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Abstract: The complete blood count (CBC) is one of the most important clinical steps in clinical
diagnosis. The instruments used for CBC are usually expensive and bulky and require well-trained
operators. Therefore, it is difficult for medical institutions below the tertiary level to provide these
instruments, especially in underprivileged countries. Several reported on-chip blood cell tests are
still in their infancy and do not deviate from conventional microscopic or impedance measurement
methods. In this study, we (i) combined magnetically activated cell sorting and the differential density
method to develop a method to selectively isolate three types of leukocytes from blood and obtain
samples with high purity and concentration for portable leukocyte classification using the lens-free
shadow imaging technique (LSIT), and (ii) established several shadow parameters to identify the
type of leukocytes in a complete leukocyte shadow image by shadow image analysis. The purity
of the separated leukocytes was confirmed by flow cytometry. Several shadow parameters such as
the “order ratio” and “minimum ratio” were developed to classify the three types of leukocytes. A
shadow image library corresponding to each type of leukocyte was created from the tested samples.
Compared with clinical reference data, a correlation index of 0.98 was obtained with an average
error of 6% and a confidence level of 95%. This technique offers great potential for biological,
pharmaceutical, environmental, and clinical applications, especially where point-of-care detection of
rare cells is required.

Keywords: lens-free shadow imaging technique (LSIT); CMOS image sensor; leukocytes; diagnostics;
blood cell classification

1. Introduction

The complete blood count (CBC) is a routine laboratory test used in clinical medicine
for the early detection of serious diseases [1,2]. A CBC measures the size, quantity, and
maturity of the various blood cells in a blood sample. Erythrocytes, leukocytes, and
platelets are the major components of human blood [3]. Erythrocytes, which make up most
of the blood cells, transport oxygen and carbon dioxide to and from tissues. Leukocytes,
responsible for the defense mechanisms of the body, are signs of infection or disease and
provide superficial information on the health of the patient. Platelets are colorless cells that
form blood clots and prevent bleeding. Leukocytes are divided into five subtypes, most of
which are neutrophils, lymphocytes, and monocytes. Neutrophils, which account for more
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than 40–70% of leukocytes, are produced primarily during bacterial infections and diseases
and respond rapidly to chemotaxis [4]. Lymphocytes, which comprise approximately 30%
of leukocytes, are immunoreactive cells and are further subdivided into T cells, B cells, and
natural killer cells (NK). B cells produce antibodies, and NK cells kill infected and cancer
cells as part of the innate immune response [5]. The third type of leukocyte is the monocyte,
which represents approximately 3–5% of all leukocytes and ingests foreign bodies or dead
cells in the human body. Since leukocytes react differently depending on their type and
action, leukocyte count is clinically crucial as the primary diagnosis.

There are numerous manual and automated methods for the examination of human
blood cells. Traditional manual methods for blood cell classification such as morphological
profiling of blood cells by manual smear and visual inspection are labor intensive and do
not provide quality control. In addition, the manual technique has disadvantages such as
observer bias, slide distribution problems, statistical sampling and recording errors, and
the need for highly skilled technicians [6,7]. Automated approaches such as the Coulter
method (based on electrical impedance) and fluorescence-activated cell sorting (FACS)
have been developed to overcome these limitations [8–11]. Although these automated
techniques allow for the rapid analysis of large numbers of samples, they have several
limitations including the need for heavy, expensive, and powerful equipment and skilled
personnel [12]. Therefore, these facilities are accessible only to high-level medical facilities.
Recently, several point-of-care (POC) systems have been proposed to assess blood count
with high precision to overcome these drawbacks. Microfluidics-based blood analysis
systems that either perform fluorescence analysis or combine magnetic purification of cells
with chemotaxis assay from small blood samples have been reported [13–17]. However,
they all have accessibility limitations and require additional fluorescence analysis to identify
the class and concentration of fluorescently stained cells or additional fluorescence staining
to confirm the pathway of cell migration. Recently, much interest has been expressed in the
development of systems to automatically classify digital images of peripheral blood smears
with high sensitivity and specificity [18–21]. Many groups have reported leukocyte classi-
fication of microscopic blood images using an adaptive neuro-fuzzy inference system or
leukocyte classification based on spatial and spectral features of microscopic hyperspectral
images [22–24]. However, these technologies use high-quality optical microscopes or lenses,
which limits their application to low-cost, portable platforms for on-site cell monitoring.

