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Abstract: Wearables developed for human body signal detection receive increasing attention in the
current decade. Compared to implantable sensors, wearables are more focused on body motion
detection, which can support human–machine interaction (HMI) and biomedical applications. In
wearables, electromyography (EMG)-, force myography (FMG)-, and electrical impedance tomogra-
phy (EIT)-based body information monitoring technologies are broadly presented. In the literature, all
of them have been adopted for many similar application scenarios, which easily confuses researchers
when they start to explore the area. Hence, in this article, we review the three technologies in detail,
from basics including working principles, device architectures, interpretation algorithms, application
examples, merits and drawbacks, to state-of-the-art works, challenges remaining to be solved and the
outlook of the field. We believe the content in this paper could help readers create a whole image of
designing and applying the three technologies in relevant scenarios.
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1. Introduction

In recent years, with the development of material science and electronic information
technology, wearable devices have made great progress. Nowadays, wearable devices can
be mainly used in two fields, HMI and medical. Among various wearable technologies,
EMG, FMG, and EIT are commonly used to detect biological signals related to nerve and
limb movement. When an action occurs, nerves send electrical signals to drive muscles.
Then, muscle contraction causes changes in muscle volume and internal impedance. The
posture and acceleration will change during the action. The electrical signals can be detected
by EMG [1], while the changes in muscle volume can be detected by FMG [2], and internal
impedance by EIT [3].

As a technique for detecting electrical activities caused by the muscles, wearable EMG
systems are used widely. For instance, J. Qi et al. used EMG technology to recognize differ-
ent hand gestures, as a result, a long-term recognition accuracy of 79% was achieved [4].
Because EMG detects electrical signals from superficial muscles, its performance is lim-
ited by the skin impedance changes caused by sweating and contact [5,6], which cause
a decrease in the accuracy of pattern recognition. FMG is an alternative technology that
directly captures changes in skin surface pressure due to changes in muscle volume caused
by muscle activity [7,8]. Compared to EMG, FMG is robust to electrical interference and
sweating, whilst also being non-invasive and inexpensive [9,10]. In the work of Islam
et al. [11], the performance of motion detection with FMG and surface electromyography
(sEMG) were compared in a daily scenario. They tested four different limb motions in
five healthy male subjects. As a result, in one-day training, the day-to-day classification
accuracy reaches 84.9% while the accuracy of sEMG reaches 77.8%. However, it is not a
simple competition between FMG and EMG [9]. Jiang et al. proposed a novel co-located
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EMG–FMG sensing armband which can detect FMG signal and EMG signal simultane-
ously [8]. Five healthy subjects performed gestures of ten American sign language (ASL)
digits 0–9. The accuracy of EMG-only gesture recognition was 81.5%, while FMG-only was
80.6%, and co-located EMG–FMG had the best performance of 91.6%. Another potential
human–machine interaction technology is EIT. It is an imaging technology that detects the
internal structural impedance distribution of objects by external electrical excitation signals.
To obtain the internal resistivity of the object, EIT uses electrodes on the boundary to apply
a high-frequency alternating signal and measure the response signal. For instance, Zhang
et al. [3] designed a wearable hand ring called tomo based on 4-pole EIT, which achieved
high accuracy in gesture recognition.

It can be seen from the above examples that these three technologies are applied
in similar human-machine interaction and rehabilitation scenarios, so it is necessary to
explain and discuss these three technologies in detail. This is beneficial for practitioners to
effectively select corresponding technologies in designing specific scenarios, considering
their advantages and disadvantages. For this purpose, we wrote this paper to review
the development and application of the three techniques of FMG, EMG, and EIT in the
past 20 years. We start the review from four parts: principle, hardware, algorithm, and
application. First of all, this review summarizes the signal acquisition device and signal
processing process of three different techniques. Then, the application of three methods in
human–machine interaction and the medical field is mentioned. Finally, we analyze and
compare the advantages and disadvantages of the three methods, and then we propose the
problems that need to be improved in the future and propose some solutions.

By writing this article, we hope that readers can understand the principles, signal
processing processes, application scenarios, advantages, and disadvantages of the three
technologies clearly so that subsequent researchers can quickly choose the appropriate
technology for research. At the same time, we also hope that researchers can further develop
the three techniques to overcome their existing problems. The generation, processing, and
application of FMG, EMG, and EIT signals are showed in Figure 1.
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intention based on sEMG [14]; (d) an EIT-based technique for assessing spinal cord injury [15]. 

  

Figure 1. The generation, processing, and application of FMG, EMG, and EIT signals. (a) Use FMG to
predict forces in two directions [12]; (b) a novel kirigami-based bracelet senses the skin impedance
signals, which is used to distinguish between different gestures [13]; (c) identify the movement
intention based on sEMG [14]; (d) an EIT-based technique for assessing spinal cord injury [15].

2. Principle

EMG, FMG, and EIT are emerging methods to obtain human information in recent
years. The advantage of the three techniques is that all of them can be measured nonin-
vasively and harmlessly, which means that they have great potential for human-machine
interaction. In this section, we will introduce the principles of FMG, EMG, and EIT.
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2.1. FMG

FMG is an approach to collecting motion signals by sensing changes in muscle volume.
Its basic principle is that different muscle activities cause different movements. When an
action occurs, the volume of the underlying musculotendinous complex changes, which
results in a change in the distribution of surface mechanical forces. Different movements are
encoded into different force images. By decoding these images, original motion information
can be obtained, which has been widely used in gesture recognition [2], human–machine
collaboration [16], prosthetic control [17], and operational force estimation [12].

Generally, researchers can use force sensors matrix/array to detect the mechanical
force in the FMG technique [18]. The force sensor reflects the magnitude of the force applied
to the sensor. When a socket with many sensors is wrapped around a part of the limb, the
muscle force map can be obtained. With some algorithms, such as machine learning [9], the
original motion information (type of movement and magnitude of force) can be obtained
by using the FMG signal. An example of FMG signal output is shown in Figure 2.
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Figure 2. Single FMG sensor output signal during the relax–grasp–relax process.

2.2. EMG

EMG refers to a series of electrical signals associated with muscles due to neurological
control and generated during muscle contraction. This signal is generally given by the
experimental method, which can represent the physiological characteristics of muscles after
amplification and processing [19,20].

EMG is derived from the brain to muscle control. It is based on three steps: resting
potential, depolarization, and repolarization. Its formation is caused by the concentration
difference of Na+ ions, K+ ions, and Cl− ions, but it is dominated by Na+ ions. When the
muscle does not contract, the concentration of Na+ ions in muscle cells is greater than that
out of muscle cells. With the ion pump, Na+ ions outflow forms a resting potential with
positive external potential and negative internal potential on the membrane of muscle fiber.
For example, when trying to move upper limbs, our brain sends movement control signals
to the muscles, which are transmitted to the muscles through the nervous system. When
the signal reaches the muscle fibers, chemicals such as acetylcholine are released at the
nerve end, causing a large influx of Na+ ions, which rapidly form an action potential in
the muscle fiber, a process known as depolarization. After the signal transmission, with
the action ion pump, muscle fibers quickly return to the state of resting potential, which is
called repolarization. The combination of all the muscles’ action potentials of a motor unit
is called a motor unit action potential (MUAP) [21]. The superposition of MUAP in space
and time produces EMG. The EMG signal generation process is shown in Figure 3.



Biosensors 2022, 12, 516 4 of 37

Biosensors 2022, 12, x FOR PEER REVIEW 4 of 36 
 

the nerve end, causing a large influx of Na+ ions, which rapidly form an action potential 
in the muscle fiber, a process known as depolarization. After the signal transmission, with 
the action ion pump, muscle fibers quickly return to the state of resting potential, which 
is called repolarization. The combination of all the muscles’ action potentials of a motor 
unit is called a motor unit action potential (MUAP) [21]. The superposition of MUAP in 
space and time produces EMG. The EMG signal generation process is shown in Figure 3. 

 
Figure 3. EMG refers to a series of electrical signals associated with muscles due to neurological 
control and generated during muscle contraction. 

2.3. EIT 
EIT is an imaging technology that detects the internal structural impedance distribu-

tion of objects by external electrical excitation signals. By placing a set of electrodes on the 
surface of the conductive object to be measured, EIT applies a high-frequency alternating 
current to each electrode pair as the excitation signal and measures the electrical response 
signal on other electrode pairs in turn to obtain the internal resistivity of the object. Due 
to its advantages of non-radiation, non-damage, low cost, and simple structure, EIT has 
been widely used in non-destructive testing, geological exploration, and other fields. 
Nowadays, the application of EIT in biomedical imaging and human–machine interaction 
has been widely studied.  

