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Abstract: The development of resonance phenomena-based optical biosensors has gained relevance
in recent years due to the excellent optical fiber properties and progress in the research on materials
and techniques that allow resonance generation. However, for lossy mode resonance (LMR)-based
sensors, the optical fiber presents disadvantages, such as the need for splicing the sensor head and
the complex polarization control. To avoid these issues, planar waveguides such as coverslips are
easier to handle, cost-effective, and more robust structures. In this work, a microfluidic LMR-based
planar waveguide platform was proposed, and its use for biosensing applications was evaluated
by detecting anti-immunoglobulin G (anti-IgG). In order to generate the wavelength resonance, the
sensor surface was coated with a titanium dioxide (TiO2) thin-film. IgG antibodies were immobilized
by covalent binding, and the detection assay was carried out by injecting anti-IgG in PBS buffer
solutions from 5 to 20 µg/mL. The LMR wavelength shifted to higher values when increasing the
analyte concentration, which means that the proposed system was able to detect the IgG/anti-IgG
binding. The calibration curve was built from the experimental data obtained in three repetitions of
the assay. In this way, a prototype of an LMR-based biosensing microfluidic platform developed on
planar substrates was obtained for the first time.

Keywords: flow cell; lossy mode resonance; microfluidics; biosensing platform; planar waveguide;
biosensors

1. Introduction

Progress in the development of biosensors has been a strong support in many areas
such as medical diagnosis, food safety, and environmental monitoring [1]. The development
of resonance-based optical fiber sensors for detecting biomolecules has gained relevance
lately due to its interesting properties, such as small size, immunity to electromagnetic
interference, and progress in the research on different materials that can be used for
fabricating sensors [2].

By depositing a thin film of certain materials on either fiber optics or standard planar
waveguides, such as coverslips [3] or glass slides [4], it is possible to generate resonant
phenomena known as lossy mode resonances (LMRs). This technology has emerged as a
very interesting and promising sensing platform [5,6]. As it is well-known, LMRs occur
when the real part of the thin film permittivity is positive and higher in magnitude than
both its own imaginary part and the material surrounding the thin film. According to this,
materials that can induce this phenomenon are typically metal oxides and polymer coatings,
which are less expensive than the metallic materials typically used in surface plasmon
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resonance (SPR)-based sensors. In addition, LMR enables one to tune the position of the
resonance in the optical spectrum, to excite the resonance with both transverse electric (TE)
and transverse magnetic (TM) polarized light, and to generate multiple resonances [7].

Among other oxides, titanium dioxide (TiO2) is often used as a high refractive index
coating for optical sensors [8]. Besides, it offers other interesting physical properties such
as high hardness, low optical absorption, and biocompatibility [9]. TiO2 has already been
used in photodynamic therapy for cancer, drug delivery systems, cell imaging, biosensors
for biological assays, and genetic engineering [10,11].

Despite the advantages of using optical fibers as substrates in LMR-based sensors,
they require the splicing of the sensor head for transmission configuration. Moreover,
because LMRs can be obtained in both TE and TM polarization, it is a challenging aspect
in this technology to decrease, as much as possible, the resonance bandwidth. Otherwise,
resonances corresponding to TE and TM modes could appear overlapped or wider, which
reduces the resolution of the measurements [3]. The most common strategy that is followed
to solve this is to polarize the system. So far, the best LMR-based biosensing platforms
use a D-shaped fiber, which, thanks to its asymmetric cross-section, separates both modes
with the aid of an in-line polarizer and a polarization controller or by using a polarization-
maintaining fiber [12]. However, D-shaped optical fibers are expensive, and controlling the
polarization is difficult.

As an alternative to avoid these issues, planar waveguides, such as glass coverslips, are
easier-to-handle, cost-effective, and more robust structures. LMRs can be generated on this
type of substrate and easily polarized by using a linear polarizer. It has been demonstrated
that using coverslips, instead of other glass planar substrates such as slides, allows the
generation of LMRs with better characteristics such as resonance depth, a more directive
coupling, and even the possibility of multiparameter detection [13,14].