In contrast, the lens-free shadow imaging technique (LSIT) is emerging as a potential
tool to replace expensive microscope-based cell analysis [25]. Instead of examining the
original cell image, LSIT takes the diffraction pattern of a cell and examines its properties
to determine the cell type. When light from a semi-coherent light-emitting diode (LED) is
irradiated through a micro-pinhole, the light can be scattered in three ways: It can penetrate
the cell, scatter from the cell surface, and cannot reach the cell (Figure 1) [26]. A diffraction
pattern on a CMOS image sensor represents the interference of these three forms of light.
LSIT consists of only two optoelectronic elements (LED and CMOS image sensors) and
does not require any optical structures or lenses, eliminating the entire process of optical fo-
cusing. Therefore, it has the advantage of low manufacturing cost and compact design [27].
Moreover, it is a high-throughput technique with a wide field of view, which is approxi-
mately ten times greater than the measurement range of a hemocytometer under an optical
microscope [28]. We have previously reported that heterogeneous solutions of erythrocytes,
yeast cells, E. coli, and microparticles of different sizes can be characterized automatically
without lenses or microscope objectives. LSIT can be used to determine hemoglobin con-
centration [29,30], analyze the growth of bacterial biofilms [31], and perform various cell
counts [27,32]. LSIT has advantages such as compactness, low cost, and high throughput
because it does not require structures for optical lenses and alignments [25]. We have also
previously reported the development of a lens-free imaging platform for the stain-free
measurement of cell viability and automated counting of blood cells [27,33]. In that study,
a cell lysis protocol was used before leukocyte detection. Erythrocyte lysis is commonly
performed as part of the processing of blood samples for immunophenotyping by flow
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cytometry. The reduction or removal of erythrocytes by lysing facilitates leukocyte test-
ing. However, lysing erythrocytes have numerous implications for immunophenotyping
including potential cell loss. Furthermore, this technique requires a homogeneous sample
to create a shadow image library for the corresponding sample.

Figure 1. (a) Schematic representation of the magnetically activated cell sorting technique (MACS) for
selective detection of specific cells in blood using a magnetic nanoparticle conjugated with antibodies.
MACS is a three-step process that includes labeling, filtration, and separation. (b) An exterior view of
the device along with the diagnostic chip. (c) Schematic of the lens-free shadow imaging system.

This study describes a technique for classifying three types of leukocytes using LSIT
and creating a shadow image library for each cell type. By combining magnetically activated
cell sorting (MACS) and the differential density method, we have developed, for the first
time, a method to selectively isolate three types of leukocytes in blood and obtain samples
with high purity and concentration for the classification of leukocytes with LSIT. We then
established several shadow parameters to identify the type of leukocyte in a whole-shadow
leukocyte image by shadow image analysis. Finally, we demonstrate the accuracy and
performance of the proposed shadow image parameters. Our NaviCell device costs ~$500
in material base, which is far less than the expensive (>$200K) fully automated, bulky, and
complicated system that requires well-trained operators and a lab. Furthermore, it costs
almost eight times less (>$4000) than the commercial benchtop cell counters, which have
the disadvantage of high error rate and low throughput [27]. Thus, this low-cost and small
blood analysis platform can be used as a powerful point-of-care (POC) diagnostic tool in
the field, especially in resource-limited environments.

2. Materials and Methods
2.1. Human Whole Blood Preparation

Whole blood samples were collected from 20 outpatients at Anam Hospital, Korea
University, with approval from the Institutional Review Board (# 2021AN0040). Clinical
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examination of these samples showed that blood cells were within the normal range
(neutrophils: 40–70%; lymphocytes: 15–40%; monocytes: 0–15%). Blood was collected
in an anticoagulant tube and stored at 4 ◦C until further use. Cell separation buffer was
prepared by adding 0.5% bovine serum albumin (BSA; Bovogen Biologicals, Keilor East,
Australia) and 2 mM ethylenediaminetetraacetic acid (EDTA; LPS Solution, Daejon, Korea)
to Dulbecco’s phosphate buffered saline (DPBS; Merck KGaA, Darmstadt, Germany). BSA
serves as a buffer preservative and prevents nonspecific antibody binding in the sample [34].