The human body is a complex structure with different electrical impedance distribu-
tions. There has been a lot of research on electrophysiology, which is concerned with the 
electrical properties of biological tissues, and the principle of them is very complex and 
influenced by frequency, temperature, and direction. This is closely related to the struc-
ture and function of the tissues. Generally speaking, the blood and muscle with high ex-
tracellular water content and electrolyte concentration have a relatively low electrical im-
pedance. In contrast, fat, bone, and air increase impedance. This difference gives each tis-
sue and state certain characteristics. For organisms, when controlling the amplitude and 
frequency of excitation signals within a safe range, the output signal and calculate imped-
ance distributions can be harmlessly measured. 

The impedance characteristics of organisms often change in certain situations. For 
example, the electrical impedance of the lungs depends to a large extent on the concentra-
tion of the internal air. When air is inhaled, the electrical conductivity of lung tissue con-
comitantly decreases. The flow or clotting of blood also causes impedance changes. When 
the body tissue is diseased, its electrical impedance may change significantly, which will 
be detected by EIT, to be applied to medical diagnosis and treatment. Similarly, the limbs 
in different postures also correspond to different impedance distributions. Therefore, the 

Figure 3. EMG refers to a series of electrical signals associated with muscles due to neurological
control and generated during muscle contraction.

2.3. EIT

EIT is an imaging technology that detects the internal structural impedance distribu-
tion of objects by external electrical excitation signals. By placing a set of electrodes on the
surface of the conductive object to be measured, EIT applies a high-frequency alternating
current to each electrode pair as the excitation signal and measures the electrical response
signal on other electrode pairs in turn to obtain the internal resistivity of the object. Due to
its advantages of non-radiation, non-damage, low cost, and simple structure, EIT has been
widely used in non-destructive testing, geological exploration, and other fields. Nowadays,
the application of EIT in biomedical imaging and human–machine interaction has been
widely studied.

The human body is a complex structure with different electrical impedance distri-
butions. There has been a lot of research on electrophysiology, which is concerned with
the electrical properties of biological tissues, and the principle of them is very complex
and influenced by frequency, temperature, and direction. This is closely related to the
structure and function of the tissues. Generally speaking, the blood and muscle with high
extracellular water content and electrolyte concentration have a relatively low electrical
impedance. In contrast, fat, bone, and air increase impedance. This difference gives each
tissue and state certain characteristics. For organisms, when controlling the amplitude
and frequency of excitation signals within a safe range, the output signal and calculate
impedance distributions can be harmlessly measured.

The impedance characteristics of organisms often change in certain situations. For
example, the electrical impedance of the lungs depends to a large extent on the concen-
tration of the internal air. When air is inhaled, the electrical conductivity of lung tissue
concomitantly decreases. The flow or clotting of blood also causes impedance changes.
When the body tissue is diseased, its electrical impedance may change significantly, which
will be detected by EIT, to be applied to medical diagnosis and treatment. Similarly, the
limbs in different postures also correspond to different impedance distributions. Therefore,
the impedance distribution of the part of the body can be measured by EIT to realize
posture detection.

According to the different imaging purposes, EIT can be divided into two types: static
imaging and dynamic imaging. Static imaging calculates the absolute value of impedance
distribution and has a wider range of applications. However, it is more computationally
intensive and vulnerable to noise, resulting in low image resolution. In contrast, dynamic
imaging computes the relative impedance distribution and produces a differential image,
which suppresses noise very well. Depending on the measurement method, it can be
further divided into time difference imaging technique and frequency difference imaging
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technique. Time difference imaging obtains the difference of impedance at two times, while
frequency difference imaging obtains the difference of impedance at different frequencies at
the same time. Dynamic imaging is less affected by noise and relatively simple to calculate,
but it is essential to ensure that impedance changes exist, so the application is constrained.
EIT signal acquisition and reconstruction are shown in Figure 4.
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3. Data Acquisition

In this section, we will introduce the signal acquisition methods of FMG, EMG, and
EIT. We successively introduced the sensors used for FMG, the sampling frequency and
channel number configuration, the EMG sampling method and electrode type, the sampling
frequency, and channel number configuration, and finally, we introduced the electrode
configuration of EIT and the drive pattern.

3.1. FMG Signal Acquisition

FMG technique uses force sensors to obtain information on the underlying mus-
culotendinous complex changes during movements [7]. There are many types of force
sensors used in FMG, for instance, piezoresistive- [22], capacitive- [23], piezoelectric- [24],
optoelectronic- [25] and pneumatic-based [26] sensors.

3.1.1. Piezoresistive Sensors

To acquire effective biosignals, the sensor needs to be in close contact with the skin,
and piezoresistive sensors have this characteristic. The most frequently used piezoresistive
sensors are force-sensitive resistors (FSR), for instance, FSR 402 [27–29] and FSR 400 [16,30],
which are based on resistive polymer thick film sensor (RPTF) technology. Because of their
thin profile, flexibility, and low cost, they become a practical solution for prosthetic pressure
measurement [31].

The structure of FSR 400 series is often composed of two layers, one is the printed
semiconductor layer on the bottom layer and the other is the interdigitating electrode on
the semiconductor layer. When pressure applied to the active area increases, the resistance
values of the piezoresistive material will decrease. The force sensitivity range of FSR 400 is
0.2 N–20 N, and its hysteresis is 10% [32].

The advantage of the piezoresistive sensor is its simple structure and affordability, but
it suffers from heating issues and high hysteresis [33].
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3.1.2. Capacitive Sensors

Capacitive sensors are another sensor used to detect FMG signals [23,34]. The capaci-
tive sensor reflects the force/pressure loaded on it by detecting the capacitance value of
capacitance. To achieve this, an elastic material between two electric layers is necessary.
When the pressure applied to the sensor changes, the distance between two electric layers
changes, resulting in a change in the capacitance value of the sensor [35].

Polydimethylsiloxane (PDMS) is a frequently used material in dielectric layers. Lei et al.
used PDMS as the dielectric layer in a 16:1 mix ratio. The sensor can measure the pressure
up to 945 kPa, and obtain a high sensitivity of 6.8%/N [35]. Maddipatla et al. used silver
(Ag) ink on a flexible polyethylene terephthalate (PET) as electrodes, and a 16:1 mixing
ratio of PDMS as a dielectric layer to fabricate a force sensor. The sensor offered a sensitivity
of 0.13%/N from 0 N to 10 N [36].

Capacitive sensors have the advantage of low power consumption and fast response,
but they are sensitive to electromagnetic interference (EMI) noise and are not suitable for
long-term use.

3.1.3. Piezoelectric Sensors

Piezoelectric sensors have good dynamic force-sensing performance. When pressure is
applied to the sensor, a potential difference is generated between the upper and lower plates
of the sensor. By measuring its voltage, the magnitude of the pressure can be obtained.
Common piezoelectric materials can be divided into ceramics, films, and fibers [33].

The acquisition of human biological information places high demands on the flexibility
of sensors. However, it is difficult to achieve good flexibility for piezoelectric sensors based
on ceramic materials such as silicon, PZT, and glass. Therefore, flexible piezoelectric sensors
based on polyvinylidene fluoride (PDVF) are widely used in FMG. For instance, in Chuang
et al., a PVDF-based tactile sensor is proposed, which exhibits good linearity from 0.5 N to
4 N with a sensitivity of 6.4 mV/N [37].

The advantage of piezoelectric sensors is low hysteresis, strong sensitivity, and low
power consumption. However, due to their characteristics, piezoelectric sensors cannot be
used in static force sensing.

3.1.4. Other Sensors

In addition to the above sensors, there are some less commonly used sensors as follows:
Optical fiber sensor is an emerging pressure measurement sensor in recent years, which

is mainly composed of multimode fiber. When force or displacement is applied to the sensor,
it causes the flexible layers above and below the fiber to bend. The core propagating modes
and the cladding radiation modes will be coupled because of the consecutive variations on
the bending radius [38], which will cause light attenuation. By sensing the degree of light
intensity attenuation, the applied force or displacement information can be obtained.

Fujiwara et al. proposed a low-cost optical fiber force myography sensor [2]. Accord-
ing to Fujiwara, this sensor has very excellent performance, with a sensitivity of 0.05 N
and a large range of 0–22 N. At the same time, the sensor has excellent linearity between
the normalized light intensity and static pressure in static force measurement (the corre-
lation coefficient is 0.98). Compared with piezoresistive sensors, fiber optic sensors have
smaller linear errors and lower latency, but higher energy consumption and lower spatial
resolution [33].

Pneumatic sensor is an early type of force sensor in FMG. As early as 1999, Abboudi
et al. used tendon-activated pneumatic (TAP) sensors to control three-finger prosthetics,
whose sensors were fabricated from porous polyurethane foam and vacuum-formed within
a polyethylene bag [26]. For pneumatic sensors, it is difficult to ensure that the internal
pressure remains stable under external temperature changes, and the gas also has leakage
problems. Therefore, pneumatic sensor is an early sensor used in FMGs and has been
abandoned by researchers in recent years.
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3.1.5. Sampling Frequency and Channels

To obtain more information about the movement, more channels are necessary. Lei
et al. investigated the best configuration of sampling frequency and channel numbers in
FMG. They proposed that the number of channels greatly affects the accuracy of gesture
recognition. The more channels, the higher the recognition accuracy. At the same time, they
recommend using eight channels in the field of gesture recognition, which can achieve a
satisfactory result [39].

