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Abstract: Spinal muscular atrophy (SMA) is the main genetic cause of infant death. In >95% of the
patients with SMA, the disease is caused by a single hotspot pathogenic mutation: homozygous
deletion of exon 7 of the survival motor neuron 1 gene (SMN1). Recently, clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-based assays
have been developed as a promising new option for nucleic acid detection. Here, we developed
a Cas14a1-based assay combined with asymmetric PCR to establish a method for detection of the
homozygous deletion of SMN1 exon 7 in SMA patients. The minimum detectable concentration of
genomic DNA reached 5.26 aM with our method, and the assessment of its detection performance in
33 clinical samples revealed that the results were completely consistent with those of multiple ligation-
dependent probe amplification and quantitative PCR. Thus, our novel nucleic acid diagnostics
combining CRISPR/Cas14a1 and asymmetric PCR not only provides specific and sensitive testing of
the deletion of SMN1 exon 7, but also holds promise for an accurate detection platform of genetic
diseases and pathogens in multiple sample types.
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1. Introduction

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive
inherited diseases in infancy, with an incidence of 1/6000–1/10,000. SMA is caused by
mutations in survival motor neuron 1 gene (SMN1) that leads to irreversible degeneration
of motor neurons in the spinal cord, and SMA patients experience progressive muscle
weakness, difficulty swallowing, and eventually respiratory failure [1]. In >95% of SMA
patients, the disease is caused by the following hotpot pathogenic mutation: homozygous
deletion of SMN1 exon 7 [2]. Moreover, a paralogous gene of SMN1 exists, named SMN2,
whose coding sequence differs from that of SMN1 by a single base, the 6th base in exon 7
(T in SMN2, C in SMN1); however, SMN2 undergoes alternative splicing and produces a
truncated protein that cannot function normally [3].

Recently, Spinraza, Risdiplam and Onasemnogene abeparvovec have been approved
for the treatment of SMA, and early therapy has been found to maximize the treatment
benefit [4–10]. Therefore, accurate genetic diagnosis of SMA can facilitate early detection,
intervention, and early treatment of the disease in patients, as well as prevent childbirth at
the preimplantation stage.

For diagnosing SMA, several detection techniques have been developed, such as PCR-
restriction fragment length polymorphism (PCR-RFLP) [11], quantitative PCR (qPCR) [12],
multiple ligation-dependent probe amplification (MLPA) [13,14], Next generation sequenc-
ing [2], and droplet digital PCR [15]. These currently used detection methods differ
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in principle, scope of application, detection performance, and cost, but they all require
bulky equipment and trained operators, which hinders the widespread application of
the methods.

As a promising alternative approach for diagnosing infectious diseases, a nucleic acid
detection strategy has recently been developed based on the clustered regularly interspaced
short palindrome repeats (CRISPR)/CRISPR-associated protein (Cas) system; the detection
depends on measuring the collateral cleavage of a nonspecific single-stranded DNA (ss-
DNA) or RNA reporter after the Cas protein specifically recognizes and cleaves the target
DNA/RNA under the guidance of a CRISPR RNA (crRNA). Effector Cas proteins include
Cas12, Cas13, and Cas14, and various Cas-based detection methods have been established,
such as Cas13a-based SHERLOCK [16,17] and Cas12a-based DETECTR [18,19]. Previously,
we used Cas12a for genetic testing of SMA and found that Cas12a was nonspecifically
activated by SMN2 in SMA patients when a wild-type SMN1 crRNA was used. To eliminate
the interference by SMN2, an artificial mismatch adjacent to c.840 was introduced into the
SMN1 crRNA to obtain a relatively more discernable difference between SMA patients and
non-SMA individuals [20].

