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Abstract: A novel device for cholesteric liquid crystal (LC; CLC)-based biosensing chips for detecting
heme oxygenase (HO)-1 within the cerebrospinal fluid (CSF) was invented. In the CLC device, the
reorientation of the LCs was strongly influenced by the alignment layer surface and adjacent LCs.
When the substrate was coated with the alignment layer, the CLCs oriented homeotropically in a
focal conic state. Once HO-1 was immobilized onto the orientation sheet-coated substrate, the CLC
changed from a focal conic state to a bright planar state by disrupting the CLCs. The concentration of
HO-1 within CSF was shown to be an effective outcome indicator for patients with a spontaneous
subarachnoid hemorrhage. We showed that the CLC immunoassaying can be used to measure HO-1
with a lower detection limit of about 10 ng/mL. The linear range was 10 ng/mL to 1 mg/mL. An
easy-to-use, rapid-detection, and label-free CLC immunoassay device is proposed.

Keywords: cholesteric liquid crystal; heme oxygenase-1; cerebrospinal fluid; spontaneous
subarachnoid hemorrhage

1. Introduction

Spontaneous subarachnoid hemorrhage (SAH) is a catastrophic condition that is
commonly linked with severe neurological impairment and significant morbidity and
mortality [1–3]. In theory, after the occurrence of the SAH, the hemolysis of the red blood
cells in subarachnoid space leads to rapid hemoglobin releasing which is metabolized to
heme and then iron and bilirubin [4–6]. Among the stages, heme oxygenase (HO)-1, an
inducible isozyme of HO, is the rate-limiting enzyme in the degradation of hemoglobin [7,8].
Several molecules involved in posthemorrhagic heme metabolism were implicated in

Biosensors 2022, 12, 204. https://doi.org/10.3390/bios12040204 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12040204
https://doi.org/10.3390/bios12040204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-5104-5311
https://orcid.org/0000-0003-3312-7318
https://doi.org/10.3390/bios12040204
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12040204?type=check_update&version=1


Biosensors 2022, 12, 204 2 of 9

the etiology of early brain damage and delayed vasospasms following SAH in previous
experimental studies [9–13].

Building on these ideas, multiple clinical investigations have found links between
different biochemical components of the cerebrospinal fluid (CSF) associated with heme
metabolic pathways and various neurological outcomes in patients with SAH [14–18].
According to a study conducted by Wang et al., HO-1 in CSF was found to be a poor
outcome predictor in patients with Fisher grade III aneurysmal SAH [19–21]. However, the
lack of a low-cost and rapid HO-1 test technique has hampered its practical adoption.

Recently, label-free and sensitive liquid crystal (LC) biosensors have been developed
successfully. The immune binding reaction of LC molecules reorientates their direction
and alters their light signal. Changes in LC optical properties enable visual detection in
label-free immunoassays [22]. The re-directed LCs are reported to be sensitive to changes
in immunobinding responses and light signals from devices [23,24]. Furthermore, the
previous study combined the LC with a microfluidic device to detect ethanol and bovine
serum albumin (BSA) [25,26]. In addition to nematic LC, cholesteric LC (CLC) has unique
optical properties such as flexibility, bistability, and Bragg reflection [27–29]. The Bragg
reflection property of CLC enables it to be seen as color [29]. The first CLC sensor device
used for biological detection was created in 2015 [30] and a highly sensitive colorful CLC
biosensor has since been invented. However, the manufacture of CLC biosensors requires
complex fabrication processes that must be confined to defined areas, such as TEM grids [27]
or a cell device [31]. (In addition, CLC biosensors can be integrated with smartphones, so
various disease biomarkers can be detected at home.) In order to simplify the fabrication
process, a single-substrate CLC device was invented.