The value of the sampling frequency should be adjusted according to the target signal.
Low sampling frequency will filter out important information, which will eventually reduce
the recognition effect; high sampling frequency will introduce noise and increase the cost
of subsequent signal processing devices. Therefore, choosing a suitable signal sampling
frequency can not only obtain better experimental results but also reduce the cost of the
entire system.

Xiong et al. investigated the frequency of different hand postures of people. After their
research, they proposed that the frequency of human hand movement is mainly located in
the low-frequency region below 10 Hz [40]. Therefore, finding the highest frequency which
can reflect the complete motion information has great significance in reducing costs. Many
teams are searching for the most suitable sampling frequency. In upper limb movement
recognition, Zhen et al. used a frequency range of 1–500 Hz to collect FMG signals from the
wrist and the bulk region of the forearm of 12 participants for movement recognition [41].
Finally, they propose that the minimum sampling frequency when researchers capture
the FMG signals from the forearm and wrist is 54 Hz and 58 Hz for distinguishing static
actions, and 70 Hz and 84 Hz for distinguishing dynamic actions.

In practical applications, the FMG signal does not have a clear requirement for the
sampling frequency and the number of channels, and different configurations have different
performances in different applications. In the field of gait recognition, Jiang et al. used
FSR 402 to recognize four gaits using eight channels at a sampling frequency of 500 Hz.
They obtained an overall sample-based accuracy of 91.3% ± 3.3% [28]. Sakr et al. used FSR
402 to estimate hand force using 16 channels at a 10 Hz sampling frequency. Finally, they
obtained the R2 accuracies of 0.83 for the 3-DoF force, 0.84 for 3-DoF torque, and 0.77 for
the combination of force and torque (6-DoF) in cross-trial evaluation [42]. Except for the
most widely used FSR sensor, the sampling frequency of other sensors is different, but most
of them choose a lower sampling frequency to match the human body movement. Wu et al.
use two fiber optic sensors to recognize gestures at a sampling frequency of 100 Hz; they get
an average precision and accuracy of ~99% and ~99.8% [25]. Zakia et al. used 16-channel
TPE 502C to predict human hand force at a sampling frequency of 50 Hz, and the force
estimation accuracy under 1-DOF is 90–94% [12]. A summary of the four commonly used
sensor technologies is shown in Table 1.

Table 1. Summary of sensor techniques in FMG.

Mechanism Material Measuring Range Hysteresis Advantage Disadvantage

Piezoresistive
[27–30]
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3.2. EMG Signal Acquisition
3.2.1. Acquisition Method

The collection methods of EMG mainly include the invasive technique of inserting
needles into muscle tissue and the non-invasive technique of skin surface sampling. The
EMG collected by these two methods is called invasive electromyography (iEMG) and
surface electromyography (sEMG), respectively. To collect the iEMG signal, the electrodes
are needle-shaped and inserted into the subject’s muscles. Firstly, the process of collecting
iEMG requires the subject to be anesthetized, which will bring pain to the subject and
easily cause infection. The whole process is harmful to the health of the subject to a certain
extent. Secondly, the acquisition of iEMG is cumbersome and the cost is too high. In
contrast, sEMG is collected by sticking electrodes on the subject’s skin. It overcomes many
shortcomings of iEMG. It has the advantages of being painless, low infection risk, low cost
(compared with iEMG), and a simple collection process. So, it is more suitable for EMG
sampling [19,49].

3.2.2. Electrode Profile

As we analyzed in the previous section, sEMG is more commonly used in practice than
iEMG. So, we emphatically discuss the electrodes of sEMG in this section. In contrast, sEMG
acquisition relies on electrodes stuck to the skin surface, so the electrodes are crucial to the
quality of EMG. Electrodes can be divided into wet electrodes and dry electrodes. Their
materials, characteristics, and application scenarios are quite different. Their comparison is
shown in Table 2.

Table 2. Different electrode types.

Electrode Materials

Means of
Reducing
Contact

Impedance

Electrode–Skin
Equivalent

Model
Advantages Disadvantages Application

Scenarios

Dry electrode

Gold-plated silk
fabrics, such as

silvered yarn [50],
silvered

nylon [51], etc.

Using Hydrogel
membrane or

saline
moisturizing
interface [52]

Complex (the
coupling of other
interference) [53]

Contactless.
Simple measuring
conditions. Little

stimulation to
human skin. Low
cost. Suitable for

long-term
measurement

Difficult to attach
to the skin. The

accuracy of
measurement

is worse

Wearable devices
for long-term use

Wet electrode

Metal mixtures,
such as

Ag/AgCl [54,55],
aluminum,
gold/gold

chloride [56], etc.

Using a wet gel
layer

Simple
(Containing
double-layer

capacitors,
parallel or series

resistors) [53]

Easy to attach to
human skin [53].
Simple structure.

Suitable for
short-term

measurement

Performance
decreases over

time. Human skin
will be stimulated

Clinical care.
Short-term health

monitoring
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For the electrode distribution, it can be divided into two categories: the method based
on sparse multi-channel EMG and the method based on high-density EMG. The former
method requires accurate pasting of the electrodes to the target muscles due to the small
number of electrodes and their independent existence. The latter method typically needs
two-dimensional electrode arrays that can cover multiple muscles within a single skin. It
can reflect changes in EMG over time and space [57–59]. The model of the wet and dry
electrodes is shown in Figure 5.
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3.2.3. Sampling Frequency and Channels

The acquisition of EMG signal usually has the following indicators: the number of
channels, the sampling frequency, and so on. The number of channels reflects the number
of muscles collected. The sampling frequency is reflected in the time dimension. An
appropriate increase in the sampling frequency can more effectively reflect the mutation
situation of muscle movement.

Channel number, sampling frequency, and noise rejection performances are the key
indexes to measure the quality of EMG acquisition system. For the number of channels,
when the action is simple, the sensor with few channels can be used. For complex move-
ments or the combination of many single movements, it is appropriate to use multi-channel
electrodes. For sampling frequency, when we just need to detect the same simple event,
such as tremor or any on–off event, a low sampling frequency can accomplish the task.
However, if we need to focus on the details of one movement in order to better separate it
from the others, we need a high sampling frequency in that case. Generally, the sampling
frequency of each channel is usually the highest frequency of the recorded EMG signal to
satisfy the Shannon sampling theorem. At the same time, the multi-channel acquisition
system samples all channels synchronously, so that no phase error is introduced.

If the action is simple, for instance, open and close, a three-channel or four-channel
sensor and low sampling frequency can be used in order to save the cost of acquisition,
which is widely used in the lower limb movement acquisition. Zhou et al. used three-
channel EMG sensors to identify lower limb movements [60]. They use a three-channel
EMG sensor with bipolar electrodes to collect lower limb movement data at a frequency
of 200 Hz. After amplification and filtering, high-quality EMG signals are finally output.
However, if the sampling action is multiple and complex, the sensor with more channels
and high sampling frequency is needed in order to increase the number of simultaneous
muscle sampling. Six-channel sensors and eight-channel sensors are commonly used multi-
channel sensors. They are widely used in upper limb motion acquisition. For example,
in the field of gesture recognition, Hand Open, Wrist Flexion, Wrist Extension, Radial
Deviation, Ulna Deviation, Forearm Pronation., Forearm Supination, and Hand Closure
are commonly used gesture sets of eight-channel sensors. Eight-channel sensors and their
combination can cover all hand movements in a relatively comprehensive way [61].

Kanoga et al. used an eight-channel sensor to collect data on the right upper limb at a
sampling frequency of 200 Hz for prosthesis control [62]. Melissa L. B. Freitas et al. used an
eight-channel bipolar armband at a sampling frequency of 2000 Hz, with electrodes placed
on the forearm and reference electrodes placed near the ankle. Six gestures: wrist flexion,
wrist extension, right wrist flexion, left wrist extension, forearm supination, and forearm
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pronation, were collected from 13 volunteers and repeated 300 times, generating a dataset
containing 3900 motion sequences [63].

3.3. EIT Signal Acquisition
3.3.1. Electrodes

For anthropometry, EIT usually uses a set of surface electrodes as the injection and
measurement electrodes, and the performance of the electrodes directly determines the
quality of the data collected. Ideal EIT electrodes should have high conductivity, stable
performance, a simple process, and low cost. Common electrode shapes include round,
rectangular, and composite electrodes with a specific number, such as 8, 16, 32, etc. Com-
mon electrode materials include copper, silver, and titanium, which have much higher
conductivity than human tissues. Yao et al. [64]. studied the influence of different kinds of
electrodes on EIT detection and classification accuracy, which includes copper electrodes,
conductive cloth electrodes, and medical electrodes. Their results show that the rectangular
copper electrode has the highest accuracy.