Cas14a is another member of the Cas family and is the smallest Cas protein reported
thus far. Cas14a can recognize and cleave the target ssDNA and can be activated under
crRNA guidance in the absence of a protospacer adjacent motif (PAM) sequence, a char-
acteristic completely different from that of other Cas effector proteins [21–23]. Notably,
Cas14a1 exhibits high sensitivity and specificity: Cas14a1 can distinguish between single-
base differences efficiently without the requirement of artificially introduced mismatches,
shows no PAM-sequence-related restriction, and can specifically detect any ssDNA that is
complementary to the crRNA used. However, Cas14a has not been previously used for
detecting human genetic diseases.

Here, we developed a Cas14a1-based nucleic acid detection method for a human
genetic disease. Specifically, we integrated Cas14a1-based nucleic acid detection with
asymmetric PCR to establish a method that enables rapid and cost-effective detection of
homozygous deletion of SMN1 exon 7 in SMA patients.

2. Materials and Methods
2.1. Clinical Samples

Deidentified samples were obtained from Hunan Jiahui Genetics Hospital. All sample
donors signed an informed consent form. This study was approved by the Ethics Committee
of the School of Life Sciences, Central South University (No. 2019-1-27).

2.2. Cas14a1 Protein Expression and Purification

The vector pLBH559_Tet-HisCas14a1Locus was a gift from Dr. Jennifer Doudna
(Addgene plasmid #112502; http://n2t.net/addgene:112502 (accessed on 10 March 2021);
RRID: Addgene_112502) [21,24]. The Cas14a1 fragment from this vector was ligated into
pET28a expression plasmid to construct pET28a-Cas14a1, which was amplified by trans-
formation into Escherichia coli strain DE3 (TransGen Biotech, Beijing, China). When the
culture OD600 reached 0.8, isopropyl-β-d-thiogalactopyranoside (IPTG) (Sangon Biotech,
Shanghai, China) was added into the culture medium at a 0.2 mM final concentration,
and the bacterial cells were cultured for another 16 h with shaking at 15 ◦C. The bacteria
were collected and lysed ultrasonically in a lysis buffer (50 mM Tris, pH 8.0, 300 mM NaCl,
20 mM imidazole, 1% Triton X-100, 1 mM DTT, and 1 mM PMSF), and after the affinity was
chromatography performed using Ni-IDA columns equilibrated with 50 mM Tris, pH 8.0,
300 mM NaCl, and 20 mM imidazole buffer (Sangon Biotech), the target protein was eluted
with equilibrium buffers of different concentrations of imidazole. Lastly, purified Cas14a1
protein was obtained after dialysis into a storage buffer (20 mM HEPES, pH 7.5, 1250 mM
NaCl, and 10% glycerol) and filtering (pore size: 0.22 µm) and was stored at −80 ◦C.

http://n2t.net/addgene:112502
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2.3. crRNA Preparation

For constructing the crRNA expression plasmid, the pUC57-crRNA plasmid containing
the T7 promoter was synthesized (Sangon Biotech). First, an in vitro transcription template
was obtained through PCR performed using the primers crRNA-F and crRNA-SMN1-R
(Sangon Biotech); next, the template was purified using a FastPure Gel DNA Extraction
Mini Kit (Vazyme, Nanjing, China) and transcribed using a HiScribeTM T7 High Yield RNA
Synthesis Kit (New England BioLabs, Ipswich, MA, USA) at 37 ◦C for 16 h to prepare
the crRNA; and, in the final step, the crRNA was purified using an miRNeasy® Mini Kit
(QIAGEN, Duesseldorf, Germany). The crRNA sequences and PCR primers used in this
study are shown in Table S1 and Figure S1.