On the other hand, the discipline of microfluidics has become more popular during
the last years due to the micro-miniaturized analytical equipment for biological analysis,
chemical sensing, genetic analysis, and metabolic monitoring and detection. The advan-
tages of such miniaturized devices include small reagent volumes, fast response times, low
costs, and the reduction or elimination of cross-contamination [15]. In this sense, planar
technology, such as the one proposed in this work, could be more suitable for point-of-care
applications, where specialists are more familiar with one-use devices that can be easily
replaced [16,17]. The integration of microfluidics with biosensor technology offers new
opportunities for future applications with improvements in portability, real-time detection,
higher accuracy, increased sensitivity, and simultaneous analysis of different analytes in a
single device. In the field of optical biosensors, we find a variety of devices integrated into
microfluidic systems, some of them based on long-period grating (LPG) [18], Mach-Zehnder
interferometry [19], or SPR [20–22].

In this work, a novel prototype of an LMR-based biosensing microfluidic platform
developed on planar substrates is presented. Some considerations regarding the light
propagation in the proposed substrate were analyzed, together with a general assessment
of the whole system performance. Finally, some conclusions were extracted regarding the
benefits and possible improvements of the system, as well as on the use of these substrates
as LMR-based biosensors.

2. Experimental Section
2.1. Chemical Reagents

Methacrylic acid/methacrylate copolymer (Eudragit L100) was purchased from Evonik
Health Care (Essen, Germany. 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochlo-
ride (EDC) and N-hydroxysuccinimide (NHS) were purchased from Thermo Fisher Sci-
entific (Waltham, MA, USA). Ethanol (EtOH), phosphate-buffered-saline (PBS, 10 mM,
pH 7.4), D-(+)-Glucose, bovine serum albumin (BSA), rabbit IgG, and anti-Rabbit IgG were
purchased from Sigma Aldrich Inc. (St. Louis, MO, USA).
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2.2. Sensor Fabrication and Experimental Setup

A soda-lime glass coverslip (18 mm × 18 mm × 0.15 mm) was coated with a thin
film of TiO2 (70 nm thickness) by the Atomic Layer Deposition (ALD) technique, using
the Savannah G2 ALD System from Veeco Inc. (Plainview, NY, USA). This deposition
method generates thin films with atomic scale precision and it is based on the gas-solid
reactions occurring at the surface of the substrate. The majority of ALD reactions use two
chemicals, typically called precursors [23]. In this case, for the TiO2 deposition processes,
water and Tetrakis(dimethylamido)titanium (TDMAT) were used as oxygen and titanium
precursors, respectively. Each cycle included four steps: a 0.1-s pulse of TDMAT, a purge of
the reaction chamber for 10 s to remove the non-reacted precursor and reaction by-products,
a 0.015-s pulse of water, and again a 10-s purge step. Temperature during the process was
set to 100 ◦C. This coating allowed the generation of the LMR in the visible range of the
optical spectrum.

A picture of the experimental setup is shown in Figure 1. Light from an ASBN-W
tungsten-halogen broadband source from Spectral Products Inc. (Putnam, FL, USA) was
launched into a multimode optical fiber from Ocean Optics (200/225 µm of core/cladding
diameter). This fiber was placed in front of one of the lateral sides of the coverslip, which
acted as a planar waveguide. The output light of the waveguide passed through a polarizer
and was then received by another multimode fiber, which was connected to an HR4000
spectrometer (OceanInsight®), operating in the visible-NIR wavelength range, between 200
and 1100 nm.
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Figure 1. Picture of the experimental setup.

A temperature control system acquired the temperature from a thermistor and drove
the current to two Peltier cells in order to adjust the temperature at 26 ◦C (±0.05 ◦C) [24].
The microfluidic system was connected to a peristaltic pump that allowed to pump the
appropriate solution into the flow cell.

