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Abstract: Viral infections are becoming the foremost driver of morbidity, mortality and economic loss
all around the world. Treatment for diseases associated to some deadly viruses are challenging tasks,
due to lack of infrastructure, finance and availability of rapid, accurate and easy-to-use detection
methods or devices. The emergence of biosensors has proven to be a success in the field of diagnosis
to overcome the challenges associated with traditional methods. Furthermore, the incorporation of
aptamers as bio-recognition elements in the design of biosensors has paved a way towards rapid,
cost-effective, and specific detection devices which are insensitive to changes in the environment. In
the last decade, aptamers have emerged to be suitable and efficient biorecognition elements for the
detection of different kinds of analytes, such as metal ions, small and macro molecules, and even cells.
The signal generation in the detection process depends on different parameters; one such parameter
is whether the labelled molecule is incorporated or not for monitoring the sensing process. Based on
the labelling, biosensors are classified as label or label-free; both have their significant advantages
and disadvantages. Here, we have primarily reviewed the advantages for using aptamers in the
transduction system of sensing devices. Furthermore, the labelled and label-free opto-electrochemical
aptasensors for the detection of various kinds of viruses have been discussed. Moreover, numerous
globally developed aptasensors for the sensing of different types of viruses have been illustrated and
explained in tabulated form.

Keywords: aptamers; viral infection; COVID-19; human health; digital health; biosensor

1. Introduction

According to the World Health Organization, hundreds of millions of people have
viral infections every year, with millions of death worldwide [1]. Figure 1A illustrates the
the outbreak of few major viral infections that have created havoc in the human population
over the past few centuries. The current situation of the COVID-19 pandemic has brought
scientist’s focus towards infectious diseases caused by viruses. The ongoing pandemic
by novel SARS-CoV-2 has reported more than 284 million infections and claimed around
5.4 million deaths [2]. In addition to this, various other viruses, such as HIV, Dengue, Zika,
Ebola, West Nile, etc., lead to a large number of human infections and deaths. Therefore,
simple, fast, accurate, and specific diagnostic techniques are in great demand for the early
diagnosis, prognosis and surveillance of diseases, by targeting particular biomarkers/target
sites. There are some reliable techniques which exist for virus detection such as cell culture,
hemagglutination inhibition test, immuno-complexation, etc [3,4]. Furthermore, with
advancement in technology, a few other techniques, for instance, ELISA, RIA, serological
and PCR methods, have also been employed for virus detection [5,6]. However, these
methods are costly, time consuming, and require laboratory infrastructure and skilled
personnel. In contrast to these methods, point-of-care (POC) diagnostic tools have attracted
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more attention for their rapid, easy, and inexpensive detection methods, especially in
the developing nations, which lacks proper infrastructure and trained individuals [7–9].
Additionally, owing to their excellent properties, POC devices have become very significant
in the prevention and control of various viral infections [10–13]. Aptasensors are one of the
most advanced diagnostic techniques, exhibiting excellent properties and great potential
for the detection of viruses, especially in resource-constrained areas [14]. Aptamers were
discovered in 1990, and since then they have been extensively used as molecular recognition
elements in a large number of applications [15–17]. This is because they can probe for
different targets, for example metal ions, small and macro molecules, and even cells with
high selectivity and sensitivity. Biosensors are the analytical devices which modulates
the signal obtained from the interaction between the biorecognition element (BRE) and
the target molecule [18,19]. When aptamers are used as a BRE in biosensors to track a
specific target or biomarker, an aptasensor is formed. The basic principle of designing and
functioning of aptasensor, starting from the specific aptamer selection to signal generation,
is represented in Figure 2. The signal obtained in the sensor can be in the form of a colour
change, fluorescence, electrochemical parameters, mechanical parameters, etc [20–24].
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of various target molecules.

This review mainly focuses on determining the change in optical and electrochemical
parameters i.e., current, potential, voltage, colour, phase change, etc., which comes under
the class of opto-electrochemical biosensors. Furthermore, we have explored the labelled
and label-free aptasensors for the detection of viral infections. The labelled and label-free
aptasensors are classified according to the different signal readout system, for instance
electrochemical and optical signals. Moreover, the globally developed aptasensors for
the virus monitoring have been comprehensively discussed and represented in various
figures. Significant attention is given to the fabrication process and how the aptamers are
incorporated in the design of aptasensors for various targets. Various fabricated aptasensors,
especially in the last 3 years, have been explained in tabulated form, describing their readout
system and analytical details, such as dynamic range, limit of detection (LOD), aptamer
sequence, labelling molecule, etc. Finally, we summarise and present an insight towards the
future of aptasensors, speculating on how they will become more convenient, cost-effective,
rapid test devices.