2.4. DNA Amplification

The genomic DNA (gDNA) was extracted from peripheral blood using the conven-
tional phenol—chloroform method. About 2 µg gDNA was extracted from 200 µL of
peripheral blood. PCR primers F1/R1 were designed to amplify exon 7 of human SMN1
(NM_022874.2) and SMN2 (NM_017411), and three types of PCR method were used in this
study as follows: (1) PCR amplification, (2) secondary PCR, (3) asymmetric PCR. The PCR
amplification was used to provide PCR products of induced pluripotent stem cells (iPSCs)
derived from an SMA patient (SMA-iPSCs) and from an iPSC line derived from a non-SMA
individual (N-iPSCs) for Sanger sequencing. The secondary PCR was used to produce
ssDNA template for the SMA-Cas14a1 fluorescence detection system. Asymmetric PCR is
another method for ssDNA template production, which can produce an ssDNA template
more easily and rapidly. Secondary PCR was conducted in two steps as follows: First,
traditional PCR was performed using F1/R1, with the 20 µL reaction volume containing
10 µL of 2× Phanta Max Master Mix (Vazyme), 7 µL of ddH2O, 1 µL of primer F1 (10 µM),
1 µL of primer R1 (10 µM), and 1 µL of genomic DNA (gDNA; 2 ng/µL); the thermocycling
conditions were 94 ◦C for 5 min, followed by 35 cycles of 98 ◦C for 15 s, 57 ◦C for 15 s,
and 72 ◦C for 15 s, and then elongation at 72 ◦C for 5 min. Next, 1 µL of the product from
the first PCR was used as the template in the second PCR, where the reaction mixture
contained 10 µL of 2× Phanta Max Master Mix, 8 µL of ddH2O, and 1 µL of primer F1
(10 µM), and the amplification protocol used was the same as that in the first PCR. In the
case of asymmetric PCR, the 20 µL reaction volume contained 10 µL of 2× Phanta Max
Master Mix, 3 µL of ddH2O, 5 µL of primer F1 (10 µM), 1 µL of primer R1 (1 µM), and 1 µL
of gDNA (2 ng/µL); the thermocycling conditions were 94 ◦C for 5 min, followed by 50
cycles of 98 ◦C for 15 s, 57 ◦C for 15 s, and 72 ◦C for 15 s, and then elongation at 72 ◦C for
5 min.

2.5. SMA-Cas14a1 Assay Employing a Fluorescence Probe

Each SMA-Cas14a1 assay mixture contained 2 µL of 10× Cutsmart buffer (New
England Biolabs), 100 nM Cas14a1, 125 nM crRNA, 300 nM fluorophore-quencher (FQ)
probe (Sangon Biotech), 1 µL of PCR products, and nuclease-free water to a 20 µL total
volume. The reaction solution was incubated at 37 ◦C for 60 min and the FAM fluorescence
signal was measured every minute.

To determine the minimum gDNA concentration for distinguishing SMA patients
and non-SMA individuals, DNA samples from both groups of study participants were
serially diluted to 2, 1, 0.5, 0.1, 0.05, 0.01, and 0.005 ng/µL and were tested using the
SMA-Cas14a1 assay.

2.6. Statistical Analysis

Fluorescence signals were statistically analyzed using GraphPad Prism 5 (Graph-
Pad Software Inc., San Diego, CA, USA). Data of two groups were compared using Stu-
dent’s t-tests, whereas multigroup data were compared using one-way analysis of variance
(ANOVA); p < 0.05 was considered statistically significant.
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3. Results
3.1. Establishment and Optimization of SMA-Cas14a1 Fluorescence Detection System
Using ssDNA

The scheme of the Cas14a1 fluorescence detection system is shown in Figure 1a.
In this assay system, the targeted DNA is amplified, and the amplified targeted DNA
triggers Cas14a1 activation after being recognized by the Cas14a1 endonuclease guided
by the specific crRNA; the activated Cas14a1 then degrades the ssDNA-FQ probe through
nonspecific trans-cleavage activity and yields a fluorescence signal.
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Figure 1. Cas14a1 Fluorescence Detection System. (a) Schematic of Cas14a1 fluorescence detection
system. (b) Identification of Cas14a1 protein after purification: left, identification of Cas14a1 by West-
ern blotting; right, Cas14a1 purity assessed using SDS-PAGE; BSA: control (lane 1). (c) Comparison of
fluorescence signals obtained using different buffer candidates; ****p < 0.0001. (d) Comparison of flu-
orescence signals obtained using different lengths of FQ probe: FQ-12nt, length of FQ probe = 12 nt;
FQ-21nt, length of FQ probe = 21 nt.