2.1.1. Magnetically Activated Cell Sorting of Human Whole Blood

MACS is a technique for the selective detection of specific cells in the blood using
a magnetic nanoparticle conjugated with antibodies specific for the cell surface proteins
of the corresponding leukocytes (Figure 1a) [35]. MACS was conducted via a three-step
procedure including labeling, filtration, and separation, as described in the instruction
manual (Miltenyi Biotec, Bergisch Gladbach, Germany). Single cells were prepared by
passing them through a 20 µm cell filter (Fisher Scientific, Waltham, MA, USA) before
MACS. Briefly, target cells of interest were labeled with a specific antibody conjugated
magnetic nanoparticle against a cell surface marker (Figure 1a) at 4 ◦C for 20 min in
the dark. After the reaction was completed, the labeled cells were separated from the
unlabeled cells by passing the entire mixture through the magnetic field. Consequently,
the labeled cells were attached to the filter system while the unlabeled cells were filtered
(flow-through). After five consecutive washes with the separation buffer, the labeled target
cells were eluted from the filter by removing the magnetic field and adding the separation
buffer. Neutrophils were first separated from whole blood using MACS and flow through
containing erythrocytes, peripheral blood mononuclear cells (PBMC), and granulocyte
remnants was subjected to a further isolation process.

2.1.2. Cell Separation Using a Density Gradient Medium (Ficoll Solution)

For further isolation, density gradient centrifugation with Ficoll solution (Ficoll-
PaqueTM Plus; Merck KGaA, Darmstadt, Germany) was used to separate lymphocytes and
monocytes. The Ficoll solution (a low-viscosity, high-density epichlorohydrin chemical)
uses density differences to separate blood samples into plasma, peripheral blood mononu-
clear cells (PBMCs), granulocytes, and erythrocytes. First, 4 mL of blood sample (diluted 1:1
with DPBS) was slowly poured into 3 mL of Ficoll solution to form a layer. The mixture was
separated into four layers by centrifugation at 400× g for 30 min. As a result, the densest
erythrocytes and granulocytes were in the bottom layer, followed by the layer containing
the Ficoll solution, then the thin and opaque stained PBMC layer, and finally the platelets
and plasma in the top layer. The PBMC layer was separated and centrifuged at 100× g for
10 min. The supernatant was discarded and highly pure mononuclear cells were yielded.

Because the PBMC layer contains both lymphocytes and monocytes, the MACS ap-
proach described in Section 2.1.1 was used to separate these two cell types. The MACS
approach can theoretically separate lymphocytes and monocytes from whole blood. How-
ever, because monocytes are present in low concentrations in blood, separating erythrocytes
and neutrophils from the sample is complicated. Therefore, the combination of density
gradient centrifugation and MACS provides a powerful tool for obtaining a high yield
of homogeneous leukocytes. For a schematic representation of the MACS protocol for
lymphocyte separation, see Figure S1.

2.2. Experimental Setup
2.2.1. No-Stain and Automated, Versatile, Innovative Cell Analysis (NaviCell)

Shadow images of three types of leukocytes (neutrophils, lymphocytes, and mono-
cytes) were obtained using NaviCell with the LSIT described in Section 1. Figure 1b,c shows
the NaviCell cell counter used for this study and a schematic of the lens-free cell imaging
system, respectively. More details on the NaviCell device can be found elsewhere [24]. The
cell counter consisted of a blue LED (450–490 nm; Harvatek Co. Ltd., Hsinchu, Taiwan)
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to take advantage of the high-contrast diffraction patterns and a CMOS image sensor
(MT9P031; Micron Technology, Manassas, VA, USA) with a sensing area of 24.396 mm2.
A 300 ± 5 µm (K39-880; Edmund Optics, Barrington, NJ, USA) pinhole was used on top
of the LED to achieve semi-coherent illumination. On the top of the cell counter was a
5-inch touch display for quick confirmation of the measured image. On the front of the
cell counter is a connector for the cell chip, while the back contains a USB port and power
switch. These components were fully packed into the NaviCell device, which measures
16.2 × 13.5 × 13.8 cm. A black disposable chip was used for the measurements to minimize
interference from external light, and only the area where the sample was measured was
transparent. This custom chip measures 7.5 × 2.2 cm, and the area with two detectors can
hold up to 10 µL of sample. After adding the 10 µL sample to each of the two detection
units, the chip was inserted into the cell chip port of the cell counter, and the measurements
were collected and displayed on a 5-inch touch display via an Android-based user interface.
The shadow image of the sample and the measurement result can be quickly and visually
confirmed via the display. The measurement result, measurement time, and information
about the measurement cell can be stored on the memory of the cell counter and backed up
externally via the USB drive.