2. Label and Label-Free Aptasensors
2.1. Aptamers and Biosensors

Aptamers are single-stranded oligonucleotide sequences (DNA or RNA) that may
fold into a stable three-dimensional (3D) structure and interact with a target molecule,
both sterically, and through electrostatic interactions. The electrostatic complementarity
occurs because of an interaction between the positive and negative charges present on
the surfaces of the aptamer and the target. Apart from the electrostatic interaction, other
intermolecular interactions such as van der Waals forces, hydrogen bonds and π-π stacking
make the aptamer–target complex stable [25]. They feature distinct characteristics such as
compact size, low cost, high specificity, facile chemical modification, and most importantly
extraordinary flexibility. These are capable of binding specific targets with high affinity,
specificity, and sensitivity [26,27]. The target molecule can be as simple as a metal ion, and
can be as complex as large protein molecules such as cardiac troponin, or even cells [28–32].
Aptamers are designed by an easier, cheaper in vitro method called SELEX (systematic
evolution of ligands by exponential enrichment) [33,34]. This simple but elegant technique
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was discovered by a group of scientists—Larry Gold and Jack Szostak—and published
for the first time in 1990 [35,36]. Because of the in vitro selection method of aptamers, this
allows us to engineer the affinity molecules which are non-immunogenic or toxic to the
cells. The chemical synthesis method of aptamers is easy and cost-effective, and warranties
a high-level consistency from batch-to-batch [37]. Aptamers show numerous advantages
over antibodies, including a low cost of development, high stability, sensitivity, and an
easier modification process. In addition, they are not immunogenic [38–41]. Moreover,
their insensitivity towards any change in pH, temperature, and ionic strength make them a
preferred choice over antibodies. In the year 1996, fluorescently labelled aptamer was first
reported to be utilized as a bio-detection agent in biosensors [42–45]. In the last decade, the
implementation of aptamers has increased exponentially in the design of biosensors. This
exponential increase is concluded from a scientific survey performed on SCOPUS for the
number of research articles published with the keyword “aptasensor”, especially in last
decade (Figure 1B).

Biosensors are analytical devices that provide detection of target analytes, both qualita-
tively and quantitatively [38–40]. Biosensors show excellent potential to fulfil the ASSURED
criteria (i.e., affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free
and deliverable to users) for developing point-of-care devices [46]. There are three essential
components of any type of biosensor, i.e., BRE, transducer, and an amplifier and processor.
The selection of ideal substrate is also one of the important and challenging tasks the in
fabrication of biosensors [22]. On the basis that transduction system biosensors can be
categorized in different classes such as electrochemical, optical, mechanical, etc. [47–50],
in this study, a detailed focus is given on the optical and electrochemical aspect of the
transduction system. Electrochemical biosensors measure the signal based on any minute
difference in potential, conductance, current, or field effect that occurs because of the
binding between the BRE and the analyte [51,52]. These systems are preferred over others
because of their selectivity, sensitivity, and operational details [53–56]. The three electrodes
typically used in an electrochemical system include; the working electrode (e.g., glassy
carbon electrode functions as the transducing element); the auxiliary/counter electrode
(e.g., Pt electrode, acts to complete the circuit); and the reference electrode (e.g., Ag/AgCl
electrode, important for creating a steady potential) [24,57–59]. The important task in this
system is selecting the suitable working electrode according to the need for modification
and surface nano-engineering to target a specific analyte. The basic principle behind the
working of such biosensors is the electron or ion transfer kinetics from the reaction point to
the surface of electrode [60–62]. In both labelled and label-free electrochemical biosensors,
any change (positive or negative) in electron transport is monitored. Numerous techniques
have been developed to study the change in various parameters (potential, current, charge,
time, conductivity, impedance), for instance, Cyclic Voltammetry (CV), chronoamperome-
try, differential pulse voltammetry, square wave voltammetry, etc. Another electrochemical
technique, i.e., electrochemical impedance spectroscopy (EIS), is used to study the elec-
trochemical kinetics of sensing surfaces through inducing the electrochemical kinetics on
working electrodes [63–66]. All these techniques aid in detecting any changes occurring
on the surface of electrodes, such as whether the BRE (such as the aptamer) has bound
or not. For instance, an electrochemical aptasensor for the detection of SARS-CoV-2 has
recently been designed by Abrego-Martinez et al., in 2021. In this sensor, screen-printed
carbon electrode (SPCE) was used and modified with AuNPs, after which an aptamer was
immobilised on the electrode surface illustrated in Figure 3A. The change in electrochemical
parameters with every step of modification on SPCE and the fabrication of the aptasensor
was monitored by CV and EIS, as shown in Figure 3B,C, respectively. All these recordings
were performed in phosphate buffer saline solution containing 5 mM [Fe(CN)6]3−/4− [67].
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Optical biosensors allow us to analyse the polarity, phase or frequency change in the
optical field of a BRE, due to interaction with the target. Optical biosensors can further
be categorized into luminescence, absorption, or fluorescence-based, on the basis of the
transduction mechanism [68]. Optical biosensors based on change in refractive indexes are
one of the most preferred, because of their great performance, low cost, and user-friendly
nature. This type of sensors helps in the miniaturization of devices due to the absence
of complex reactions, and in developing multiplexing devices [69,70]. In this class, the
direct detection or naked-eye-based optical system (labelled and label-free) are common,
due to their simple and fast detection procedure. For instance, Chen et al., 2021, have
developed an aptasensor based on surface-enhanced Raman scattering (SERS) for the
detection of influenza virus A (H1N1) virus by immobilizing a labelling probe, i.e., Cy3
with an aptamer on the nanostructure surface. A strong Raman signal was generated
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when the Cy3 label attached to the aptamer and a further interaction of the label with the
target (Hemagglutinin) shows the reduction in Raman signal, as illustrated in Figure 4A,B,
respectively [71].
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signal created by labelled structure. (B) (i) Representation of conformational change that occurred
due to recognition of A/H1N1 virus; (ii) effect of recognition on Raman signal. (C) Schematic
representation of the SERS-based aptasensor by utilizing a 3D nano-popcorn for the detection of
A/H1N1 virus quantitatively (reprinted with permission from [71]. Copyright 2020 Elsevier).

