spectra from single plasmonic NPs, making it possible for
spatial–temporal observation of molecule–particle interactions at the single NP level [139].
According to the signal changes caused by the size, composition, morphology, or microenvi-
ronment of the plasmonic nanoparobes, researchers have developed several DFM analysis
methods by tracing the structural-change-induced spectral shift, by imaging and counting
the surface-bound single NPs, and by monitoring the changes in scattering intensity of
single NPs, etc.

Among them, single-particle enumeration is the most direct and easiest method.
Our group developed a single-particle enumeration method based on a phosphorylation
directed in situ assembly of Au NPs for the ultrasensitive sensing of cellular protein
kinase A (PKA) activity [140]. In the presence of adenosine triphosphate, PKA catalyzed
phosphorylation of the polypeptide chain substrate to introduce Au NPs as the plasmonic
nanolabels. By measuring the variance of the Au NP counts using DFM, the PKA activity
can be quantitatively analyzed. A low detection limit of 1.5 × 10−7 U/µL was obtained
during the analysis because of the controllable immobilization of capture peptides, efficient
capture of nanoprobes, and low background of DFM. With this method, we also realized
the simple and sensitive quantification of sortase A (SrtA) activity [141]. As far as we are
aware, it is the first time establishing a DFM-based SrtA activity counting detection method.
A similar method was made by Evans et al. [142], who presented a novel in vitro protein
enumeration strategy based on DFM imaging combined with computational analysis. In
that work, DFM equipped with customized image acquisition software was employed for
acquiring 3D cell images by utilizing highly specific monoclonal antibody-functionalized
Au NPs as contrast-generating probes to visualize and enumerate target proteins on the
surface of single cells. Owing to the strong scattering signals of Au NPs, the developed
algorithm could be utilized to process thousands of acquired images for rapid visualize
and enumerate the bound Au NP probes.

The scattering spectra and color changes caused by the assembly of plasmonic NPs
are also widely applied for the quantification and analysis of target substances. Recently, a
massively parallel single particle sensing method based on core-satellite (CS) formation
of Au NPs for the detection of cytokine interleukin 6 (IL-6) was introduced [143]. In the
presence of IL-6, the localized surface plasmon resonance (LSPR) of Au NPs would change
as a result of CS formation, resulting in a change of the observed color. The hue (color)
value of thousands of 67 nm Au NPs immobilized on a glass coverslip surface was analyzed
by a Matlab code before and after the addition of reporter NPs containing the IL-6 target
protein. The method was able to analyze the hue values of thousands of NPs in parallel
in less than a minute and circumvent the effect of non-specific adsorption. In addition, a
novel algorithm-assisted miRNA detection and imaging system based on the disassembly
of plasmonic CS is presented in Figure 4a [144]. The strand displacement amplification was
used to amplify color changes in the scattering light, effectively improving the detection
sensitivity of the system. The concentration of miRNAs could be acquired quickly and
precisely from the DFM images of the probes based on the proposed algorithm without
the need for spectrometers, achieving efficient and low-cost detection. Importantly, a
smartphone application based on the proposed algorithm was developed, promoting
the development of remote diagnosis. Similarly, a doxorubicin-loaded CS nanoprobe for
miRNA detection, targeting drug release and therapy evaluation was developed [145]. The
plasmonic CS nanoprobe was constructed with uniformly distributional 50 nm (core) and
13 nm (satellites) Au NPs, which were functionally assembled with a specific sequence of
DNA and peptides. The constructed CS nanostructure was disassembled in the presence of
target miRNA, producing characteristic LSPR signals and releasing doxorubicin. With the
increase in the target miRNA concentration ranging from 0.01 to 1000 fM, a distinct blue
shift of scattering spectra peak occurred, along with obvious color change from orange
to green under DFM, which can be used to detect miRNA at the single-particle level. To
allow the DFM analysis in a more automatic, sensitive, objective, and repeatable way, Wang
et al. [146] used the vertically polarized excitation of the polarizer to reduce the signal
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background, realizing a highly sensitive detection and spatial imaging of intracellular
miRNA-21. As seen in Figure 4b, target miRNA-21 triggered the CS coupler between Au
nanorods (AuNRs) and AuNPs. Normally, the CS assembly presented a similar red color
and scattering intensity. However, when the polarization excitation was perpendicular to
AuNRs, the lateral light scattering of AuNRs was greatly enhanced and the color of the
DFM images obviously changed from green to red due to the coupling between AuNPs
and AuNRs along the lateral direction. Subsequently, the red light scattering percentage
change of the CS assembly was analyzed to achieve the sensitive detection of miRNA-21,
which effectively reduced the strong background signal to improve the detection sensitivity
and finally achieved high spatial imaging in living cells.
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The light scattering intensity of NPs can be extracted by analyzing the obtained dark
field images with the Image-Pro Plus (IPP) open-source software, or by directly reading
from the scattering spectrum, and further using the change of scattering intensity to
establish an analysis method [147]. In this context, DFM was applied to record the state
changes of single-molecular binding and unbinding events that modulate the Brownian
particle motion [148]. Using DNA and protein as model biomarkers, the method was
validated in buffer and in blood plasma, showing sensitivity to picomolar and nanomolar
concentrations. Encouragingly, with its basis in reversible interactions and single-molecule
resolution, the presented assay will enable biosensors for continuous biomarker monitoring
with high sensitivity, specificity, and accuracy. Recently, NP-enhanced extracellular vesicle
immunoassays (NEIs) that are read by DFM found in many research studies and clinical
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laboratories can be used for the ultrasensitive detection of cancer-associated extracellular
vesicle (EV) biomarkers in serum, but these approaches require manual identification of
fields of interest, making them prone to operator error and bias [149]. To solve this issue,
Hu et al. [150] investigated an NEI workflow permitting automatic capture of DFM images
that were then processed with a custom noise-reduction algorithm to reduce artefacts from
serum aggregates, particulates and surface scratches introduced during the assay.