In this paper, we show a new CLC-based biosensor chip for HO-1 detection in CSF.
The behavior between paired HO-1 antigen/antibody and CLC molecules was first in-
vestigated. This paper proposes that this CLC-based biosensing chip substantially differs
from a typical biosensor. The HO-1 antigens/antibodies can be measured by the optical
characteristics of the CLC biosensor below the cross-polarized microscopy. A delicate
interface between the CLC molecules and the arranged layer of N,N-dimethyl-n-octadecyl-
3-aminopropyltrimethoxysilyl chloride (DMOAP) was used to measure the concentrations
of HO-1. Because DMOAP has a strong attraction, it can attract biomolecules to the surface.
A schematic illustration of the CLC biosensor for HO-1 is displayed in Figure 1.
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Figure 1. Illustration of the cholesteric liquid crystal (CLC) biological sensor chip in the presence of
heme oxygenase (HO)-1 biomolecules in the DMOAP-coated cell. Different color arrows indicate the
different light penetration intensities.
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2. Materials and Methods
2.1. Patients

The Taipei Medical University Joint Institutional Review Board (TMU-JIRB #N201805074)
authorized this study which was carried out in compliance with human ethical rules.
The research enrolled patients aged 20~90 years who had spontaneous SAH and were
receiving external ventricular drainage (EVD) only, EVD combined with an endovascular
intervention, or EVD combined with a surgical craniotomy. Patients were excluded if
they or their families declined additional medical treatment after being recruited. Written
informed consent was acquired from the patient or the patient’s next of kin in the case of
unconscious patients.

2.2. CSF Sample Collection, Preparation, and Analysis

Following a SAH diagnosis, intraventricular CSF was acquired through EVD the same
day, the second day, and the third day. In our treatment approach, EVD was generally put
in place within 24 h of a patient being diagnosed with spontaneous SAH in the emergency
room, and the EVD was left in place for 10~14 days. CSF samples were immediately
centrifuged at 900× g for 20 min at 4 ◦C. Within 30 min, the supernatant was collected
and frozen at −80 ◦C. A Human HO-1 enzyme-linked immunosorbent assay (ELISA) Kit
(ADI-EKS-800, Enzo Life Sciences®, Farmingdale, NY, USA) was used to measure CSF
HO-1 concentrations.

2.3. Study Design

Patients recruited in this study were receiving routine care from a multidisciplinary
team that included neurosurgeons, neurointensivists, and interventional neuroradiologists.
The management approach included resuscitation, early surgical or endovascular oblitera-
tion of the aneurysm, routine intracranial pressure and neurointensive care management,
and aggressive medical or endovascular therapy for vasospasms if present. Patients were
monitored in the neurointensive care unit following surgery.

The Glasgow Outcome Scale-Extended (GOS-E) and modified Rankin Scale (mRS)
were used to assess functional outcomes at 30, 90, and 180 days after onset. Patients were
grouped as having a favorable outcome (mRS scores of 1~3 or GOSE scores of 5~8) or an
unfavorable outcome (mRS scores of 4~6 or GOS-E scores of 1~4) [20,21].

2.4. CLC Biosensor Preparation

The CLC material used in this study used nematic LC E7 (Merck, Darmstadt, Germany)
as a host and R5011 (Merck) as a chiral dopant. The concentration of chiral dopant R5011
was ~2.6 wt%, and the major reflection of CLCs is located close to 590 nm. The glass
substrate was immersed in a 1% DMOAP aqueous solution at room temperature for 15 min
to coat the DMOAP in a vertically aligned layer on the glass substrate and was rinsed with
deionized (DI) water for 1 min to remove excess DMOAP solution on the glass surface. In
addition, an anti-HO-1 antibody was immobilized with 1 ng/mL onto the DMOAP-coated
glass substrate in an aqueous solution. After rinsing with DI water for 1 min to remove the
excess anti-HO-1 aqueous solution on the substrate, the HO-1 concentrations of 1 mg/mL,
1 µg/mL, and 1 ng/mL of the cerebrospinal fluid from the patients was immobilized on the
coated glass. To fabricate a CLC sandwiched cell, silicon ball spacers mixed with ethanol
were distributed on the DMOAP-coated slide, which was covered with another DMOAP-
coated glass. Finally, the empty CLC sandwiched cell was filled with CLC material by the
capillary action method to form a CLC biosensor. The cell gap thickness of the complete
CLC biosensor was about 10 µm.