2.2. Labelled Opto-Electrochemical Aptasensors for Virus Detection

Aptasensors are classified into two types, namely, labelled and label-free, depending
upon whether the labelling molecule is used for signal enhancement/generation or not.
A label is a foreign molecule which is bonded through chemical or physical means to
monitor the target analyte. Numerous kinds of molecules are used as labels, for example,
fluorophores, enzymes, dyes, etc. In the earlier days of biosensors development, various
kinds of optical or radioactive molecules were used as labels inspired from conventional
electrophoresis ELISA techniques [72–74]. Label-based sensing systems utilize various
types of transducing systems for signal detection, such as colorimetric, electrochemical,
electro-chemiluminescence, SERS, etc. Labels are employed in electrochemical biosensors to
boost the signal produced per occurrence. Electrochemical labelling often involves chemical
methods that covalently bind labels, but some probe labelling merely requires momentary
(physical-binding) attachments [75–77]. In one of the fascinating studies, Karash et al.
designed an impedance-based aptasensor utilizing a specific avian influenza virus (AIV)
H5N1 aptamer and a gold interdigitated microelectrode. In this, the biotin-tagged H5N1
aptamer was coupled to incorporate streptavidin on the microelectrode surface. The virus
was captured by the attached aptamer after polyethylene glycol was used as a blocking
agent on the microelectrode surface. Furthermore, an amplifier was prepared based on
nanoparticles and applied to improve the impedance signal by establishing a pattern-like
AuNP/H5N1-aptamer/thiocyanuric acid system. The impedance aptasensor showed
a detection limit of 0.25 HAU (hemagglutinations unit) for pure virus, and for H5N1
virus-spiked tracheal chicken swab samples the limit was 1 HAU. The system was able to
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explicitly detect the subtype H5N1 using specialized aptamers that bound to the virus, but
not the nonspecific virus. This aptasensor was proven to boost impedance signal change by
at least 48 times, laying the groundwork for the creation of a portable and cost-effective
technique [78]. Similarly, in another work, Xu et al. developed a fluorescent-based hydrogel
aptasensor for the fast sensing of H5N1. An aptamer was selected specifically for H5N1,
and two partially complementary single-stranded DNAs (ssDNA1 and ssDNA2) were
created for the attachment to aptamer’s two ends. Furthermore, for hydrogel production
via polymerization, both aptamer and ssDNA1 were functionalized with acrydite at the
5′-terminus. Quantum dots (QDs) were tagged at the 5′-terminal of ssDNA2 as fluorescence
reporters, and at the 3′-terminal of the aptamer, quenchers for QDs were coupled. The
crosslinker for the QD-aptamer hydrogel was generated by hybridization between the
aptamer and ssDNAs. When the target binds, the crosslinking between the aptamer and
target get segregated, because of the binding reaction between them, causing the hydrogel
to suddenly inflate and the liberation of the aptamer-quencher and ssDNA2-QDs. The
quartz crystal microbalance method was used as a readout system to reveal the aptamer’s
responsiveness to target binding. From sampling to results, it took 30 min to complete the
detection process. The detection range was found to be 2−1.2–26 HAU 20 µL−1, with an
LOD of 0.4 HAU. The suggested method is a quick, simple, specific and label-free assay,
that can be expanded further as a generic and practical detection platform, with benefits
such as: (1) when specific aptamers are available, QDs with distinct emission wavelengths
can be used to detect several targets at the same time; (2) the idea of developing a portable
apparatus could be realized through the dropping of hydrogel in a solid substrate for
detection; (3) the properties which are affected by the size of the hydrogel-based aptasensor
provide a viable technique to develop a recognition pattern of aptamer-hydrogel with an
optimal pore size and crosslinking density for certain analytes [79].

Apart from the implication of labelled aptasensors in H5N1 detection, they are also
exploited for the detection of other viruses. For instance, in a recent study, Chen et al.
developed a SERS imaging-based aptasensor for the sensitive and repeatable spotting of
H1N1 by targeting the Hemagglutinin protein [71]. They used the difference in surface
energy between a spacer (made of perfluoro decanethiol) and a Au layer to fabricate
a plasmonic substrate of 3D nano-popcorn (Figure 4C). This differential energy caused
Au nanoparticles to self-assemble, resulting in numerous hotspots on the substrate. To
obtain a robust Raman signal, the aptamer probe was labelled with Cy3 and hybridized
with thiolated capture DNAs anchored on the 3D nano-popcorn surface. The incident
field was greatly amplified by localized surface plasmon effects in the hotspot areas. The
LOD and assay duration of the developed A/H1N1 virus aptasensor were estimated to
be 97 PFU (Plaque Forming Unit) mL−1 and 20 min, respectively. PFU is mainly used
in virology as a measure to describe the number of virus particles capable of forming
plaques per unit volume. The suggested SERS-based image aptasensor platform solves
the drawbacks of traditional techniques, i.e., time-consuming, labor-intensive RT-PCR
(reverse transcriptase-polymerase chain reaction), minimal sensitivity and quantitative
analytical limits of lateral flow assay kits. Mok et al., 2021, designed a one-shot labelled
aptasensor for the detection of the Dengue virus non-structural protein (NS1). In this
study, a G-quadruplex-forming Dengue virus-derived NS1-binding aptamer (DBA) was
developed and further labelled with a fluorescent dye 6-carboxy fluorescein (FAM) at
the 5′ end. Optical sensing is achieved by the detection of the structural destruction of
DBA, which is induced by the NS1 protein. The 5′FAM-DBA quantitatively detects the
fluorescence quenching brought about by Guanines upon NS1 binding. The constructed
one shot, simple, rapid aptasensor achieved an LOD of 8.13 nM and a wide dynamic range
of 2.81 nM to 360 nM [80]. Because of the enormous impact of aptamers, different groups
of researchers are working on exploring this field, and aptasensors are being developed
worldwide for different targets. Therefore, apart from the above explained examples,
various other developed labelled aptasensors have been mentioned in Table 1, describing
the target, labelling molecule, aptamer sequence, and analytical details.
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Table 1. Labelled opto-electrochemical aptasensor for virus detection (NR—not reported).