First, Cas14a1 was expressed and purified (Figure 1b) and the crRNA was designed
and transcribed in vitro. Next, Cas14a1 collateral cleavage activity was optimized using
a series of buffers and measuring the fluorescence signals; the fluorescence signal was
generated most effectively in the Cutsmart Buffer (Figure 1c). Moreover, in terms of the FQ
probe length, FQ-21nt was more efficient than FQ-12nt in generating the signal (Figure 1d).
Together, these results indicated that an appropriate and efficient platform for a sensitive
biosensing assay was established.

3.2. Detection Performance of SMA-Cas14a1 Detection System Using gDNA Extracted from Cells

Figure 2a illustrates the scheme of the SMA-Cas14a1 assay. The crRNA targeting
SMN1 was designed (Figure 2b) and transcribed in vitro, and gDNA was extracted from
SMA-iPSCs and N-iPSCs for evaluating the detection performance of the SMA-Cas14a1
detection system. The SMA-iPSCs and N-iPSCs were detected using MLPA (Figure 2c).
The gDNA samples were amplified using the primers F1/R1 and the PCR products were
subjected to Sanger sequencing (Figure 2d), which revealed that the PCR products from
SMA-iPSCs contained only one peak of ‘T’ at c.840, whereas the PCR products from N-
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iPSCs featured peaks of ‘C’ and ‘T’ at c.840. However, when the gDNA samples were used
without PCR amplification, no clear fluorescence signals were detected and the samples
could not be distinguished from each other (Figure 2e). Considering that Cas14a1 mainly
binds and cleaves the target ssDNA, we used secondary PCR to obtain the ssDNA, and
we measured a 10.58-fold difference in the fluorescence signal between N-iPSCs and SMA-
iPSCs (Figure 3a), these results showed that N-iPSCs and SMA-iPSCs can be distinguished
using SMA-Cas14a1 and secondary PCR.
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Figure 2. SMA-Cas14a1 Fluorescence Detection System. (a) Schematic illustration of SMA-Cas14a1
fluorescence detection system. The CRISPR RNA (crRNA) targeted exon 7 of SMN1. In non-SMA
individuals, SMN1 exon 7 triggers Cas14a1 activation after being recognized by the Cas14a1/crRNA
complex, and activated Cas14a1 degrades the vicinal fluorescence probe nonspecifically, yielding
fluorescence through acquired collateral cleavage activity. The Non-SMA individual included the
SMA carrier with one copy of SMN1 exon 7 and the normal individual with more than one copy
of SMN1 exon 7. However, SMA patients lack SMN1 exon 7, which is required to activate Cas14a1,
and thus no fluorescence is generated in this case. (b) Schematic representation of the position and
sequence targeted by crRNA1. (c) MLPA results of N-iPSCs and SMA-iPSCs. (d) Sanger sequencing
results of the PCR products of N-iPSCs and SMA-iPSCs using primers F1/R1. (e) Comparison of
fluorescence in different groups: 3000 ng of DNA without amplification, 1500 ng of DNA without
amplification, DNA amplified using PCR, and blank control. Data are means ± SEM; **** p < 0.0001.
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of DNA from N-iPSCs and SMA-iPSCs amplified using secondary PCR. (b) Minimum detectable con-
centration of gDNA of SMA-Cas14a1 assay combined with secondary PCR. Data are means ± SEM;
*** p < 0.005, ** p < 0.01, * p < 0.05; ns, p > 0.05. (c) Validation of SMA-Cas14a1 assay combined with
secondary PCR by using gDNA from clinical samples. Data are means ± SEM.