The quality of images is important to EIT, and researchers have adapted many ap-
proaches to improve the sensors in order to get a better resolution and accuracy of the
images. The most direct way is increasing the number of electrodes [65,66], which enables
more data to be generated for image reconstruction. Increasing the number of electrodes
was found to have a significant impact on the image quality; however, Wang et al. have
used FEM to prove that when the electrodes increase to a certain amount, the gain of
increasing numbers will be less significant [67]. In addition, more electrodes may cause
practical problems in data collecting and electrode placing [65].

3.3.2. Drive Pattern

The most common way is to use the current drive and voltage measurement nowadays.
When the device works, the electrodes inject excitation current in turn, with a frequency in
the beta range (10 kHz–1 MHz), which has been proved to be best suited for the measure-
ment of tissue impedance. Then, other certain electrodes measure the voltage response and
pass the data to the backend. In modern EIT systems, the frequency of injection current is
usually varied in a range between 50 kHz and 250 kHz. The maximal root mean square of
the injection current is regulated in the standard IEC 60601-1 [68]:

iRMS,max( f ) =


100 µA f ≤ 1 kHz

100 µ · f
1 kHz 1 kHz < f < 100 kHz

10 mA f ≥ 100 kHz

Choosing different electrode pairs for injection and measurement will lead to different
driving modes in the EIT system, so as to obtain different effects. Therefore, researchers
have explored and implemented different driving patterns in the EIT system. The tradi-
tional driving methods include adjacent driving, opposite driving, cross driving, adaptive
driving [69–71], etc. Adjacent driving uses two adjacent electrodes to inject excitation, with
better stability and measurement accuracy; opposite driving uses opposite electrodes and
has better resolution; in the cross driving, two driving electrodes are placed at 90◦ and their
voltages are measured on adjacent positions. Their performance is intermediate between
adjacent driving and opposite driving [72].

The EIT systems can be divided into two categories of working modes including four-
terminal and two-terminal. Generally, the four-terminal mode can reduce the impact of
contact impedance, which makes it widely used in many situations as gesture recognition.
However, this mode is more complicated, and its applicable range of excitation frequency
is narrow. Conversely, the two-terminal mode has a low cost and a wider application range
of excitation frequency. Lu et al. have proposed a two-to-four-terminal mapping algorithm,
eliminating the contact impedance of the two-terminal mode. Their work also showed that
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the gesture recognition rate of four-terminal EIT is lower than two-terminal, which proved
that contact impedance is important in gesture recognition [73].

4. Data Processing

The original signal obtained by sensors cannot be used directly. In order to apply
the collected signals to practice, we need to apply some signal processing steps, such as
filtering and feature extraction, and then use algorithms, such as machine learning, to
connect the original signals with practical applications. In this section, we will introduce
some data processing methods for the three signals. All steps of data processing are shown
in Figure 6.
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4.1. Data Preprocessing

In the preprocessing stage, we mainly filter and amplify the signal. At the same time,
for different signals, there are their own unique signal preprocessing methods, which will
be mentioned in other preprocessing.

4.1.1. Filter and Amplification

Filter and amplification of FMG
Because the frequency of human motion is mostly below 10 Hz [40], researchers

usually choose a low-pass filter to process the signal preliminarily. The most frequently
used low-pass filter is the 4th and 5th Butterworth filter. Amit Kumar et al. adopted a low-
pass filter using the Butterworth (5th order) filter with a cut-off frequency of 10 Hz to filter
out high-frequency components in FSR [30]. While in optoelectronic sensor, Wu et al. used
a 4th order digital Butterworth low-pass filter with the cutoff frequency set at 200 Hz [25].
In order to make the signal more intuitive, some researchers also adopted a high-pass
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filter to filter out the linear trend of the FMG signal. Sakr et al. adopted a high-pass 5th
Butterworth filter with a cut-off frequency of 0.5 Hz to remove the DC component.

The magnitude of the FMG signal is positively correlated with changes in muscle
volume. Generally speaking, the muscle volume changes significantly during exercise,
so the amplitude of the FMG signal is large enough, and subsequent amplification is
not required.

Filter and amplification of EMG
In EMG, the upper cut-off frequency of the filter is generally less than 500 Hz, while

the lower cut-off frequency is generally more than 20 Hz [19]. When filtering, Butterworth
filters are often applied. Kanoga collected signals from the right upper limb of the subjects
and performed high-pass filtering at a frequency of 15 Hz through the fifth-order Butter-
worth filter [62]. Another effective interference filtering method is wavelet transform, which
can effectively decompose continuous signals. Wavelet transform has many advantages,
such as short sampling time, ease to avoid unwanted signals, and can analyze signals with
much missing information [20,74]. The selection of wavelet is a key part of wavelet denois-
ing, and the selection indexes can be roughly divided into the type of wavelet function,
the scale, and the threshold [20]. Karan Veer et al. used wavelet transform to interpret
surface electromechanical signal diagrams for the classification of upper arm movements.
They collected the upper limb movement information of 10 amputation volunteers and
selected The Daubechies wavelet family for signal processing of EMG, with the final motion
classification accuracy reaching more than 85% [74].

EMG’s amplitude is quite small. When the muscle does not contract, the amplitude
of the EMG signal is generally in the range of −80~–90 mV. However, when the muscle
contracts, the amplitude is only a few hundred millivolts at most [75]. So, in order to
acquire an observable signal, the EMG signal is often amplified by 50~100 times to reach
above 1~2 volt.

Filter and amplification of EIT
The frequency of the output signal of the EIT depends on the excitation signal. There-

fore, a filter is needed to obtain the signal of the desired frequency band based on the
frequency of the excitation signal. At present, the commonly used impedance measure-
ment chips often integrate numerous modules, including filters. For example, AD5933 has
an LPF inside, and ADS1256 has a sinc5 filter. These are usually programmable devices.
When used, the cut-off frequency can be selected according to the set excitation frequency.
Moreover, digital filters are also used for filtering. In addition, electromagnetic interference
in the environment is also a problem to be considered, which usually requires a low-pass
filter to eliminate.

Traditional filters usually set a fixed cut-off frequency to eliminate noise in a specific
frequency band, which is not very effective for time-varying random noise suppression.
Therefore, researchers have proposed filtering algorithms based on statistical methods,
such as the Kalman filter and adaptive filter. At present, these algorithms have been
applied to EIT and achieved good results. For example, Baidillah et al. [76]. Proposed
implementation of adaptive noise cancellation (ANC) algorithms, which are least mean
square (LMS) and normalized least mean square (NLMS), filter onto a field-programmable
gate array (FPGA)-based EIT system that effectively improved the imaging quality of EIT.

The EIT applied to human signal detection requires its excitation current to be controlled
in a safe range (usually less than 10mA), so the output signal is small and must be amplified.
Common amplifiers include instrument amplifiers and programmed gain amplifiers.

4.1.2. Other Preprocessing

Normalization of FMG
The signal was captured under different circumstances, which means that researchers

could not use the same method to analyze all signals. Therefore, the standardized part



Biosensors 2022, 12, 516 13 of 37

is very important. At the same time, standardization can minimize the error caused by
installation. Usually, the following formula is used to normalize the signal:

xnorm =
xori −min(xori)

max(xori)−min(xori)
(1)

where, xnorm and xori represent the data after normalizing and the original data, respectively.
Data segmentation of EMG
EMG signals obtained by preprocessing cannot be used for feature extraction directly.

In order to separate the useful parts, it is necessary to add windows. Window addition
technology can be divided into overlapping windows and adjacent windows. In the
overlapping window technique, the two contiguous windows overlap, but in the adjacent
window technique, the two contiguous windows have a time gap. The main parameter
affecting the performance of data segmentation is the window length. The window length
determines the amount of data and useful information. The longer the window length is,
the more useful information is, and the more accurate the prediction will be, but the system
will take more time to handle it [77]. Data segmentation is a relatively rough extraction
process, which helps to estimate the expected results of the EMG classifier while separating
the interference information [78].

Phase-sensitive demodulation of EIT
Since EIT technology often uses multi-frequency EIT to obtain rich complex impedance

information, a phase-sensitive demodulator (PSD) is used to separate the real part and the
imaginary part. PSD includes analog demodulation and digital demodulation. Common
analog demodulations include switch demodulation, analog multiplier demodulation,
and zero-crossing phase discriminator demodulation. Digital demodulation uses high-
performance digital devices, such as FPGA and DSP, to extract the amplitude and phase
information of the measured signal by numerical method. Common demodulation methods
include FFT demodulation and orthogonal sequence demodulation. Chen et al. have
designed a new type of dual-frequency PSD impedance measurement circuit that can
measure both resistance and capacitance with an uncertainty of less than 0.5% [79]. Ge et al.
have proposed a novel FPGA-based digital PSD for EIT to obtain a signal with high SNR,
high data precision, and high demodulation speed, and the emulation results showed that
the phase error is 1.03 [80].