Sl.No Target
Target Genetic
Material
(RNA/DNA)

Labelling Molecule Aptamer Sequence Binding Description Detection Range LOD Detection Method References

1 H1N1 RNA Cy3 (Cyanine dye 3)

Probe: 5′-Cy3/GGGTTTGGGTTGGG
TTGGGTTTTTGGGTTTGGGTTGGGTT
GGGAAAAA-3′
Capture: 5′-ACCCAACCCAAACCC-
(CH2O)3(CH2)3-SH-3′

Target induces aptamer
to form DNA duplex 10–10,000 PFU mL−1 97 PFU mL−1 SERS [71]

2 Influenza
virus RNA Cy3

Primary aptamer: 5′-HS-(CH2)6-TTGG
GGTTATTTTGGGAGGGCGGGGGTT-3′
Secondary aptamer: 5′-Cy3-TTG
GGGTTATTTTGGGAGGGCGGGGGTT-3′

Aptamer binds to the
surface of target 2.5 × 10−4–1.3 HAU mL−1 1 × 10−4 HAU mL−1 SERS [81]

3 Influenza
virus RNA BODIPY FL 5′-HS-(CH2)6-TTGGGGTTATTTTGGGA

GGGCGGGGGTT-3′
Target induces aptamer
to form DNA duplexes 2 × 105–2 × 106 VP mL−1 2 × 105 Viral particles

mL−1 SERS [82]

4 HIV RNA
Europium sulfide
nanocrystals
(EsNCs)

5′-NH2-GGGGGGCCAAGGCCCAGCCC
TCACACA-3′

Target induces ssDNA
aptamer to form DNA
duplex

3.0 fM–0.3 nM 0.3 fM Electrochemiluminescence [83]

5 HBV DNA Methylene Blue

5′-SH-(CH2)6-GGGAATTCGAGCTCGG
TACCGGCACAAGCATATGGACTCCTCT
GAACCTACGATGTAGTACCTGCAGGCA
TGCAAGCTTGG-3

Target induces ssDNA
aptamer to form DNA
duplex

0.125–2.0 fg mL−1 0.0014 fg mL−1 Electrochemical [84]

6 HBV DNA ALP-labeled
Streptavidin

S1: 5′-CACAGCGAACAGCGGCGGA
CATAATAGTGCTTACTACGAC-3′
S2: 5′-CGAGCTCGAATTCCCGATC
TCTAG-SH-3′
S3: 5′-Biotin-TCGCAGTGT-SH-3′

Aptamer binds to
target surface 1–225 ng mL−1 0.05 ng mL−1 Chemiluminescence [85]

7 Flavivirus RNA 6-carboxyfluorescein
(FAM)

5′-FAM-AGCGGATCCGATGGGTGGGG
GGGTGGGTAGGATCCGCG-3′

Target induces aptamer
structure
(G-Quadruplex)
destruction

2.81 nM–360 nM 8.13 nM in serum. Fluorometric [80]

8 Norovirus RNA 6-carboxyfluorescein
5′-AGTATACGTATTACCTGCAGCCCATG
TTTTGTAGGTGTAATAGGTCATGTTAGG
GTTTCTGCGATATCTCGGAGATCTTGC-3′

Binding of aptamer to
the target surface 13 ng mL−1–13 µg mL−1 4.4 ng mL−1 (MWCNT)

3.3 ng mL−1 (GO) Fluorometric [86]

9 MERS-CoV-
2 RNA Methylene blue

S-19 aptamer: 5′-TGACACCGTACCTGCT
CTGCACTTCCTTCACCAGAAACCTGCA
CATCTTCGCCGCGTGAAGCACGCCAA
GGGACTAT-3′

Aptamer targets the S
protein

1 pg mL−1–1 ng mL−1

1 pg mL−1–1 ng mL−1
0.525 pg mL−1

0. 645 pg mL−1
Electrochemical
SERS [87]

10 SARS-CoV-2 RNA
HRP and hemin/G
quadruplex
DNAzyme

NR
Target induces aptamer
to form
G-quadruplexes

0.025–50 ng mL−1 8.33 pg mL−1 Electrochemical [88]
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Table 1. Cont.

Sl.No Target
Target Genetic
Material
(RNA/DNA)

Labelling Molecule Aptamer Sequence Binding Description Detection Range LOD Detection Method References

11 SARS-CoV-2 RNA Cy3 Raman reporter

Probe: 5′-Cy3/TTTTTTTTTTTTTTTCAGC
ACCGACCTTGTGCTTTGGGAGTGCTGGT
CCAAGGGCGTTAATGGACA-3′
Capture: 5′-AAAAAAAAAAAAAAA-
(CH2O)3(CH2)3-SH-3′

Aptamer targets the
receptor-binding site 0–1000 PFU mL−1 <10 PFU mL−1 SERS [89]

12 SARS-CoV-2 RNA Cy3-Streptavidin
(Cy3-SA) NR

Aptamer targets
receptor-binding
domain

NR 37 nM Fluorometric [90]