Table 1 summarizes the representative OSPI strategies for the quantitative analysis of
biomarkers.

Table 1. Summary of the representative studies for OSPI.

Methods Probes Targets Linear Range Detection Limit Ref.

Fluorescence Cy3, Cy5 miRNA-21,
miRNA-122

10 fM–1 nM,
10 fM–1 nM 5 fM, 5 fM [83]

Fluorescence QDs, Cy5 miRNA-21 1 fM–1 pM 1 fM [95]
Fluorescence QDs DNA MTase 0.001–1 U/mL 0.0005 U/mL [99]
Fluorescence QDs miRNA-375 / 10 aM [100]
Fluorescence UCNPs PSA 1 0–500 pM 1 pM [103]
Fluorescence UCNPs Aflatoxin B1 3.31–125 ng/mL 0.17 ng/mL [104]
Fluorescence UCNPs PSA 0.1–1000 pg/mL 23 fg/mL [105]

ECL RuDSNS/
AuNPs CK19 2 0.01–10 ng/mL 0.12 pg/mL [117]

SERS Labeled AuNPs miRNA-21 0.1–100 pM 0.1 pM [131]
DFM AuNPs SrtA 3 0.05–50 nM 7.9 pM [141]
DFM AuNPs IL-6 4 / 7 pg/mL [143]
DFM AuNPs miRNA-21 10–200 pM 2 pM [144]
DFM AuNRs, AuNPs miRNA-21 0.02–1 nM 2 pM [146]

1 Prostate-specific antigen, 2 Cytokeratin 19, 3 Sortase A, 4 Interleukin 6.

None of these techniques are perfect. Each technique has its own pros and cons. The
high sensitivity and spatial–temporal resolution of single molecule fluorescence imaging
analysis bring great advantages, but the false-positive events caused by fluorescent im-
purities and non-specific adsorption, as well as the requirement for high-cost equipment,
currently limit its applications and scope. ECL imaging has attracted much attention in
single molecule/particle imaging due to its almost zero background signal and controllabil-
ity. Nevertheless, the light intensity and stability of the ECL emitters need to be improved.
Moreover, nontoxic and friendly ECL reaction systems need to be further explored for the
real-time imaging of living cells and organisms. SERS imaging shows tolerance to autoflu-
orescence and photobleaching and enables multiplex bioimaging, but the fluctuation of
SERS signals and the relatively low throughput of SERS analysis should not be ignored.
The low background and simplicity make DFM imaging successful; however, similar to
other NPs-based imaging probes, the relatively large size of individual metal NPs means
that one should be concerned about the possibly exacerbated non-specific adsorption of
imaging probes at the sensing interface.