3. Results and Discussion
3.1. Detecting HO-1 by the CLC Biosensor

The design of the CLC biosensor is shown in Figure 1. Immobilization of the anti-HO-1
antibody and HO-1 by the DMOAP-coated glass is illustrated in Figure 1. Finally, the device
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was filled with CLCs. In the absence of HO-1, CLC are aligned vertically near the substrates
by DMOAP and the CLC is the FC/P mix-state, resulting in light scattering. When the
HO-1 is adsorbed on the DMOAP-coated substrate, the vertical anchoring power of the
CLCs is weakened, making CLC transfer to the total P structure without the light scattering
property. A polarized optical image under cross-polarization and the optical mechanism of
the CLC biosensor are also shown in Figure 2. Optical textures of two CLC biosensors with
different concentrations of HO-1 are displayed in Figure 2. Furthermore, we can observe
that the optical brightness of the optical texture increases with rising HO-1 concentrations.
The random focal conic (FC) states are also shown in non-biological molecules close to two
substrates. When the HO-1 is immobilized in the coated substrate, the CLC biosensor is
completely in the planar (P) state. Light passing through the CLC material is scattered
by part of the FC state of the CLC layer. However, the vertical anchoring power of the
aligned-DMOAP layers was reduced by immobilizing the HO-1. With the increase in HO-1
concentration, the CLC molecules switched from the FC to the P state. Finally, the perfect
P-state change to a higher optical intensity of the CLC biosensor is shown in Figure 2.
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Figure 2. Optical mechanism and structure design of the cholesteric liquid crystal (CLC) biosensor
both with and without the presence of biomolecules.

In order to realize the quantitative research of the CLC biosensor, the spectra of the
CLC biosensor device immobilized with different concentrations of HO-1 are demonstrated
in Figure 3. The transmittance of the reflection band of the CLC biosensor was augmented
with an increasing HO-1 concentration. When the HO-1 concentration increases, the P-state
of CLC dominates in the device. Therefore, the optical response of CLC arises due to Bragg
reflection. The photonic band is more complete with increasing the HO-1 concentration.
We determined the detection limit of the CLC biosensor to be 10 ng/mL of HO-1. Based
on these properties, a log-scale CLC biosensor as a positive correlation behavior is also
proposed in Figure 4. The drawing of the calibration curve comes from the minimum value
of the light intensity of the photon band for quantification. The sample size for the error bar
was 10. The linear dependence between the transmittance of the Bragg reflection of CLC
and different HO-1 concentrations was measured (Figure 4). These results demonstrate
that the Bragg reflection of CLC in the spectrum can be used to detect and quantify the
HO-1 in a linear manner.
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3.2. Clinical Study

In clinical cases, we could identify generally low concentrations of HO-1 in CSF from
patients suffering from spontaneous SAH on the initial day (day 0) and the next day (day 1)
of ictus. However, from day 2, variations in HO-1 concentrations among patients occurred
(Figure 5). In addition, HO-1 concentrations in CSF on day 2 were related to patients’
functional outcomes 6 months after the ictus of SAH. Functional outcomes of patients were
measured by mRS (0~6) (Figure 6a) and GOS-E (1~8) (Figure 6b), and we found that the
higher the HO-1 concentration was, the worse was the functional outcome.
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concentration in CSF (ng/mL)). (Data from ELISA).
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Figure 6. (a) Heme oxygenase (HO)-1 concentration on day 2 correlated with the modified Rankin
Scale (mRS) on day 180. (x-axis: HO-1 concentration in cerebrospinal fluid (CSF) (ng/mL) y-axis: mRS
from 0 to 6) (b) HO-1 concentration on day 2 correlated with the Glasgow Outcome Scale-Extended
(GOS-E) on day 180. (x-axis: HO-1 concentration in CSF (ng/mL); y-axis: GOS-E from 1 to 8). (Data
from ELISA).