4.2. Feature Extraction

In order to use the original signal in the algorithm, we need to perform feature
extraction on the preprocessed signal. Feature extraction is aimed at further screening out
useful signals that can reflect the movement’s feature. For FMG and EMG, the features are
mainly extracted in the time domain (TD), frequency domain (FD), and time–frequency
domain (TFD). For EIT, we generally do not do redundant processing, but directly extract
its magnitude as a feature.

4.2.1. Features of FMG and EMG

The time-domain characteristic represents the change of signal amplitude with time,
which can be obtained directly from the original signal without further signal transforma-
tion. Frequency domain characteristics include the power spectral density of the signal,
which need to be transformed into the frequency domain to obtain them. The combined
signal characteristics in the time domain and frequency domain are defined as the signal
characteristics in the time–frequency domain [81].

In time domain, there are five commonly used parameters to describe signal fea-
tures: mean absolute value (MAV) [17,82,83], mean absolute value slope [22,27], slope sign
changes (SSC) [83–85], zero crossing (ZC) [83,84] and waveform length (WL) [86]. These
features mainly apply to signal amplitude, while in the frequency domain, signal power
information and frequency information are mainly utilized. There are also some parameters
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to describe signals in the frequency domain, such as mean frequency (MNF), mean power
(MNP), power spectrum ratio (PSR), and so on [87].

In the time–frequency domain the information used for feature extraction is more
abundant, but it also brings the problem of complicated calculations and long processing
time. Therefore, many fast algorithms are applied. In recent years, the frequency of
wavelet transforms and wavelet packet transform used for feature extraction has gradually
increased. The accuracy with which they interpret signals is remarkable. Among them, the
former has low computational complexity, while the latter can process both high-frequency
and low-frequency components [82].

The parameters commonly used in each domain are summarized in Table 3 [87]:

Table 3. Some commonly used features in TD, FD, and TFD.

Domain Parameter Concrete Explanations Abbreviation

TD

Average Amplitude Value The average amplitude of the signal AAV
Mean Absolute Value / MAV

Simple Square Integral signal energy SSI
Variance / VAR

Zero-Crossing(s) The number of times the signal
waveform intersects the axis “0” ZC(S)

Slope Sign Changes Change in the sign of the slope SSC
Waveform Length / WL

Root Mean Square Value / RMS

FD

Mean Frequency / MNF
Mean Power / MNP

Peak Frequency Maximum frequency PKF
Total Power / TTP

Power Spectral Density / PSD
Power Spectrum Ratio / PSR

TFD
Wavelet Transform / WT

Wavelet Packet Transform / WPT
Short-Time Fourier Transform / STFT

4.2.2. Feature of EIT

Unlike EMG and FMG, EIT takes boundary information (voltage or impedance values)
collected as a feature of reconstructed images and machine learning. To avoid dimension
explosion, it is sometimes necessary to reduce the dimension of data by selecting a feature
subset with a higher weight. Ma et al. [88] demonstrated the feasibility of finding a subset of
features in the original data of EIT to reduce the measurement time and maintain acceptable
accuracy at the same time. They computed the SHAP (Shapley additive explanations)
values of the dataset and found the most valuable electrode pairs. Then they established a
map between features and electrode pairs, and then obtain a simplified drive pattern with
only part of the whole electrode pairs. This way helped them to reduce 50% electrode pairs,
which meant half of the measurement time was saved.

4.3. Interpretation Algorithms

After all of the signal processing steps are finished, the most important part is the
construction of the application algorithm. In the early days, limited by poor computer
capabilities, early algorithms were mainly based on mathematical models, using pure
mathematical equations to solve signals. At present, with the promotion of machine
learning, more and more researchers have begun to use machine learning algorithms to
process signals, and get better results.

4.3.1. Early Algorithms

Vector Decoding and Threshold-based Classification of FMG
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In 2001, Curcie et al. proposed a pressure vector decoding method (PVD) to decode
finger commands [89]. They use eight myo-pneumatic (M-P) sensors in the socket to obtain
the pressure around the flexor digitorum superficialis and the flexor carpi ulnaris.

The main idea of PVD is to derive a matrix of signal features from a P-dimensional (P-
D) pressure vector, and take the pseudoinverse of the feature matrix as a filter (weighting)
vector, to obtain a control vector, Y(i)f , for each of N fingers (f = 1 . . . N). Y(i)f is calculated as

Y(i) f =

∣∣∣∣ →s(i) · →w f

∣∣∣∣2 =

∣∣∣∣∣ P

∑
k=1

(
s(i)k · w f ,k

)∣∣∣∣∣
2

(2)

Here,
→

s(i) is the pressure vector and
→
w f is filter vector. To obtain a filter (weight) vector,

they choose RMS amplitude of a signal sequence during repeated specified movements to
comprise a P × N feature matrix H:

H =

∣∣∣∣∣∣∣∣∣
x1,1 x1,2 · · · x1,N
x2,1 x2,2 · · · x2,N

... · · ·
...

xP,1 xP,2 · · · xP,N

∣∣∣∣∣∣∣∣∣ (3)

Here, xP,N means the RMS of myo-pneumatic sensor P when the finger N moves. The
filter W is the discrimination matrix

W = H−1 =

∣∣∣∣∣∣∣∣∣
w1,1 w1,2 · · · w1,P
w2,1 w2,2 · · · w2,P

... · · ·
...

wN,1 wN,2 · · · wN,P

∣∣∣∣∣∣∣∣∣ (4)

Each of the rows of W is a filter (weighting) vector,
→
w f . It means the relative contribu-

tion of each input to the corresponding output.
The PVD method connects input and output by using artificially set parameters,

it struggles when faced with complex situations. In Curcie’s work, they used PVD to
recognize the tapping of three fingers, which has great limitations in real-life conditions.

The threshold-based classification method is another traditional algorithm. Because
the signal obtained by FMG is the muscle surface pressure signal, which reflects the change
of muscle contraction, its amplitude contains movement information to a certain extent. In
consideration of simplifying the procedure, Muhammad chose slope to displace amplitude.
They set four thresholds to distinguish four hand motions: rest, open, close, and grasp [27].

However, threshold-based classification and PVD methods can only distinguish simple
motions. When it is faced with more delicate information, such as different gestures and
forces, it is difficult to obtain satisfactory results using these methods.

Pure Mathematical Theory of EMG
Traditional methods of EMG classification are almost based on pure mathematical

theory. Statistical theory is among the most commonly used theory. For example, in
2004, Raphisak et al. used the sliding window method to calculate the noise interference.
They applied a parameter called “moving variance” to calculate the fluctuation of EMG
signals, which indirectly evaluated the degree of interference. The moving variance can be
calculated with the formula below:

m1(i) = m1(i− 1)− x(i−W2 − 1) + x(i + W2)

W
(5)

m2(i) = m2(i− 1)− x(i−W2 − 1)2 + x(i + W2)

W
(6)
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v(i) = m2(i)−m1(i)2 (7)

Here, i = W2 + 2, . . . , W2 − L The length of origin EMG signal is L. The sliding
window stretched out the data by W2 samples on each side. So, the total length of the data
is W = 2W2 + 1. v(i) is the moving variance [90].

In 2002, Kilner et al. used a statistical method called “Blind Signal Separation” in
order to eliminate the correlational component of crosstalk when recording EMG signals.
The “Blind Signal Separation” algorithm used an unmixing filter, which was used on
the interfered data. This algorithm produced the EMG signals whose crosstalk was cut
down [91].

Reconstruction of EIT
To reconstruct an image of the impedance distribution, the researchers first needed to

build a mathematical model of the EIT. According to Maxwell’s equations, the mathematical
model of EIT can be constructed, including the EIT forward problem and inverse problem.
The EIT forward problem refers to solving the boundary potential of the field by finding
the conductivity distribution and electrical excitation signal of the measured field, through
which to obtain the sensitivity matrix of the boundary measured voltage data to the
change of conductivity at different positions in the measured area. This can be solved
by the finite volume method (FVM), finite difference method (FDM), and finite element
method (FEM). The EIT inverse problem is deriving the internal impedance distribution
information according to the measured voltage at the given boundary. Assuming that the
initial conductivity distribution is σ0, the problem can be described as:

δV ≈ Jδσ + w (8)

where, δV is the potential difference and δσ is the conductivity difference. J is the sensitivity
matrix, which is a Jacobian calculated in the forward problem, and w is a noise vector.
This is a mathematically ill-posed non-linear inverse problem, which means that the
minimum error and noise in the measurement process may have a great impact on the final
result. To solve this problem, researchers usually linearize the non-linear problem and use
regularization to simplify the ill-posed problem, and finally obtain the numerical solution
by an iterative method. Common regularization methods include truncated SVD, Tikhonov
regularization, and Newton’s one-step error regularization.

There are two main categories of methods to solve the inverse problem: iterative
methods and non-iterative methods. Generally, iterative methods solve an optimization
problem to minimize the difference between the measured signal (such as voltages) and
the data predicted by the forward model in each step. Then, the forward model will be
tuned to produce data for each iteration until the end of the iteration. A common method
is the Newton–Raphson method, which is a variation of Newton’s iteration method and
can effectively obtain the numerical solution of equations.