2.2.2. Correlation, Linearity, and Agreement

Two reference systems were used to verify the techniques used in this study. First,
a Coulter counter (DxH 800 Hematology Analyzer, Beckman Coulter, Indianapolis, IN,
USA) was used to obtain the reference CBC data for the blood samples used in the analysis.
Personal identity data such as names and addresses are protected by law and information
regarding the individuals’ health and financial circumstances are protected. This CBC
result was used as comparative data to verify the accuracy of the parameters developed for
shadow image analysis. Flow cytometry (Guava easyCyte 8-10HT, Millipore, Burlington,
MA, USA) was used to determine the purity of the isolated leukocyte samples. Since flow
cytometry can distinguish types of blood cells using fluorescent antibodies, it is possible to
confirm the purity of the separated leukocytes. The results of this analysis confirmed that
high purity and high concentration leukocyte samples were obtained.

2.2.3. Shadow Parameters

The NaviCell described in Section 2.2.1 was used to collect shadow images of the three
types of leukocytes, and a library was created. To determine the characteristics of these
shadow images of the three types of leukocytes, 100 shadow images of each type of cell
were extracted and the intensity of the pixels was secured using the profile function of the
ImageJ program (NIH). By comparing the obtained intensities, the basic parameters for
the specific discrepancies were determined and integrated. With these basic parameters,
the three types of leukocytes (i.e., neutrophils, lymphocytes, and monocytes) could be
distinguished in the shadow image. For cell classification, the central maximum value
(CMV), the first-order minimum value (MIN), and the first-order maximum value (MAX)
were extracted. The difference between the CMV and MIN values was defined as the
peak-to-peak distance (PPD) and the difference between the CMV and MAX values was
defined as the maximum-to-minimum distance (MMD). In this study, it was difficult to
distinguish helper T cells from cytotoxic T cells because all basic parameter values except
CMV were similar. However, for lymphocyte type, they were different from the neutrophils
and monocytes. By combining the values of the above basic parameters, the shadow image
parameters were developed to distinguish the three types of leukocytes. The order ratio
(OR), defined as the ratio of PPD to MMD, was introduced as a metric to distinguish
neutrophils from leukocytes, given by

OR =
PPD

MMD
(1)
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The minimum ratio (MR), defined as

MR =
MIN

MMD
(2)

was proposed as a metric to distinguish lymphocytes from the remaining mononuclear
cells after neutrophils were preferentially filtered on the leukocyte shadow image using the
OR parameter.

2.3. Detection Algorithm

The leukocyte shadow images acquired with NaviCell were processed with a program
specifically designed for blood cell analysis. The original image to be analyzed was
duplicated to produce two identical images. After the background signal was extracted
from the first image, binarization was performed. The feature points of the binarized cells
were then grouped using clustering to create an image without a background. The grouped
pixels were recognized as one cell, and the median of the group was stored as the median
of the cell. The cells were then recognized by merging them with the images from the
second copy. Finally, the results of the blood analysis were determined using the values
of the essential parameters. The software was able to examine hundreds of cells in one
image within a minute [23]. To measure the performance of the developed OR and MR
parameters for leukocyte identification, the F1 score was calculated. The F1 score is the
harmonized mean of Precision and Recall, where

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 = 2 × Precision × Recall
Precision + Recall

(5)

TP, FP, and FN are the true positives (sensitivity), false positives (specificity), and
false negatives, respectively. Precision is the number of data that the model identifies as
‘true’ and Recall is the number of data that the model perceives as ‘true’. The F1 score is an
indicator of the effectiveness of the model, with an F1 score reaching its best value at 1 and
its worst value at 0.