2.3. Analysis of the Optical Field Intensity Distribution

The thickness of the TiO2 thin film was based on the analysis of the propagation
through the coverslip waveguide obtained with FIMMPROP, an integrated module of
FIMMWAVE (Photon Design Inc., Oxford, UK). The finite difference method (FDM) with
the Quasi 2D version, was used to calculate the modes and the fields in the cross section of
the waveguide for a total number of 30 modes, which provided good convergence in the
results. In addition, a Gaussian source of 200 µm full width at half maximum was used
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according to the 200 µm multimode fiber used in the experiments for exciting the planar
waveguide. For a TiO2 thin film of 70 nm, the first LMR at TM polarization was generated
in air (n = 1.0002) [25] at 560 nm, whereas in water (n = 1.333) [12], the LMR was centered at
776 nm (see Figure 2). This was considered the optimum design because, according to LMR
theory, the first LMR, either at TE or TM polarization, is the most sensitive [22], and the
sensitivity increases for the same LMR as a function of wavelength [21]. The wavelength
range of the spectrometer was from 400 to 1000 nm. As it can be observed, the LMR was
located at a long wavelength but was still far from the spectrometer upper limit. This
avoids running the risk of not being able to monitor the LMR during the bioassay.
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Figure 2. Theoretical optical spectrum in the air and water of the generated LMR by the ALD
technique with TiO2 thin film on the coverslip.

Regarding the refractive index of the waveguide, since both the microscope slides and
the coverslips were made of soda lime glass, the refractive index model of [26–28] was
used. The planar waveguide was placed on a poly(methyl methacrylate) (PMMA) substrate
material, whose refractive index was modeled according to [27]. In addition, the refractive
index of TiO2 ranges from 2.42 to 2.16 in the wavelength range 400–1000 nm, according to
the results obtained in the ellipsometer UVISEL 2 from Horiba, with a spectral range of
0.6–6.5 eV (190–2100 nm), an angle of incidence of 70◦, a spot size of 1 mm, and software
Delta Psi 2 version 2.9 (from HORIBA France SAS, Palaiseau, France).

Finally, in Figure 3 theoretical analysis of the optical field intensity distribution for
the first four coverslip TM modes, TM0, TM1, TM2, and TM3, is presented. TM3 was
transformed into the shape of TM2, TM2 into TM1, and TM1 into TM0. All this occurred
because TM0 experienced a transition to guidance in the thin film as the wavelength
decreased from 760 to 730 nm, according to the position of the LMR in Figure 2.

2.4. Flow Cell

The PMMA microfluidic cell is described in Figure 4. It was composed of two parts
(bottom and top) whose dimensions were 100 mm × 35 mm × 4 mm. The top part contained
the holes for inlet and outlet fluids and a flow channel of 10 mm × 1 mm × 1 mm, through
which a liquid volume of 10 µL circulated. The bottom part contained two narrow slots
for placing the optical fibers and a rectangular slot, in which the sensor was placed so that
the fibers and the coverslip were aligned. It also contained a hole to insert a thermistor in
order to control the temperature during the experiments. Both the top and bottom parts
contained a hole across the structure where the polarizer was placed. In this way, when the
cell parts are put together, the flow channel fits perfectly over the sensor slot.
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2.5. Application of the Microfluidic System for Anti-IgG Detection

The LMR-based microfluidic system using a TiO2 thin-film on a planar waveguided
was used to detect immunoglobulin G (IgG)/anti-IgG interactions as an example to demon-
strate its potential. IgGs are cost-effective and useful biomolecules used to evaluate the
performance of biosensors [29]. The operation principle consisted of monitoring, in real
time, the interaction between an antigen (in this case, an anti-IgG) and its specific antibody
(IgG) grafted on the coverslip surface, which induces changes in the thickness of the coating
and in the effective RI of the sensing layer. An accurate determination of this change can be
attained by tracking the wavelength shift of the LMR.

Surface Functionalization and Assay Protocol

Once the coverslip was coated with the metal oxide, which allowed the LMR gen-
eration, it was immersed in 2 mM (0.04% w/v) Eudragit L100 copolymer in ethanol for
1 min and then it was left drying in air for at least 15 min until the solvent was completely
evaporated. The carboxylic functional groups, necessary for the IgG covalent binding on
the sensor surface, were provided by the Eudragit. When the sensor was placed inside the
microfluidic system, an EDC/NHS solution (2 mM/5 mM, respectively) was injected and
flowed over the Eudragit layer at 14 µL/min [30,31].

The covalent IgG immobilization on the activated surface was carried out immediately,
by injecting a solution of 1 mg/mL IgG in PBS for an hour at a flow rate of 7 µL/min.
Unbound IgGs were then removed by washing with PBS buffer for 10 min at a flow
rate of 20 µL/min. For passivating the surface, BSA 1% (w/v) was injected for 15 min at
14 µL/min to block unreacted remaining active carboxylic groups and to prevent nonspe-
cific adsorption onto the sensing surface.