3.3. Detection Performance and Application of Secondary PCR and SMA-Cas14a1 Assay with
Clinical Samples

To determine the minimum gDNA concentration in samples from SMA patients and
non-SMA individuals that can be distinguished using our assay, we tested serial dilutions
of gDNA from N-iPSCs and SMA-iPSCs: The increase in fluorescence differed signifi-
cantly between N-iPSCs and SMA-iPSCs when the DNA concentrations were >0.05 ng/µL
(Figure 3b). When the molecular weight of the human genome (1.9 × 1012 g/mol, ~2.9 Gb)
is used in calculations, the measured DNA concentration converts to ~26.3 aM. To evaluate
the feasibility of applying secondary PCR combined with the SMA-Cas14a1 assay in the
diagnosis of clinical samples, we analyzed gDNA isolated from the peripheral blood of 6
non-SMA individuals and 5 SMA patients (in whom SMA was diagnosed using MLPA).
The results allowed the SMA patients to be notably distinguished from the non-SMA
individuals, demonstrating the feasibility of using secondary PCR combined with the
SMA-Cas14a1 assay for clinical diagnosis (Figure 3c).

3.4. Detection Performance of Asymmetric PCR Combined with SMA-Cas14a1 Assay

To detect SMN1 exon 7 deletion more simply and rapidly than in the previous assay,
asymmetric PCR combined with the SMA-Cas14a1 assay was used for SMA detection.
First, the product of asymmetric PCR was identified using electrophoresis, which revealed
the presence of the target ssDNA similarly as secondary PCR did (Figure 4a). Second,
the fluorescence signals were measured with the use of distinct concentrations of the
primer R1 and varying ratios of F1 and R1. The strongest fluorescence was obtained when
R1 was used at 1 µM and the ratio of F1 to R1 was 50:1 (Figure 4b). Third, different
amounts of the asymmetric PCR product in the detection system of the SMA-Cas14a1
assay were evaluated based on the fluorescence signals, which revealed that the strongest
fluorescence was obtained when 1 µL of the asymmetric PCR product was included in
a detection volume of 20 µL (Figure 4c). Fourth, in assays for optimizing the FQ-21nt
probe concentration, the strongest fluorescence was generated when the probe was used at
300 nM (Figure 4d). Fifth, the minimum detectable gDNA concentration was determined
by testing serial dilutions of DNA from N-iPSCs and SMA-iPSCs; this revealed that the
fluorescence increase differed significantly between N-iPSCs and SMA-iPSCs when the
DNA concentrations were >0.01 ng/µL (Figure 4e), which converts to ~5.26 aM according
to the molecular weight of the human genome. Lastly, we analyzed gDNA isolated from
the peripheral blood of 18 non-SMA individuals and 15 SMA patients (in whom SMA was
diagnosed using MLPA), with the goal being to assess the feasibility of using asymmetric
PCR combined with the SMA-Cas14a1 assay. Our results agreed with the results of MLPA
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and qPCR, showing that the SMA patients could be clearly distinguished from the non-SMA
individuals using asymmetric PCR combined with the SMA-Cas14a1 assay (Figure 4f).
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4. Discussion

SMA—one of the most severe and common genetic diseases—leads to infant deaths
and places substantial emotional and economic burden on the patients and society. A
hot spot pathogenic mutation that causes SMA is homozygous deletion of SMN1 exon
7. Recently, the United States Food and Drug Administration has approved Spinraza,
Risdiplam and Onasemnogene abeparvovec for the treatment of SMA by countering the
effect of exon 7 mutation through targeting of alternative splicing or gene therapy [6–10].
Thus, detection of the exon 7 deletion mutation of SMN1 is of considerable social value and
practical importance for the diagnosis and early treatment of SMA patients.