Non-iterative methods are mainly included of non-iterative linearized methods and
methods that solve the full nonlinear problem without iterations. Researchers have pro-
posed some commonly used non-iterative method, such as Bayesian inversion, Factor-
ization methods, and D-bar methods and so on [*]. The back-projection method is also a
common method, which is a dynamic imaging method that was very successful for simple
two-dimensional geometries. The current floods a region from source to drain. By applying
excitation in turn and tracing the current to get the equipotential lines between each pair
of electrodes, the impedance distribution can be obtained from their superposition [88].
This algorithm is rough and accompanied by star artifacts. However, because of its simple
calculation and fast reconstruction speed, it is still used today.

4.3.2. Machine Learning

Machine learning is a powerful tool for digging into information. Nowadays, machine
learning is widely used in FMG, EMG, and EIT. It can be divided into two categories, one
is based on classification, which can classify discrete states, such as gesture recognition,
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and another one is based on regression, which can predict continuous parameters, such as
force/torque estimation [9,19,87].

The most frequently used strategies in classification are linear discriminant analysis
(LDA), support vector machine (SVM), and artificial neural network (ANN) [9]. LDA is the
most popular algorithm because of its simple principle. The main idea of LDA is to project
data from a high-dimensional space into a lower-dimensional space. It ensures that the
variance within the classes of each category is small and the mean between classes is large.
In the work of Jiang et al., they used the LDA algorithm to fuse FMG and Leap Motion
for virtual gesture recognition [92]. Six grasps gestures of 11 subjects were collected in the
experiment, and as a result they got a grasp classification accuracy of 93.4% by using LDA.
Because LDA can be easily applied in real-time, it is widely used in three techniques, for
instance, Xiao et al. [93], Godiyal et al. [94], Zhang et al. [95], and Huang et al. [96].

The main idea of SVM is to use a hyperplane to divide the data into two classes to
maximize the separation between them [97]. If the training data can be ideally separated
by a hyperplane (called linearly separable), what SVM needs to do is to optimize the
hyperplane parameters to maximize the data gap between different classes. Even if the data
are linearly inseparable, SVM can obtain good classification results under the condition
of allowing a certain error. The key factor affecting the effect of SVM is the selection of
kernel function and parameter values. Subasi [98] used particle swarm optimization (PSO)
to optimize the SVM parameters for the diagnosis of neuromuscular disorders in EMG
classification. He got an accuracy of 97.41% on 1200 EMG signals collected from 27 subjects.
Ha et al. [99] explored the prediction of four hand gestures using FMG and piezoelectric
sensors. Classification accuracy of 80% has been achieved through the SVM classification
algorithm. Many other researchers choose the SVM algorithm in their works, for instance,
Zakia et al. [100], Belyea et al. [101] McDermott et al. [102], and Alkan et al. [103].

ANN is another effective algorithm in machine learning technology. It is an informa-
tion manager model of biological nervous system functions similar to the human brain [104].
In ANN algorithm, a complex neurons network is constructed with a large number of
processing units in different layers. The unit can accept the information of the previous unit
and pass it to the next unit after processing. Output the final result after multiple layers of
processing. The biggest advantage of ANN is that it is easy to use and can handle multiple
input problems [104]. It can be used in many fields. For example, Yap et al. implemented
ANN to classify four hand motions through FMG and showed a real-time accuracy of
95% [105]. In the EMG technique, Ahsan et al. used ANN to detect hand movements for
human–machine interaction with an average success rate of 88.4% [106].

There are some other machine learning algorithms used in the past few years. Chegani
et al. [107] used a random forest regression algorithm to achieve fine finger regression by
FMG. In their work, an average squared correlation coefficient of 75% was gained, which
showed that it was feasible for FMG to predict finger movements. In Al-Faiz et al.’s [108]
work, a k-nearest neighbor algorithm was closed for human arm movement recognition.
The results showed a good performance in classification to lower signal-to-noise ratio
signals. To be brief, machine learning provides a convenient tool to implement various
complex functions, which will be widely used for a long time.

5. Application

FMG, EMG, and EIT are three methods to obtain biological information of the human
body, they can reflect different conditions of the human body. Therefore, they are widely
used in human–machine interaction (HMI), medical, and healthcare. Some applications are
shown in Figure 7. In this section, we will introduce some applications of three techniques
in HMI, medical, and healthcare.
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Figure 7. Application of FMG, EMG and EIT. From the top center picture, in a clockwise order: bionic
control based on EIT, EMG and FMG [109]. An EMG gesture recognition system [110]. Human–
machine interaction system based on EOG and temporalis EMG [111]. Feature optimization of
sEMG in human–machine interaction [112]. Tractor manipulation via EMG-based human–machine
interface [113]. Combining synchronized EMG and EIT to measure muscle activity [114]. A disabled
assistive robotic glove using optical fiber force myography sensor [47]. Differential diagnosis of
temporomandibular joint disorders using sEMG [115]. Gait Phase Detection [116]. Evaluation
of sarcopenia based on sEMG platform [117]. Time-frequency muscle synergy estimation based
on sEMG [118]. Peripheral blood vessel puncture control system based on electrical impedance
measurement [119]. A novel kirigami-based bracelet is used to sense the skin impedance signals for
distinguishing between different gestures [13]. A method based on EMG, MMG, and ultrasound
images to study internal muscle morphological changes in stroke survivors while walking [120].

5.1. Human–Machine Interaction
5.1.1. FMG in HMI

The earliest application of FMG can be traced back to the 1960s. In 1966, L. F. et al.
proposed a device called the French electric hand, which uses a pneumatic pressure sensor
to collect residual muscle motion signals of the amputee's forearm, and then controls
the opening and closing of the gripper [121]. However, limited by the backward sensor
manufacturing process and signal processing methods, FMG did not attract widespread
attention at the time.

In recent years, with the emergence of thin film piezoresistive sensors and machine
learning algorithms, problems have been solved from both hardware and software, making
it possible for FMG to perform more complex information recognition. The advancement
of sensor manufacturing technology has made signal acquisition devices more portable
and sensitive. The advancement of computer computing power has made deep learning
possible. SVM, LDA, ANN, and other algorithms are also gradually applied to FMG.
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Nowadays, FMG is widely used in the field of artificial limb control. FMG directly
detects the characteristics of muscle changes during exercise, so that it can better reflect
the exercise situation. As the direct cause of movement, muscle contraction changes cause
FMG to have a better signal-to-noise ratio than EMG, MMG, and other previous motion
recognition methods. At the same time, it reflects the nature of movement more intuitively.
Moreover, FMG has higher recognition accuracy and more accurate fatigue parameters than
EMG in the case of high-speed motion [122]. Compared with EMG, FMG is less susceptible
to sweat, motion artifact, electrode shift, and other electrical interference, and its devices
are more affordable [29].

As early as 1999, researchers began to use FMG to control prostheses. Abboudi et al.
fabricated pneumatic sensors using open-cell polymeric. They detect the movement of the
tendon corresponding to specific fingers and control the movement of the prosthetic finger
through a computer. They tested on three upper-limb amputees, and the result showed
that voluntary flexions of individual fingers and grasping motions can be achieved after
short training [26].

In 2001, their team proposed a linear filter using pressure vector decoding to decode
the output signals of eight pneumatic sensors. They use pneumatic sensors to collect
pressure signals around the residual muscles during finger movement, construct an eight-
dimensional pressure characteristic matrix, and decode it to obtain finger movements [89].
However, limited by the data processing methods at the time, they could only recognize
simple movements, such as finger taps, and their application was limited.

Since 2006, FSR began to be used in FMG as a signal acquisition device [123,124]. In
2007, Ogris et al. used FSR to cover the lower and upper part of the forearm to capture
arm muscle contractions caused by different gestures. They use C4.5 classifiers, k-nearest-
neighbor (KNN), and hidden Markov models (HMM) to process the data separately. As
a result, they proposed that, for all classifiers, the overall accuracy of the FSR system is
between the accelerometer (between 5% and 10%) and the gyroscope (between 2% and
11%). Adding FSR to another sensor can increase accuracy by 1% to 29% [124].

Although Ogris et al. used classification algorithms, such as KNN, to process the data,
the recognition accuracy they obtain was unsatisfactory and far from the application level.
A few years later, with the popularization of more advanced algorithms, such as support
vector machine (SVM) and linear discriminant analysis (LDA), the accuracy of gesture
recognition has been greatly improved.

In 2012, Li et al. designed a sensor array which is composed of 32 FSR sensors [7].
They use the SVM algorithm to recognize 17 hand movements including single-finger
movement and multi-finger grabbing. Finally, they obtained an accuracy above 99% in the
in-session validation.

Since then, more and more teams have used different recognition algorithms to conduct
research in different fields. In 2016, Ferrone et al. use a wristband equipped with stretchable
strain gauge sensors to recognize 16 different gestures. They processed the signals by
two machine learning algorithms (LDA and SVM) with an accuracy of 87% and 95%,
respectively [125].