13 SARS-CoV-2 RNA Nickle beads
(Ni-beads)

5′-CAGCACCGACCTTGTGCTTTGGGAGT
GCTGGTCCAAGGGCGTTAATGGACA-3′
5′-ATCCAGAGTGACGCAGCATTTCATCG
GGTCCAAAAGGGGCTGCTCG
GGATTGCGGATATGGACACGT-3′

Aptamer targets
receptor-binding
domain

NR

NR

5.8 nM

19.9 nM

Fluorometric

Fluorometric
[91]
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2.3. Label-Free Opto-Electrochemical Aptasensors for Virus Detection

The labelling process not only affects the aptamer’s target-binding affinity, but also
adds operational complexity and cost. As a result, for sensing applications, a label-free
method is more preferred as it helps in the detection of target molecules in their natural
form, because they are not altered through labelling procedure [92–94]. The BRE is not
labelled with redox chemicals in label-free techniques. Instead, the aptamers are function-
alized on the electrode surface, and electrochemical methods (for instance CV and EIS)
are used to identify the target–aptamer interaction. Electroactive compounds for instance
ferricyanide and ruthenium complexes ([Fe(CN)6]3−/4− and Ru(NH3)6]3+) that may attach
electrostatically or interact diffusively (attraction/repulsion) with the aptamers are used
in these electrochemical approaches. As these systems are more reliable and effective,
researchers are exploring label-free aptasensors worldwide for the detection of different
categories of biochemical molecules, bacteria, viruses, and mammalian cells. In this section,
we focus on recent studies, especially in last 3 years, for the detection of various classes
of viruses that are creating a major impact on human health and the economy. One such
example is the aptamer-dependent detection of dengue virus belonging to the Flavi virus
family causing dengue fever. This is one of the endemic diseases in tropical and subtrop-
ical regions, affecting around 40% of the world population [95]. The existing diagnostic
methods of dengue fever are considered as expensive, time-consuming, and too complex to
be used in remote areas, especially in places where infrastructure is not well established.
Although many POC devices have been developed so far, they show some limitations
relating to time consumption, and even specificity and selectivity [96,97]. To overcome this
situation, for the first time in the year 2020, Rashid et al. have fabricated an electrochemical
aptasensor for the detection of Dengue fever by targeting its NS1 protein [98]. NS1 is a
non-structural protein which is considered as a specific biomarker for dengue fever [99,100].
The device was fabricated by targeting the specific interaction between the NS1-aptamer
and the polymer-induced AuNPs. Cationic polymers, i.e., polyethyleneimine, aptamer
and NS1, were deposited on the AuNPs, and this aggregation formed a duplex structure.
The structural transition between the aptamer/polymer duplex and the aptamer/target
complex produced the electrochemical signal. The developed aptasensor showed the im-
proved dynamic range between 3–160 ng mL−1 with a LOD value of ~0.3 ng mL−1. The
cost-effectiveness and inherent flexibility of this method could be utilized to pave a way
towards the effective diagnosis of Dengue virus and other infectious diseases. Recently,
in the year 2021, Junior et al. have designed a more sensitive electrochemical aptasensor
for targeting the same. DNA aptamers and 6-mercapto-1-hexanol were immobilised on
the surface of gold electrodes to form a self-assembled monolayer. The ratio of aptamer
and 6-mercapto-1-hexanol on the surface was optimised to obtain the enhanced signal and
the modified electrode surface was characterised by EIS and atomic force microscopy. The
non-specific interaction on the surface was blocked by using bovine serum albumin that
helps in stabilising the NS1 solution. The sensor showed different LODs of 0.05, 0.022 and
0.025 ng/mL, based on the serotype samples [101].

Infectious diseases are becoming the major driver of high morbidity and mortality
rates worldwide. One of the major contributors to this scenario are viral infections. Human
immunodeficiency virus (HIV) is amongst the top 5 contributors to infectious diseases glob-
ally [102–104]. Thus, there is an urgent requirement to find capable and impactful strategies
that help towards the better treatment of such infectious diseases. The first step towards
achieving this is the simple, cost-effective and fast detection method of such infectious
diseases. In the year 2020, Caglayan et al. tried to monitor HIV Type 1 by developing an
optical aptasensor. The aptasensor targeted the Tat (trans-activator of transcription) protein
that consisted of 101 amino acids and played a key role in controlling the first stage of the
replication cycle of HIV-1. The detection was based on the interaction between HIV-Tat
protein and the anti-Tat aptamer that caused changes in spectroscopic ellipsometry and in
the surface plasmon resonance-enhanced total internal reflection ellipsometry (Figure 5).
Ellipsometry is a well-known phenomenon for the characterisation of ultra-thin-film, in
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which the change in polarisation state shows surface deposition in terms of the ellipso-
metric angles, psi (Ψ) and delta (∆). The developed device shows a wider dynamic range
of 1.0–500 nM with an LOD of 1 pM [105]. In 2021, another study was conducted for the
detection of HIV, targeting a different binding site, i.e., p24-HIV protein-using aptasensor
technology [106]. The aptasensor was designed by using a screen-printed electrode which
was modified through the dispersion of graphene quantum dots (GQD) by electrodeposi-
tion. This modification helps in promoting the reduction of the oxygenated groups present
on the surface of material, decreases solubility and enhances depositions of GQD. Further-
more, the aptamer was immobilized onto the electrode, forming a covalent interaction
between the carboxylic group of material and the amino group of aptamers. The p24-HIV
protein was measured by the electrochemical method and the fabricated aptasensor showed
a dynamic range of 0.93 ng mL−1 to 93 mg mL−1 and an LOD of 51.7 pg mL−1.
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Similarly, hepatitis C virus (HCV) infection is also a health burden worldwide, with
around 170 million chronically infected people. HCV mainly infects the hepatocytes and
enter the body through hepatic sinusoids causing progressive liver disease. Therefore,
utilizing the aptamer-based technology in the year 2017, an electrochemical aptasensor
was designed for the ultra-sensitive detection of HCV by Ghanbari et al. The aptasensor
was designed by modifying glassy carbon electrodes through the immobilisation of GQDs
on its surface. GQDs proved to be a more suitable substrate for aptamers, due to π-π
stacking interactions and the hydrophobic plane that helps in improving the aptamer
absorption on the surface of electrode. The developed device directly targets the core
antigen of the HCV, and the EIS method was used to confirm the monitoring process. The
sensor shows two dynamic ranges, i.e., 10–70 pg mL−1 for a lower concentration, and
70–400 pg mL−1 for a higher concentration of the HCV core antigen, with a detection
limit of 3.3 pg mL−1. The accuracy and efficiency of the aptasensor has also been checked
in human serum samples, showing promising results [107]. In a recent study, Rahmati
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et al., 2021, designed an advanced and more sensitive electrochemical-based aptasensor
for the detection of HCV [108]. In this detection system, the porous 3D-NiCo2O4 nanowire
was bombarded in an N-doped carbon thin layer, showing morphology like a sea urchin,
as confirmed by field emission scanning—electron microscopy (FE-SEM). The generated
N-C@NiCo2O4 nanowire combines the electrochemical benefits of Co and Ni species which
show significantly specific active sites, greater capacitance, and better conductivity. More
importantly, the layer of carbon helps in improving nanowires’ stability, porosity and
conductivity. The 3D N-C@NiCo2O4 nanowires were used to augment the load of the HCV
core antigen aptamer on the surface of the electrode, resulting in a substantial improvement
in sensitivity. The developed aptasensor shows a dynamic range between 0.5 fg mL−1 to
0.12 pg mL−1 with an LOD of 0.16 fg mL−1.