CRISPR/Cas-based nucleic acid detection provides a new option for genetic testing.
However, to date, most of the genetic testing based on the collateral cleavage activity of
Cas12, Cas13 and Cas14 has been focused on pathogen detection [25–31] and has seen
little use in the detection of disease-causing mutations in human genetic diseases. As
compared with Cas12, Cas14 not only shows a lack of PAM restriction and thus can be
used in assays designed free of this requirement, Cas14 also exhibits higher recognition and
discrimination of ssDNA sequences [22]. Zhang et al., introduced an artificial mismatch into
the crRNA in their assay to avoid SMN2 cross-reaction, and the results showed a 7.41-fold
fluorescence difference between samples from non-SMA individuals and SMA patients,
which was higher than the difference measured using the wild-type crRNA (2.26-fold) [20].
By comparison, this difference between non-SMA individuals and SMA patients reached
10.58-fold with the use of secondary PCR combined with the SMA-Cas14a1 assay here,
which demonstrated the higher specificity and discrimination of Cas14a1 than Cas12a. In
terms of the minimum detectable concentration of DNA with the two SMA-Cas assays,
SMA-Cas12a used with a fluorescence probe reached a limit of 0.1 ng/µL (~52.6 aM),
and the lowest DNA concentration detected was 526 aM when recombinase polymerase
amplification was combined with the SMA-Cas12a-strip assay. In this study, the minimum
DNA concentrations detected were ~26.3 aM with secondary PCR combined the SMA-
Cas14a1 assay and ~5.26 aM (~3 copies/µL) with asymmetric PCR combined with the
SMA-Cas14a1 assay, which hold great value for the detection of a small amount of DNA
from dried blood spots, oral swabs, cell-free DNA and other specimens. Moreover, Cas14a1
has not been previously used for detecting disease-causing mutations in human genetic
diseases. In addition, the CRISPR/Cas14a1 can be used in targeted sequencing with Oxford
Nanopore Technologies (ONT), which employs the targeted cleavage of double stranded
DNA with PAM restriction and targeted cleavage of single stranded DNA without PAM
restriction with CRISPR/Cas14a1 to ligate adaptors for nanopore sequencing [32,33].

In terms of Cas14a1-based detection, the endonuclease can cleave the targeted ssDNA
in the absence of a PAM sequence, and thus the approach used for obtaining this ssDNA is
vital for nucleic acid detection by using CRISPR/Cas14a1. The secondary PCR step must
be performed twice to obtain the targeted ssDNA. In 2018, Doudna et al., reported that the
targeted ssDNA could be obtained through PCR amplification by using phosphorothioate-
modified primers and then T7 exonuclease treatment [21]. In this study, the targeted ssDNA
was amplified from gDNA by using asymmetric PCR, and the FQ probe was cleaved by
activated Cas14a1 when the Cas14a1-crRNA complex specifically hybridized with the target
ssDNA in vitro, which produced a fluorescence signal that could be detected and directly
related to the amplified target. The target ssDNA amplified using asymmetric PCR can
be directly used for detection without the requirement of other steps, which substantially
shortens the assay time [34].

5. Conclusions

We developed a nucleic acid diagnostic platform for detecting the principal disease-
causing mutation in SMA by exploiting the collateral cleavage activity of CRISPR/Cas14a1
and asymmetric PCR. This diagnostic platform enable specific, sensitive, and accurate
detection of the deletion of SMN1 exon 7, which holds significant implications for the
diagnosis and early treatment of SMA. Given the absence of a PAM-sequence restriction,
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this system is easy to use, adaptable, and scalable for broadly detecting disease-causing
mutations in human genetic diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12050268/s1, Figure S1: Schematic representation of the
locations of PCR primers and crRNA seed region. The primers F1 and R1 used for PCR in this study
were indicated by green arrows. The SMN1 c.840C>T was indicated in bold and red. The crRNA seed
region was indicated with a red line. The exon 7 of SMN1 was in gray shadow. The partial intron
6 of SMN1 was in blue and underlined by a blue line. The partial intron 7 of SMN1 was in orange
and underlined by a orange line; Table S1: Detailed sequences of primers, crRNAs, and probes in
this study.
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