3. Results and Discussion

Neutrophils, lymphocytes, and monocytes were selectively isolated with high purity
using a combination of magnetic bead separation and density gradient centrifugation.
The shadow image confirmed the homogeneous cells, and the magnified shadow images
showed a uniform overall appearance for all three cells, as shown in Figure S2. The exact
purity of the samples was validated using fluorescent antibodies attached to the cells and
analyzed by flow cytometry. Various antibodies conjugated to magnetic beads for the
isolation of whole blood leukocytes and fluorescent antibodies are shown in Figure 2a. The
purity of neutrophils, monocytes, helper T cells, and cytotoxic T cells was determined to be
93%, 93%, 79%, and 75%, respectively (Figure 2b–e).
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Figure 2. (a) Various antibodies conjugated to magnetic beads for whole blood leukocyte isolation
and fluorescent antibodies. Flow cytometric analysis of the purity of (b) neutrophils, (c) monocytes,
(d) helper T cells, and (e) cytotoxic T cell leukocyte samples obtained by a combination of magnetically
activated cell sorting (MACS) and the differential density method.

Various antibodies and magnetic beads can affect leukocyte shadow images. The
application of the developed parameters that depend on the shadow images would be
problematic if the magnetic beads altered the shadow images. Therefore, the effect of
antibodies or magnetic beads on the shadow images of leukocytes was also investigated by
comparing the shadow images of leukocytes separated with magnetic beads with those of
the control samples. To confirm the effect of different antibodies on cells and their shadow
images, mononuclear cell samples mixed with lymphocytes and monocytes (obtained with
Ficoll solution) were used as a control group and the shadow images of the lymphocytes
and monocytes separated with magnetic beads were compared for each cell type. We have
already noted that the high erythrocyte concentration in human blood (~4 × 106 cells/µL)
is quite a high concentration for the FOV of 24.396 mm2 in a shadow imaging system [27].
However, the probability of cell overlap is relatively low due to the uneven distribution of
cells, which limits the accuracy of cell counting using the shadow image technique (about
6% for 400 cells in the FOV of 24.396 mm2 at a dilution factor of 16,000 for erythrocytes) [27].
Due to the 1000-fold lower concentration of leukocytes compared to erythrocytes, the
possibility of cell overlap is extremely low, even with a slightly higher dilution factor.

The baseline parameters MMD, PPD, and MIN were used to compare cells in the
control and comparison groups (Figure 3a). The percentage errors of the MMD, PPD, and
MIN values for lymphocytes with and without magnetic beads were 2.5%, 0.58%, and
3.75%, respectively (Figure 3b,c). Additionally, the percentage errors for each parameter
were 0.41%, 3.39%, and 0.16% for monocytes with and without magnetic beads, respectively.
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Thus, it can be concluded that the presence or absence of magnetic beads has no apparent
effect on the shadow image of the cells.

Figure 3. (a) Schematic representation of the parameters extracted to distinguish the three types
of leukocytes—neutrophils, lymphocytes, and monocytes—on the shadow image. Comparison
of the effect of magnetic beads on the parameters MMD, PPD, and MIN of (b) monocytes and
(c) lymphocytes. The difference between the central maxima value (CMV) and the first-order minima
value (MIN) is defined as the peak-to-peak distance (PPD) and the difference between the CMV and
the first-order value (MAX) is defined as the maxima-to-minima distance (MMD). The presence or
absence of magnetic beads has no apparent effect on the shadowing of the cells.

Figure 4a,c shows the OR and MR distribution of the leukocyte subpopulations based
on shadowing characteristics. Neutrophils had an OR distribution of 0.6 or less. This value
is different from the distribution of the other cells. The distribution of MR by lymphocyte
and monocyte types in mononuclear cells was confirmed. In lymphocytes, the distribution
ranged from 2.5 ≤ MR < 4.5, and in monocytes, the distribution ranged from 1 ≤ MR < 2.5.
Therefore, lymphocytes can be distinguished from monocytes with a MR distribution of
less than 2.5. However, similar to the profile profiling results, helper T cells and cytotoxic T
cells with the same MR range were set as one lymphocyte type. The F1 score was calculated
based on the parameters OR and MR. Figure 4b,d shows the F1 score for identifying
neutrophils and distinguishing lymphocytes from monocytes, respectively. The highest F1
score of 0.96 for neutrophil identification was obtained at an OR value of 0.55. The best
F1 score for lymphocytes was 0.89, with an MR value of 2.6. Using this method, we can
quickly determine the best OR MR value to classify leukocytes.