Another virus majorly responsible for substantial economic loss globally is the Norovirus,
which causes acute viral gastroenteritis. Noroviruses are infectious, and possesses high
thermal stability and an ineffectiveness towards more common disinfectants and sanitizers.
It becomes necessary to develop a fast, selective, sensitive and cost-effective bioanalytical
sensing prototype for Norovirus detection. Recently, in 2021, Jiang et al. developed an
electrochemical 3D aptasensor for the analysis of norovirus [109]. The SPCE was used,
and a working electrode was developed by covering the head of the ball with the carbon
ink of a pin, which made a 3D hybrid electrochemical aptasensor. This design of movable
spherical working electrodes assisted in increasing specificity. The working electrode was
further patterned with phosphorene-gold nanocomposites, and the nano composite was
fabricated by the process of in situ reduction of phosphorene nanosheets on chloroauric
acid. The developed device shows a broad dynamic range of 1 ng mL−1–10 µg mL–1 and an
LOD of 0.28 ng mL−1. Table 2 describes the target transduction system, aptamer sequence,
dynamic range, LOD, etc.
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Table 2. Label-free opto-electrochemical aptasensor for virus detection.

Sl.No Target Target Genetic
Material (DNA/RNA) Aptamer Sequence Binding Description Detection Range LOD Detection Method References

1 p24-HIV RNA NR Aptamer binds to capsid
protein of target 0.93 ng mL−1–93 mg mL−1 51.7 pg mL−1 Electrochemical [106]

2 Flavivirus RNA
5′-HS(CH2)6-TTTTT-ACTAGGTTGCAG
GGGACTGCTCGGGATTGCGGAT
CAACCTAGTTGCTTCTCTCGTATGAT-3′

Aptamer binds to the
surface of target 0.01–100 ng mL−1 0.022 ng mL−1 Electrochemical [101]

3 HCV RNA 5′-NH2-ACTATACACAAAAATAACACGA
CCGACGAAAAAACACAACC-3′

Aptamer binds to target
surface 0.5 fg mL−1–0.12 pg mL−1 0.16 fg mL−1 Impedimetric [108]

4 Inactivated
H1N1 RNA NR Multivalent binding of

aptamer to target NR 0.9 pg µL−1 Electrochemical [110]

5 H1N1 RNA 5′-TACTGCACACGACACCGACTGTCA
CCATCACCTCGGCGCA-3′

Aptamer binds to surface
of target 101 PFU mL−1–104 PFU mL−1 3.7 PFU mL−1 Electrochemical [111]

6 Norovirus RNA
5′-AGTATACCGTATTACCTGCAGCCATGTTTT
GTAGGTGTAATAGGTCATGTTAGGGTTTCT
GCGATATCTCGGAGATCTTGC-3′

Aptamer targets capsid
protein of target 100 pM–3.5 nM 100 pM Electrochemical [112]

7 Norovirus RNA
5′-SH-(CH2)6-GGGAATTCGAGCTCGGTACCG
GCACAAGCATATGGACTCCTCTGAACCTACG
ATGTAGTACCTGCAGGCATGCAAGCTTGG-3′

Aptamer binds to surface
of target 0.25 fg mL−1–1.5 fg mL fg mL−1

0.018 fg mL−1 (CV),
0.0016 fg mL−1 (SWV)
and 0.001 fg mL−1 (EIS)

Electrochemical [113]

8 Murine
Norovirus RNA 5′-GCTAGCGAATTCCGTACGAAGGGCGAAT

TCCACATTGGGCTGCAGCCCGGGG GATCC-3′
Target induces aptamer to
desorp from the surface