Once the antibody was immobilized on the coverslip, the assay was completed by
injecting different concentrations of anti-IgG (5, 10, 15 and 20 µg/mL). Each anti-IgG con-
centration was injected for 15 min at a flow rate of 7 µL/min, and PBS was circulated for
5 min at 20 µL/min between each anti-IgG concentration to measure and to evaluate the
effect of the bioreceptor-analyte binding interaction on the surface. A schematic repre-
sentation of the surface biofunctionalization and analyte detection is shown in Figure 5.
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3. Results and Discussion
3.1. LMR Obtained with TiO2 Thin-Film

With the deposition of the 70-nm TiO2 thin-film on the coverslip surface by ALD
technique, it was possible to generate the resonant phenomenon that constituted the
optical detection principle of the proposed system. Figure 6 shows the representation
of the LMR spectrum in air and water, in TM polarization. As observed, the resonance
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peak corresponding to air (n = 1) appeared in 586 nm and shifted 180 nm towards higher
wavelengths when the sensor was exposed to water, a medium with higher refractive index
(n = 1.33). This result agrees well with the analytical optical spectrum obtained with the
simulations performed in Section 2.3.
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3.2. System Stability at a Fixed Temperature

Considering that abrupt temperature changes affect the functionality of antibodies
and, on the other hand, temperature variations produce LMR wavelength shifts, it is
essential to keep this parameter constant during experiments. The system behavior was
evaluated by setting the temperature at 26 ◦C for one hour while ultrapure water was
flowing. The optical spectrum was registered, as well as the temperature values measured
simultaneously by the thermistor. As shown in Figure 7, the temperature measured in the
sensitive area fluctuated around the set value, with slight variations of ±0.05 ◦C. However,
in spite of the fluctuations experienced by the temperature control system, the LMR central
wavelength can be considered stable, since at the end of the test the total drift was lower
than 0.5 nm. In this way, it can be considered that the proposed system is capable of
remaining stable at a fixed set temperature throughout the detection test, in spite of small
temperature fluctuations.
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3.3. Flow Cell and Sensor Response to Refractive Index Variations

In order to evaluate the sensitivity of the system to the refractive index, glucose
solutions at different concentrations (10%, 20%, 30% and 40% w/v) in ultrapure water were
injected and flowed through the sensor. During this process, the LMR wavelength was
monitored. The sensor was exposed to each glucose solution for 15 min, first increasing the
concentrations and then decreasing them. Ultrapure water was circulated at the beginning
and the end of the experiment for taking it as the baseline. Table 1 relates each glucose
concentration to its corresponding RI value and to the wavelength shift that occurred in
each case.

Table 1. RI values and resonance wavelength shift corresponding to each glucose solution concentration.

Glucose Concentration (%) RI Wavelength Shift (nm)

10 1.346 22.60
20 1.358 44.94
30 1.370 67.92
40 1.379 88.14

The sensor response is shown in Figure 8. It is observed in Figure 8a that the LMR
wavelength shifted to higher values while increasing the refractive index. Moreover, it is
evident that the microfluidic system was able to completely extract the liquid from the
sensitive surface, without leaving any residue that could interfere with the detection of the
current solution. Figure 8b shows the calibration curve, built from the sensor response to
different RI corresponding to the glucose solutions mentioned above. The sensor was able
to detect RI changes with a sensitivity of 1762.8 nm/RIU, and the data were adjusted to a
linear response with R2 = 0.9982.
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3.4. Anti-IgG Detection