Blind tests were performed on blood samples from 20 randomly selected patients
to evaluate the accuracy and reliability of the proposed OR and MR parameters for the
classification of the three leukocyte types. Leukocyte samples were prepared by selectively
labeling magnetic beads with CD45 antibodies. Then, shadow images of the leukocytes
were made using the NaviCell counter, and the parameters OR and MR were applied to
the data. The ratios of the three primary leukocyte subtypes were classified according to
each shadow parameter and compared with the 20 CBC data from Anam Hospital, Korea
University. The difference measurements for the 20 samples measured with CMOS and the
reference system are summarized in Table 1.
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Table 1. Three-part differential WBC counts for 20 outpatient blood samples measured by the NaviCell counter and the reference system (DxH 800 Hematology
Analyzer, Beckman Coulter).

Sample Method Neutrophil
(%)

Lymphocyte
(%)

Monocyte
(%) Correl. Sample Method Neutrophil

(%)
Lymphocyte

(%)
Monocyte

(%) Correl.

1
DxH 800 57.70 28.20 9.80

0.973 11
DxH 800 47.10 37.90 12.20

0.999NaviCell 54.01 35.31 8.9 NaviCell 46.21 36.22 13.70

2
DxH 800 64.80 24.90 7.30

0.991 12
DxH 800 52.10 24.90 19.90

0.999NaviCell 57.91 28.48 6.96 NaviCell 56.52 23.91 19.56

3
DxH 800 56.00 30.60 7.30

0.985 13
DxH 800 58.20 29.30 8.70

0.994NaviCell 49.58 35.29 10.92 NaviCell 64.28 25.71 7.87

4
DxH 800 44.60 35.30 11.40

0.911 14
DxH 800 41.20 46.20 9.90

0.962NaviCell 44.29 30.71 23.57 NaviCell 47.62 41.67 10.71

5
DxH 800 65.40 24.10 7.00

1.000 15
DxH 800 67.30 17.70 12.40

0.991NaviCell 65.33 23.71 7.55 NaviCell 69.90 21.36 6.80

6
DxH 800 58.20 25.90 7.80

0.999 16
DxH 800 79.20 11.00 9.00

1.000NaviCell 60.00 25.45 9.09 NaviCell 76.92 13.67 9.40

7
DxH 800 48.80 39.20 6.00

0.940 17
DxH 800 62.80 27.70 8.60

0.976NaviCell 54.8 30.46 9.30 NaviCell 58.46 33.84 4.61

8
DxH 800 47.00 41.90 7.40

0.981 18
DxH 800 87.20 5.50 6.60

1.000NaviCell 45.60 34.95 11.65 NaviCell 89.69 4.12 6.19

9
DxH 800 42.60 43.80 7.20

0.998 19
DxH 800 45.30 41.30 7.60

0.978NaviCell 42.00 41.18 15.29 NaviCell 48.65 36.49 9.46

10
DxH 800 87.10 6.50 6.10

1.000 20
DxH 800 57.30 29.50 10.50

0.979NaviCell 89.25 5.38 3.22 NaviCell 63.04 23.91 13.04
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Figure 4. (a) Order ratios (ORs) for major leukocyte subpopulations. (b) F1 score to distinguish
between neutrophils and leukocytes using the OR. (c) Minimum ratios (MRs) for major leukocyte
subpopulations. (d) F1 score to distinguish between lymphocytes and the rest of the mononuclear
cells using the MR.

The average error rates for neutrophils and lymphocytes were approximately 2% and
3%, respectively, while the error rate for monocytes was approximately 14%; however, with
the exception of two monocyte samples that had error rates greater than 100%, the average
error rate for monocytes was approximately 3.9%. Blood samples from patients who
requested a blood test were negative for disease or infection. Thus, if the shadow parameter
classifies the diffraction pattern on the cell surface, the change in monocyte response to
disease is not obvious and the inaccuracy could be due to multiple variables. Furthermore,
because the leukocyte ratio is small, a deviation of one minute would significantly affect the
ratio. The average neutrophil, lymphocyte, and monocyte populations calculated with the
lens CMOS system for the 20 samples were 59.20%, 27.60%, and 10.39%, respectively. This
differential result agrees well with the measurement of the reference system (58.50%, 28.57%,
and 9.14%, respectively), with a correlation index of 0.999 between the two modalities.