200–10,000 viruses mL−1

1320–19,800 viruses mL−1

3300–33,000 viruses mL−1

30 virusesmL−1

50 virusesmL−1

80 viruses mL−1
Colorimetric [114]

9 Zika RNA 5′-ThioMC6-D-AGCCATGACCGACACCACA
CCGT-3′

Aptamer binds to the
surface of target 1.0 × 10−12–1.0 × 10−6 mol L−1 0.82 pmol L−1 Electrochemical [115]

10 HCV RNA 5′-CTATACACAAAAATAACACGACCGACGAA
AAAACACAACC-3′

Aptamer targets the core
antigen 5 fg mL−1–1.0 pg mL−1 1.67 fg mL−1 Electrochemical [116]

11 Papillomavirus RNA 5′-GGGAACAAAAGCUGCACAGGUUACCC
CCGCUUGGGUCUCC-3′

Aptamer binds to surface of
the target 9.6–201.6 ng mL−1 9.6 ng mL−1 Colorimetric [117]

12 SARS-CoV-2 RNA NR Aptamer binds to the
nucleocapsid binding region 1 fM–100 pM 0.389 fM Electrochemical [118]

13 SARS-CoV-2 RNA 5′-NH2-(CH2)6-CAGCACCGACCTTGTGCTTTGGG
AGTGCTGGTCCAAGGGCGTTAATGGACA-3′

Aptamer binds to the RBD
of the target 0.5–32.0 nM 0.12 nM Electrochemical [119]

14 AIV H5N1 RNA NR Aptamer binds to the
surface of the target 0.128–1.28 HAU 0.128 HAU SPR [120]

15 SARS-CoV-2 RNA
5′-MeBlN/CAGCACCGACCTTGTGCTTTGGG
AGTGCTGGTCCAAGGGCGTTAATGGACA/
3ThioMC-3′

Aptamer targets RBD NR 1 ag mL−1 Electrochemical [121]



Biosensors 2022, 12, 81 14 of 23

Table 2. Cont.

Sl.No Target Target Genetic
Material (DNA/RNA) Aptamer Sequence Binding Description Detection Range LOD Detection Method References

16 SARS-CoV-2 RNA 5′-dithiol-CAGCACCGACCTTGTGCTTTGGGA
GTGCTGGTCCAAGGGCGTTAATGGACA-3′

Target induces
receptor-binding domain NR 0.09 (for 99% of

aptamer) SERS [122]

17 SARS-CoV-2 RNA

S1 Aptamer: 5′-Biotin-CAGCACCGACCTTGTGCTTT
GGGAGTGCTGGTCCAAGGGCGTTAATGGACA-3′
S1 Aptamer-T (5′-Biotin-TTTTTCAGCACCGACCTT
GTGCTTTGGGAGTGCTGGTCCAAGGGCGTTAAT
GGACA-3′)
N Aptamer-T (5′-Biotin-TTTTTTGCAATGGTACG
GTACTTCCGGATGCGGAAACTGGCTAATTGGTG
AGGCTGGGGCGGTCGTGCAGCAAAAGTGCAC
GCTACTTTGCTAA-3′)

Aptamer binds to the RBD 1 nM–100 nM 0.26 nM LSPR [123]

18 SARS-CoV-2 RNA 5′-SH-(A15) CAGCACCGACCTTGTGCTTTGGGA
GTGCTGGTCCAAGGGCGTTAATGGACA-3′

Aptamer binds to S protein
of target 0.5–8 µg mL−1 72 ng mL−1 Photoelectrochemical [124]
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2.4. Aptasensors for COVID-19 Detection

In late 2019, the outbreak of the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) led to the COVID-19 pandemic that has drastically impacted the human pop-
ulation, leaving the world clueless, and in an unimaginable situation. PCR, which detects
the viral RNA, and serological screening by detecting antibodies generated in response
to the infection, are the two primary screening procedures for confirming SARS-CoV-
2 [125–128]. However, new methods are urgently needed due to the detection complexity,
expense, and relatively longer analysis period of the present approaches. Therefore, ap-
tasensor technology has been explored to prepare a rapid, selective, and sensitive method
for the identification of SARS-CoV-2. In one of the studies, a D-shaped plastic optical fibre
(POF)-based aptasensor has been designed to detect the spike protein of SARS-CoV-2. A
specific aptamer sequence was immobilized on polyethylene glycol, which was further
deposited on AuNPs, attached on POFs. The author utilizes the high sensitivity of surface
plasmon resonance for monitoring the protein binding on the POF probe. The designing
of the aptasensor for SARS-CoV-2 glycoprotein was performed by targeting its receptor-
binding domain. The aptasensor had offered a considerably lower LOD of about 37 nM.
The specificity of the designed aptasensor was also checked by confirming the detection
within the various similar interfering molecules, such as the MERS spike protein. This type
of sensing design encourages further developments, with the aim of producing a small size,
portable laboratory diagnostic tool [90]. In the ongoing scenario, another aptasensor has
been reported for the detection of SARS-CoV-2, targeting the receptor-binding domain in
the spike protein (S-protein). The incubation time of the aptamer, target, and potential pulse
time for AuNPs deposition was initially examined by using the glassy carbon electrode.
The aptamer was decorated on AuNPs, and the detection of the S-protein in the complex of
aptamer–target was performed using the photo-induced force microscopy mapped from
770 to 1910 cm−1. EIS was used for the final detection of the S-protein of SARS-CoV-2
after the incubation time of 40 min. The device shows the acceptable analytical param-
eters, including an LOD of 1.30 pM (66 pg/mL) [67]. Similarly, the Tabrizi group have
developed an electrochemical aptasensor for SARS-CoV-2 by targeting its receptor-binding
domain [119]. Quantum dots were used in sensor fabrication by modification with graphitic
carbon nitride (gC3N4) and cadmium sulphide (CdS). The CdS QDs-gC3N4 nanocomposite
was dissolved in a chitosan-containing solution to form Chitosan/CdS-gC3N4 nanocom-
posite. The developed aptasensor shows a measurable range of 0.5–32.0 nM, and an LOD
of 0.12 nM.