Another important area in prosthetic control is the estimation of force. In order
to achieve precise control of the prosthesis, it is necessary to recognize the force used.
Because FMG has the characteristics of intuitively reflecting muscle activity, it can reflect
the magnitude of force by detecting the intensity of muscle activity to a certain extent. Sakr
et al. use a total of 60 FSRs embedded in four bands, estimating in two cases: (1) 3-DoF
force and 3-DoF torque at once and (2) 6-DoF force and torque [42]. The results showed
that FMG achieves a good performance in multiple-DoF force/torque estimation.

5.1.2. EMG in HMI

The earliest application of EMG can be traced back to the 1970s. As a quite mature
technology, EMG has been widely used in the HMI area for the last few years. For example,
in 2010, Wei et al. used EMG to control wheelchairs for the disabled. They collected forehead
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sEMG signals and facial information from six subjects. In the collection process, five facial
expressions and movements were collected, corresponding to five commands to control
the wheelchair. Both time domain and frequency domain parameters were used in feature
extraction. The time-domain parameters were RMS, MAV, ZC, and WL. The frequency-
domain parameters were the mean frequency of the signal (FNN) and median frequency of
the signal (FMD). They adopted an SVM classifier. The final accuracy could reach 93.75%.
Experiments show that this method can control the wheelchair accurately [126].

In 2019, Dwivedi et al. studied the continuous decoding of human movement, while
previous research had mostly focused on decoding discrete human movements. They
collected muscles from 16 sites of 11 subjects. In feature extraction, WL, RMS, and ZC
parameters were used and they used a random forest algorithm for classification. The
final classification result could reach 83.61%, verifying the feasibility of continuous action
decoding [127].

In the same year, Sakib et al. proposed a prosthetic printing technology controlled by
EMG. The prosthesis printing system mainly consists of an EMG recorder and prosthesis
printing module. The printed materials are all locally sourced, reducing the cost of pros-
thetics for patients by 96 percent. They tested the printed prosthesis. They collected test
information from 30 subjects and could achieve an accuracy of 87% [128].

In 2021, Choromański et al. used EMG signals to assess the muscle load of the driver
to design a customized vehicle transition system for the user. They collected EMG from
six muscles of the upper limbs of 30 male drivers aged 20–23 years. The experiment lasted
about 5000 s. The sampling frequency was 1500 Hz, satisfying the sampling theory. This
achievement solveed the problem that the disabled cannot control the steering wheel [1].

5.1.3. EIT in HMI

The prototype of EIT can be traced back to the 1920s when some geologists proposed
a resistivity imaging technology in order to study the mineral information of shallow
geological distribution. They use an electrode array to measure the feedback voltage of
current injected into the shallow surface, which is then analyzed and calculated to obtain
information about the mineral deposits. As a relatively recent technique, EIT has been
used in several fields, with many potentials yet to be explored. With the development
of human–machine interaction technology, the application of EIT within it has also been
widely studied.

The human wrist and arm have complex structures with bones and muscles. When
people perform different gestures, the bones and muscles will show different states, which
can be distinguished by the distribution of internal impedance. Therefore, EIT technology
can provide a new method for gesture recognition. It only needs to wear a wearable bracelet
on the wrist to realize accurate recognition by detecting the impedance distribution of
the wrist. The gestures commonly used for testing include relaxing, fist, stretch, thumbs
up, Spiderman gesture, pinch, and so on. Lots of teams have achieved some results in
this regard.

Zhang et al. [3] designed a wearable hand ring called tomo based on 4-pole EIT
to detect gestures, which has the advantages of having a light weight and low power
consumption. It achieved high accuracy in determining the set of gestures. Russo et al. [129]
experimented with contact location identification by using opposite drive patterns with
8 and 16 electrodes and performed a test for the control of the Kuka robot in real case
scenarios by using recognition results. The results showed that this method realized a more
accurate and faster recognition than traditional tomography approaches. More complex
patterns are also proposed and researched. Usually, the measurement of voltage needs
the adjacent electrodes. Since the distribution of human impedance is a three-dimensional
problem, Jiang et al. [130] investigated the effect of using multilayer electrodes to measure
three-dimensional EIT. The results show that 3D-EIT performs better than 2D in gesture
recognition. Some application in human–machine interaction is showed in Figure 8. A
summary of the different reference articles is shown in Table 4.
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Figure 8. Application in human–machine interaction. (a) A myoelectric prosthesis control based
on the combination of EMG and FMG [5]; (b) a prosthetic control using high-density FMG [131];
(c) an EMG-controlled dynamic model for musculoskeletal simulation and exoskeleton control [132];
(d) application of EMG pattern recognition in manipulator control [133]; (e) estimation of grip strength
and three-dimensional push–pull force using electromyography [134]; (f) a control scheme of the
elbow joint memory alloy exoskeleton based on sEMG signals [135].

Table 4. Summary of application in HMI.

Method Reference Sensors
Number

Sampling
Frequency

Feature
Extraction Algorithm Function Performance

FMG

[136] 16 15 Hz MAV
LR, SVR,

NNR, and RF
LDA SVM

Predict the angle
between index

finger and thumb
(θTI), the angle

between middle
finger and thumb

(θTM)

A correlation of
determination (R2)
of 0.871 for θTI and

0.941 for θTM

[22] 64 10 Hz
Mean

absolute
value slope

LDA

Distinguish
11 gestures in static

and dynamic
conditions

Accuracy over 99%
in static conditions,
and accuracy over
86% in dynamic

conditions

[137] 384 15 Hz MAC SVM

Propose a
proportional

control method to
classify six

gestures

Classification
accuracy of

83.4 ± 3.47%

[27] 12 /
Mean

absolute
value slope

Threshold-
based

classification
method

Detect six hand
motions intention

and estimate
grasping force

Average accuracy of
98 ± 1.3% on six

subjects, implement
a proportional force

control
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Table 4. Cont.

Method Reference Sensors
Number

Sampling
Frequency

Feature
Extraction Algorithm Function Performance

[17] 2 1 kHz MAV, RMS,
MAX, SUM

Fuzzy
logic-based

classification
scheme

An affordable
hand prosthesis to

distinguish six
different grip

patterns

An offline accuracy
of 97 % on

thirteen subjects

[89] 8 200 Hz RMS
Pressure

vector
decoding

Provide
biomimetic finger

control

Successfully
controlled flexion

of three
phantom fingers

[16] 8 25 Hz PSD,
likelihood RNN

Develop an
effective

human–robot
collaboration

scheme

Estimate human
intentions in <1 s

and decide to assist
or avoid the
human body

[46] 8 10 Hz MAV KNN

Propose a step
counter to detect

low-speed walking
steps (<2.2 km/h)

A low error rate
(<1.5%) at three
walking speeds

EMG

[82] 4 1024 Hz
Integral of
Absolute

Value, VAR.

GK-SVM
with PE or

Wilson
Amplitude
(WAMP)

Distinguish
gestures of
standing,

squatting, and
sitting, upstairs,
downstairs, and

walking

Seven kinds of ADLs
and falls were
classified with
accuracy from

96.43% to 97.35%

[84] 8 200 Hz MAV, ZC,
SSC and WL. CNN

Distinguish open
hand, closed hand,

wrist extension,
wrist flexion, ulnar

deviation, and
radial deviation

Average accuracy of
97.81% on a database

of seven hand and
wrist gestures

[138] 5 2 kHz

CNN, RNN,
Flourier

Transforma-
tion.

Recurrent
convolu-

tional neural
networks
(RCNNs)

Distinguish five
motions: biceps
brachii, triceps

brachii, anterior
deltoid, posterior

deltoid, and
middle deltoid

An accuracy of
86.5–94.7% on eight
subjects from two

data sessions

[83] 8 2 kHz

WL, MAV,
WAMP,

Cardinality
(CARD), SSC

and ZC

LDA Distinguish nine
hand gestures

An accuracy of
84.78–98.56% on

nine hand gestures
of eight participants

[85] 4 1 kHz MAV, ZC,
WL and SSC SVM

Distinguish
six-foot movement:
lift the toe, lift the
heel, move the toe
to the right, move
the toe to the left,
lean on the heel,
lean on the toe,

and rest foot

An accuracy of
52.86–95.71 for

one channel;
81.43%-almost 100%

for four channels
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Table 4. Cont.

Method Reference Sensors
Number

Sampling
Frequency

Feature
Extraction Algorithm Function Performance

[139] 12 2 kHz

MAV, VAR,
MAV slope
(MAVSLP),

and WL

Convolutional
neural

network–
long

short-term
memory
network
(CNN-
LSTM)

Distinguish
gestures in EMG

signal dataset
Ninapro DB2

The accuracy of
17 gestures is 83.91%.