HO-1 is an important enzyme for rapid heme metabolism and protection against
oxidative damage both in vivo and in vitro. Matz and colleagues showed that marked
induction of HO-1 messenger (m)RNA was detected at 6 and 24 h after a lysed blood
injection in a SAH rat model induced by direct blood injection into the cisterna magna [26].
Considering the metabolic timeline of hemoglobin degradation and synthesis of the HO-1
protein, we assumed that significant variations in HO-1 concentrations on day 2 of the SAH
ictus represented different oxidative stress levels in the subsequent disease course.

In clinical practice, the long-term prognoses of patients suffering from spontaneous
SAH greatly influence the medical decisions that their families and attending physicians
make. A low-cost, quick, and reliable detection technology could efficiently provide more
information to achieve more precise medical decisions. Wang et al. confirmed that HO-1
in CSF 1 week after ictus is a poor outcome predictor in patients with Fisher grade III
aneurysmal SAH [19]. In our cohort, we further identified that HO-1 concentration in
CSF on day 2 of ictus of SAH could serve as a poor outcome predictor. We have not only
shown the predictive value of the HO-1 concentration in CSF as early as 2 days after ictus,
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but we have also developed CLC technology to provide a low-cost, quick, and reliable
detection method.

3.3. Detecting HO-1 by the CLC Biosensors from CSF

We used the CSF from recruited spontaneous SAH patients to replace the standard HO-
1 sample. After preparing CLC samples containing CSF, we measured the light intensity
by spectrophotometry. The light information-dependent differences in spontaneous SAH
patients were measured. Transmitted intensities of Bragg’s reflection of the CLC biosensor
with time in different patients suffering from spontaneous SAH are shown in Figure 7.
The detection time was about half an hour for immobilization. The brightness of the
device rose when the HO-1 concentration increased under spectrophotometry. From the
experimental data, HO-1 concentrations in CSF samples of patients significantly increased
after the second day, resulting in a substantial increase in the light intensity. This result
was the same as the ELISA experimental results. Results of the CLC biosensor showed that
the density of HO-1 was positively correlated with the light transmittance. Some of the
CSF samples whose concentration was too low were not clearly measured by the ELISA.
They could be effectively judged by the CLC system, and it was observed that the HO-1
concentration rose on the first day by the CLC system. Compared with ELISA, this study
proves that CLCs have huge potential for development as a cheap, sensitive, and rapid
biosensing technique for SAH patients to measure HO-1. Despite the potential of this CLC
biosensor, there are some limitations such as a difficult fabrication process and the use of
a spectrometer. However, the limitations can be solved by using LCD production and AI
image recognition technology.
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4. Conclusions

A CLC biosensing chip for detecting HO-1 in CSF was proposed. The reorientation
of the CLCs was strongly influenced by the alignment layer surface and adjacent CLCs.
When HO-1 was immobilized onto the DMOAP-coated substrate, the CLC changed from a
focal conic state to a bright planar state by disrupting the CLCs. The concentration of HO-1
within CSF was proposed as an effective outcome indicator for patients with spontaneous
SAH. We successfully proved that CLCs can measure HO-1 concentrations in patients
with spontaneous SAH. The HO-1 concentration in CSF samples of patients significantly
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increased after the second day. The linear range was 10 ng/mL~1 mg/mL for the CLC
biosensor to measure standard HO-1 concentrations. An innovative, easy-to-use, label-free,
and rapid-detection CLC device for HO-1 detection is proposed.

Author Contributions: Data curation, H.-T.L., P.-Y.C. and Y.-W.C.; Funding acquisition, H.-T.L. and
Y.-C.H. Investigation, H.-T.L. and Y.-W.C.; Project administration, H.-T.L.; Writing, Y.-C.H. and H.-T.L.
All authors have read and agreed to the published version of the manuscript.
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