Ramanathan et al. developed a portable POC aptasensing device in 2021, for the
impedimentary-based identification of SARS-CoV-2 by targeting its nucleocapsid protein
(NCP). The system was fabricated by utilizing a 10 µm gap-sized gold interdigitated elec-
trode (AuIDE) and the electrode surface was improvised with a silane group. Furthermore,
~20 nm of diamond was deposited on the modified electrode surface which helped in en-
hancing the detection of NCP (Figure 6A). The characterization of the diamond-enhanced
AuIDE was performed by using XRD, XPS and FTIR analysis. EIS was implemented for
the evaluation of SARS-CoV-2 NCP in a spiked human serum sample. The fabricated
aptasensor shows good selectivity, linear dynamic ranges from 1 fM to 100 pM, and a lower
LOD of 0.389 fM. The aptasensor was also checked for its stability and reusability and
showed ~30–33% of activity loss after 11 days of analysis. Not only that, the interaction
between NCP aptamer and protein was also confirmed through ELISA [118].

In addition to these, labelled aptasensing mechanisms have also been utilized for
the detection of SARS-CoV-2. Tian et al. 2021 have developed a labelled aptasensor for
the detection of SARS-CoV-2 by targeting its NCP. A dual aptamer based electrochemical
prototype was constructed by using metal organic frameworks MIL-53 (Al) deposited on
Au@Pt nanoparticles. Firstly, the two aptamers, i.e., N48 and N61, have been immobilized
on the gold electrode surface to target the biomarker of nCoV, i.e., NCP. The Au@Pt/MIL-53
composites decorated with horseradish peroxidase and hemin/G-quadruplex DNAzyme
were used as a signal nano probe (Figure 6B). The nanoprobe was used to enhance the signal



Biosensors 2022, 12, 81 16 of 23

of the aptasensor in the presence of hydrogen peroxide through the co-catalysed oxidation
of hydroquinone. The detection system, i.e., the aptamer-protein-nanoprobe, demonstrated
a broad linear range from 0.025 to 50 ng mL−1 with an LOD of 8.33 pg mL−1 [88].
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After a detailed study of recently published papers, with particular focus on the last
3 years, of label and label-free aptasensors focusing on optical and electrochemical readout
systems, we are able to provide a comparison between these two systems. The study was
mainly carried out by specifying the target, i.e., viruses, as viral infection has become one of
the major infectious diseases throughout the world. Hence, in Table 3, the advantages and
disadvantages of these two methods (optical and electrochemical) are tabulated to provide
a clearer idea towards the aptasensors.
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Table 3. A brief overview of the advantages and limitations of optical and electrochemical aptasensors
for virus detection.

Transducer Type Advantages Limitations References

Optical Real-time detection;
reliable, high sensitivity

Sensitive to the surrounding
environment; surface
modification is one of the
main challenges; bulky
optical devices required

[114,129]

Electrochemical

Simplicity, miniaturization,
low cost real-time
detection; the possibility of
continuous analysis on
different analytes

Need redox elements to
enhance the current
production; time consuming;
sensitive to the surrounding
environment

[83,87]

3. Conclusions and Future Perspective

The growth of the biosensors industry is vast and tremendous, as a large number of
devices are either already commercially available, or being developed in academic labora-
tories. The advancement of different techniques, and the emergence of rapid prototyping
methods have helped towards the tremendous growth of biosensors in the last 60 years,
but still this field has a long way to go. During the sensing process, there is a major role
played by the BRE, this could be enzymes, antibodies, nucleic acids, aptamers, etc. Ini-
tially, antibodies were predominantly used as BRE, but they were accompanied by various
other issues, i.e., higher production cost and time, immunogenicity, etc. Thus, industries
and scientists needed a more suitable, specific and cost-effective BRE, that leads to the
emergence of aptamers. Aptamers prove to be an excellent BRE in every aspect, ranging
from greater specificity to cheap production. Viruses are one of the most infectious, deadly
disease-causing agents which impact the human population worldwide. The implication
of aptamers in developed sensors for the detection of different kinds of viruses has been
explained and discussed in detail in this review. Different globally developed aptasensor
utilizing various nanomaterials and targeting different classes of viruses are illustrated and
discussed in tabulated form, to provide a broader idea to the readers. The above explained
examples highlight many promises to develop rapid, cheap, and specific aptasensing pro-
totypes. Even after such enormous growth and development, commercial availability of
these devices is still lacking. During the time of COVID-19 pandemic, laboratorial methods
are used in most places, initially. Even after the development of numerous aptasensors and
the commercialization of a few kits, traditional methods are still in use, especially in devel-
oping and under-developed countries. Therefore, to encounter the various issues related
with aptasensors and to maximise their impact, we need to overcome several issues: first,
minimising the cost of aptasensors to improve their use in developing countries; second, the
selection and designing procedure to make specific aptamers need to be simplified. Finally,
researchers need to focus on new technologies that can help in creating more advanced,
user-friendly rapid detection devices.
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