3. Summery and Outlook

This review aims to provide a brief overview of recent technical progress in optical-
imaging approaches with single-entity sensitivity that hold potential in future biomedical
studies and clinical practice. Although this field is developing rapidly, there are challenges
that must be overcome before these techniques can realize their full potential. First, while
OSPIs could push the assay sensitivity from low picomolar levels to attomolar levels, one
should recognize that such exciting performance is almost always obtained from analysis
of an idea sample (e.g., a compound standard in PBS) by a custom-designed optical
microscope setup. When they are applied to analyses of biological and clinical samples,
the sensitivity would inevitably be compromised to varying degrees due to interference
of large numbers of coexisting species in the sample, including the interference signals
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caused by cross-reactivity of the recognition elements and those resulting from non-specific
adsorption of matrix molecules in the sample solution to the sensing surface/interface.
This challenge is motivating an increasing research effort to design a smart assay protocol,
to discover new probe molecules with higher affinity and specificity, and to develop
appropriate sample pre-treatment and antifouling strategies to diminish or prevent non-
specific adsorption of coexisting molecules [149,151,152]. The latter is also important for
preventing non-specific adsorption of the imaging tags in label-based assays. For example,
a dual-antigen co-localization sensing scheme was employed in the specific detection of
tumor-derived EVs to avoid false positives arising from binding of EVs released by normal
somatic cells to the sensing surface [149]. On the other hand, although it is currently
difficult to observe single fluorescent molecules or small NPs (e.g., QDs) with commercial
wide-field microscopes, it is feasible to acquire scattering images of individual plasmonic
NPs on a normal dark-field microscope, even using a consumer-grade digital camera as
the photon detector [153]. With the continuous development of optical imaging setups
toward miniaturization and standardization, we foresee that the scope of OSPIs in basic
biological research studies and clinical applications will be further expanded. The second
ongoing concern is the volume mismatch between existing nanotags and the molecules to
be labeled. Compared with biomolecules with a diameter of a few nanometers (for example,
antibody), available imaging nanolabels, such as QDs, SERS nanotags, and UCNPs, have
diameters ranging from tens of nanometers to hundreds of nanometers. Such a large size
mismatch would lead to two negative effects: decreased labeling efficiency due to steric
hindrance and nonspecific adsorption due to gravity. Future work will focus on further
development of high-quality imaging nanolabels that are similar in size to proteins and
that are stable and bright enough. This can be accomplished either by enhancing the
luminescence of existing small but less bright nanolabels with new physical principles
(e.g., strong coupling in nanocavity) [154], or via construction of novel optical nanotags
fulfilling the above criteria using cutting-edge techniques such as DNA origami [155]. Last
but not least, although OSPI-based methodologies generally provide an assay sensitivity
beyond picomolar levels, one should acknowledge that, in most cases, they still use similar
or identical experimental principles and procedures to traditional ensemble analysis. For
example, a multi-step on-chip hybridization, labeling and washing workflow has been
adopted for OSPI-based nucleic acid detection [100]. The relatively slow mass transfer
kinetics at solid–liquid interfaces, especially at the low molecular concentration levels,
severely compromise the binding of target molecules and nanolabels to the sensing surface,
and result in a long turnaround time for single testing. The integration of OSPIs with
microfluids offers an opportunity to accelerate the interface reaction process and hence
shorten the total assay time by leveraging the spatial confinement effect [156]. In addition,
the use of biofunctionalized beads for target capture and labeling in homogeneous solutions
before optical imaging of the individual nanolabels can also speed up the overall assay
process and improve the detection throughput [157,158]. Moreover, we are witnessing
the raid fusion of machine learning algorithms and bioanalytical techniques including the
OSPIs-based methods [159–161], which not only facilitates automation of the data analysis,
but also improves the accuracy of the assay results by enhancing the discrimination of
measurement signals from the background noise. Taken together, with the fabrication of
new nano-labels, combined with the rapid progress of automated demodulation of OSPI
signals, we believe that OSPI analysis will serve as a promising tool for the detection of low
abundance targets in biomedical scenarios.
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