This LMR-based planar waveguide microfluidic sensor system was used for detecting
anti-IgG by carrying out a “label-free” assay when IgG specific antibodies were used as
bioreceptors. In this sense, the spectrum during antibody immobilization on the sensor
surface was monitored, as well as its behavior when passing the BSA solution to fill non-
specific sites (see Figure 9). As it can be observed, the LMR wavelength increased from the
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very first instant the IgGs solution reached the sensor. During the first minutes of interaction,
the curve showed an abrupt growth due to the complete availability of functional groups on
the surface for IgG to bind and also due to the increase in the refractive index of the solution.
Then, the slope gradually decreased, reflecting that the IgGs were binding progressively to
the surface. BSA did not seem to have bound to the surface, since there was no change in
the resonance wavelength, which indicates that the entire sensitive surface was covered by
the IgGs. Once PBS was circulated through the system, the curve completely stabilized.
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As in the immobilization step, the LMR wavelength was monitored in real time
during detection to obtain a sensorgram (Figure 10). The sensorgram represents the
change in the spectral position of the LMR over time, with respect to the baseline (PBS),
when anti-IgG solutions are circulated in increasing concentrations, ranging from 5 to
20 µg/mL. According to the LMR theory, the increase of thickness in the thin film leads
to a wavelength shift of the LMR to longer wavelengths [7]. This is what occurred when
anti-IgGs adhered to the surface of the sensor, increasing the thickness of the structure
deposited on the coverslip.
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As expected, the antibody–antigen interaction induced an increase of the LMR wave-
length and this effect can be explained considering an increase in both the thickness and the
average RI of the deposited biolayer [32]. As can be seen, the resonance wavelength shifted
to higher values as the anti-IgG concentration increased. A progressive displacement was
observed as a function of time, meaning that the antigens were binding to the specific sites
on the antibody. The change in the resonance wavelength that remained after washing with
PBS was only related to the amount of anti-IgG that were captured by the bioreceptor on
the coverslip surface, and they can be directly associated to the increasing concentration
of anti-IgGs.

The calibration curve of the LMR-based planar waveguided biosensor is shown in
Figure 11. It was obtained from three assays carried out under the same experimental
conditions with three identical and independent sensors (n = 3).
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The curve represents the wavelength shift of the LMR with respect to the baseline,
depending on the concentration of anti-IgG. The experimental data were fitted by the Hill
function, which is a well-accepted mathematical model that provides a way in which to
quantify the degree of interaction between ligand binding sites [33]. As observed, the
minimum shift of the resonant wavelength was 0.842 nm at 5 µg/mL, whereas the total
shift was 7.446 nm.

According to the response curve obtained from the mean of the shifts for each analyte
concentration in the three repetitions of the experiment, the sensor response fit the Hill
equation with a correlation coefficient R2 of 0.9998. From the calibration curve, it is possible
to extrapolate the limit of detection (LOD) of the biosensor, defined as the signal of the
blank plus three times the standard deviation of the blank [34]. The LOD obtained was
2.2 µg/mL, considering σblank = 0.28 nm. Although this LOD value is considered high
compared to those reached in other contributions where anti-IgG detection was performed,
it is necessary to emphasize that the design of the experiments was not directed towards the
optimization of this parameter, but rather to verify the functionality of the proposed system
for the detection of biomolecules. The response time of the biosensor was 12.73 min, which
can be considered comparable with other LMR-based biosensing platforms [34]. Regarding
sensitivity, the value calculated from the calibration curve was 0.43 nm/(µg/mL).

Taking into account that planar substrate technologies are currently the most commer-
cially attractive platforms for the mass production of biosensor devices, the system pro-
posed in this work could be improved for use in the development of fast screening devices.
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4. Conclusions

An LMR-based planar waveguided microfluidic platform was implemented in this
work, and its potential for biosensing applications was demonstrated for the first time.
The LMR was generated by depositing a TiO2 thin film onto a coverslip, according to
simulations results. This approach proposed a robust and easy-to-handle structure, based
not on intensity but on wavelength shifts, that solves the above-mentioned disadvantages
of using optical fibers in LMR-based sensors. The stability of the system response at a set
temperature, as well as the performance of the microfluidic cell when circulating different
RI solutions, were evaluated. The coverslip surface was functionalized by covalent binding,
employing Eudragit L100 copolymer. This method has the advantage of being time saving
and forming strong and stable-over-time bonds.

Regarding biosensing, anti-IgG detection was carried out using the proposed sys-
tem, since IgG is a widely used molecule for evaluating sensors performance. It was
demonstrated that binding interactions between IgG and anti-IgG caused the LMR central
wavelength to shift. Therefore, different anti-IgG concentrations in buffer solution in the
range of 5 to 20 µg/mL were detected with an LOD of 2.2 µg/mL and a sensitivity of
0.43 nm/(µg/mL). Future works will focus on improving sensor performance and using it
for detecting other biomolecules of interest with the same microfluidic biosensing platform.
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