The effectiveness of the proposed method was evaluated by examining the detection
accuracy of each leukocyte subtype. The neutrophil ratio obtained by applying the OR
parameter to the shadow image was compared with the reference CBC data from the
Korea University Anam Hospital. Direct comparison of the two approaches for neutrophils
yielded a mean error of 1.21%, with all 20 data points within the 10% error limit (Figure 5a).
Similarly, a mean error of 3.4% and 13.7% was obtained for lymphocytes and monocytes,
respectively (Figure 5b,c). Using the shadow parameters developed in this study, the
average error rate for the classification of neutrophils, lymphocytes, and monocytes was
better than that of our previously reported method (Figure 5g) [32]. Furthermore, the
average correlation was 0.999, which was also much better than in the previous study.
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Figure 5. Comparison of (a) neutrophil, (b) lymphocyte, and (c) monocyte populations measured
with the CMOS system and the reference system (DxH 800 hematology analyzer, Beckman Coulter).
Bland–Altman analysis for (d) neutrophil, (e) lymphocyte, and (f) monocyte populations. (g) The
average error rate for the classification of neutrophils, lymphocytes, and monocytes in the present
and our previously reported method.

The Bland–Altman method was used to demonstrate the reliability of the OR image
parameter in identifying neutrophils in the leukocyte shadow image and to evaluate the
agreement between the two systems. As shown in Figure 5d, the analysis revealed a bias of
−0.71%, with 95% limits of agreement ranging from 7.31% to −8.73%. The same analysis
was performed for the other leukocyte subgroups. The results for lymphocytes (bias 0.98%,
with 95% limits of agreement between 9.65% and −7.70%) and monocytes (bias −1.25%,
with 95% limits of agreement between 6.49% and −9.00%) are shown in Figure 5e,f.

4. Conclusions

In summary, by combining the MACS and density gradient centrifugation methods, a
method for purification of neutrophils, lymphocytes, and monocytes from human whole
blood was developed to identify and classify shadowgraphs of three types of leukocytes
in whole blood using LSIT. The LSIT-based NaviCell counter can collect information on
individual cells from hundreds of cells in a minute. The presence or absence of magnetic
beads did not affect the diffraction pattern. From the samples obtained by these methods,
we created a shadow image library of the three leukocyte subtypes. The shadow parameters,
OR and MR, were developed by combining different features classified according to the type
of cells in the shadow images of the library. The OR can separate neutrophils from leukocyte
shadow images, while MR can distinguish lymphocytes from monocytes. The ratios of
the three types of leukocytes obtained with the defined parameters were compared with
the reference CBC data from 20 patients. The error rates for neutrophil count, lymphocyte
count, and monocyte count were 2.5%, 3.8%, and 14.2%, respectively, with an overall
reliability of 95%. Subsequently, a high correlation coefficient of 0.98 was confirmed
with the reference data. Advances in computer power and algorithm development have
changed the paradigm of how machines learn from data. Deep learning is a paradigm
that can describe data and learn independently at different levels of abstraction using a
model composed of numerous levels of processing, rather than human-defined rules. In
conjunction with LSIT, this technology enables cell separation and analysis at the whole
blood level without antibodies. In addition, the method is expected to be able to evaluate
previously indistinguishable images such as those of helper and cytotoxic T cells. Finally,
we can envision applications in various areas of cell analysis including smart cell detection
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and malaria detection. This finding has immense potential for the development of point-of-
care and wireless health applications, especially in resource-constrained environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12020047/s1, Figure S1: Schematic of the developed protocol
that combines magnetically activated cell sorting (MACS) and the differential density method to
selectively isolate three types of leukocytes in blood and obtain samples with high purity and
concentration; Figure S2: Shadow images of neutrophils separated using magnetic beads, helper T
cells, cytotoxic T cells, and monocytes separated using Ficoll solution and magnetic beads.
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