The accuracy for
20 subjects is 99.17%

[140] 4 20 Hz

Multivariate
Multiscale

Entropy
(MMSE) and
Multivariate
Multiscale

Fuzzy
Entropy
(MMFE)

SVM Data of uterine
EMG

An accuracy of
86.4–96.5% on

300 records of the
TPEHG DB
database.

EIT

[88] 8 40 kHz /
SVM, RF,
KNN, LR,
Adaboost

Worn on the wrist
to classify 11
gestures with

different
algorithms

Accuracy is higher
than 95%, in the

Adaboost algorithm
achieved the highest
accuracy of 98.11%

[3] 8 40 kHz / SVM

Test the accuracy
of hand set with

seven gestures and
pinch set with four
gestures on wrist

and arm,
respectively

Achieved higher
accuracy on the

wrist than on the
arm, with the

highest accuracy of
96.6%

[141] 8, 16, 32 40 kHz / SVM

Test the accuracy
with different

electrode numbers
for 11 gestures

Get an accuracy of
88.5% with 8

electrodes, 92.4%
with 16 electrodes,

and 94.3% with
32 electrodes

[130] 16 125 kHz /

DT (Fine Tree,
Medium
Tree), SV

(Quadratic,
Cubic,

Medium
Gaussian),

ANN

Using different
algorithms to test
the accuracy of 2D
and 3D EIT with

different
wristband

separations

96.6% for DT(Cubic),
97.4% for (Medium

Gaussian), and 97.7%
for ANN, 5cm band
separation is the best

[142] 8 40 kHz / SoftMax,
SVM, CNN

Worn on the
forearm to classify
10 gestures with

different
algorithms

CNN has the highest
accuracy of 96.66%

for all the 10 gestures
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Table 4. Cont.

Method Reference Sensors
Number

Sampling
Frequency

Feature
Extraction Algorithm Function Performance

[64] 8 50 kHz–
1 MHz / SVM

Worn on the wrist
to classify three

gestures with four
different electrode

materials

An accuracy of
76.7% with medical

electrodes, 93.3%
with conductive
cloth electrodes,

96.7% with
conductive cloth
electrodes, 96.7%

with curved copper
electrodes

[73] 8 20 kHz / Quadratic
Discriminant

Test the accuracy
for nine gestures

based on
two-terminal EIT

Obtain accuracy of
98.5%

Because EIT uses the magnitude as a feature, the feature column is empty.

5.2. Medical and Healthcare
5.2.1. FMG in Medical and Healthcare

Most of FMG’s application in the medical field focus on rehabilitation training and
disease prediction. Neto et al. designed a tendon-actuated robotic glove with an optical
fiber force myography sensor [47]. They propose a system that features tendon-driven
actuation through servo motors, which can help users move their fingers according to
wishes. The soft glove will associate with the recovery of people with hand disabilities.

Quantitative evaluation of the gait phase can provide useful information for diagnos-
ing gait abnormalities. Jiang et al. used a force myography-based technique to detect the
gait phase, which can be used to diagnose gait abnormalities and specify a better rehabilita-
tion plan to restore normal gait patterns [28]. They test this system to detect four different
gait phases using an LDA algorithm. As a result, this approach can correctly detect more
than 99.9% of gait phases, which has a promising potential in future application.

5.2.2. Medical and Clinical Application of EMG

EMG signal is a good tool in many medical and clinical applications, for example, to
evaluate physical condition, diagnose movement disorders, and assist in the rehabilitation
of the disabled [143]. In this section, we will review the development of EMG in the medical
and clinical fields.

As early as 1982, examples of using EMG for health monitoring have emerged. Jerrold
et al. measured the frequency and amplitude components of the EMG signal during muscle
contraction. They measured muscles in six males including the biceps, adductor pollicis,
and quadriceps muscles [144]. They found that the high-frequency component of the EMG
power spectrum was enhanced during fatigue contraction, and the linear relationship
between EMG amplitude and tension was broken. This is an early example of researchers
explaining EMG signals through TFD to detect human health.

In 2016, Buchner et al. used EMG to monitor patients’ muscle movements as they
breathed. They used a new method called the blind source separation (BSS) algorithm
in preprocessing, which effectively distinguished interference between other muscles,
especially the muscles near the heart [145].

In 2018, Belfatto et al. used multi-domain analysis to evaluate post-stroke patients’
rehabilitation in robotic therapy. One of the parameters was EMG. They filtered EMG at
an upper cut-off frequency of 50Hz and a lower cut-off frequency of 10 Hz and used a
non-negative matrix factorization (NMF) algorithm. The sampling frequency was 1 kHz.
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Finally, the clinical improvement of the patients resulted in significant temporal and spatial
changes in EMG signals [146].

It is worth noting that, in recent years, more and more wearable devices have been
put into application, which is of great help to real-time health detection. In 2017, X. Li and
Y. Sun presented a button-like wearable system for monitoring bio-electrical signals, such
as EMG, ECG, etc. A rechargeable Li-ion battery was used to power the system. The whole
system was integrated into a 39 mm × 32 mm × 17 mm little box. The entire system had a
mass of just 24 grams [147].

In 2020, Zhao et al. made a wearable device for supervising upper limb rehabilitation
conditions by combining ECG with EMG sensors. The raw ECG/EMG signals were
processed and transmitted to mobile devices. Furthermore, they developed a software
platform and realized the visualization of ECG/EMG information [148].

Some wearable devices that can provide medical-grade data are also becoming com-
mercially available. Some companies, such as BioSemi instrumentation, Shimmer, and
Biometrics Ltd., provide EMG sensors with lightweight, multi-channel, and high signal-to-
noise ratios. Several new EMG instruments (e.g., FreeEMG) and EMG medical analysis kits
(e.g., Biosignalssplux) have also been produced [143].

5.2.3. Clinical Application of EIT

In recent decades, more and more attention has been paid to the application of EIT
in medical human detection. In 1978, Henderson and Webster monitored lung ventila-
tion using EIT to reconstruct cross-sectional images [149]. In 1983, Barber published the
first electrical impedance tomography image to visualize the cross-section of a human
forearm [150] and proposed the first EIT system for medical imaging in 1984 [151].

A typical application of EIT in biomedical imaging is thorax tomography. This method
of measuring the thorax (especially the lungs) has received a lot of research. In clinical
practice, pulmonary ventilation is often monitored to assess health or treatment status, so as
to formulate a corresponding diagnosis and treatment plan. In 1995, Hahn et al. proposed
functional electrical impedance tomography (f-EIT) to monitor regional ventilation in the
lung by generating functional images of the electrical impedance distribution [152]. In 2003,
Hinz et al. investigated the use of EIT to monitor the changes in the respiratory status of
the lungs [153]. Improving the quality of imaging has a positive impact on formulating
diagnostic protocols, so some investigators have suggested improvements to the traditional
methods which improve the utility of EIT in the clinic. Hao et al. studied the influence of
plane spacing of two planes of EIT sensors in lung imaging and proved that there was an
optimal spacing [152]. In order to solve the problem of low spatial resolution of EIT, Li et al.
proposed to combine the traditional CT technology with EIT. They developed a CT image-
guided EIT (CEIT) and adopted cross gradient technology, to obtain a high-resolution
image of lung detection [154].

When using ventilators to treat patients with acute respiratory distress syndrome
(ARDS), some areas may collapse and others may overinflate due to the differences in
ventilation status, which may cause damage to patients. Zhao et al. adopted EIT to quantify
pulmonary improvement patterns as a global index of homogeneity (GI); thus setting a
reasonable positive end expiratory pressure (PEEP) for the ventilator clinically, which has
a protective implication for patients with ARDS [155,156]. Guillaume et al. studied the
detection of PEEP indexes by EIT and accordingly provided a suitable ventilation strategy
for extracorporeal membrane oxygenation (ECMO) [157]. At present, much of the literature
has reported the results of using EIT to find the best PEEP [158,159].

In addition to detecting the ventilation, EIT can also be used for other pulmonary tests.
Frerichs et al. proved the feasibility of EIT in detecting lung perfusion under the condition
of using an electrical impact contrast agent [160]. Fagerberg et al. proposed the use of
EIT to detect pulmonary perfusion and to identify the acute lung injury (ALI) caused by
endotoxinaemic [161]. Pneumothorax is a noticeable complication during ventilation, and
Costa et al. monitored the characteristic changes related to pneumothorax through EIT
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and developed an automatic detection algorithm [162]. Frerichs et al. also introduced EIT
technology in the study of pulmonary ventilation in critically ill neonates and believed that
it has bright prospects in the future [163]. Furthermore, EIT for asthma, ventilation weaning
and expansion recoil, sequential lobar collapse, targeted physiotherapy, and pleural fluid
assessment have also been intensively studied [164].

Thorax tomography is not the only application of EIT in biomedical imaging. Re-
searchers have investigated methods for applying EIT to the brain, abdomen, and tumor
detection. In 2001, Tidswell et al. used scalp electrodes to record the impedance changes
of the human head for the first time [165]. Subsequently, Bagshaw et al. reconstructed
impedance images of the human brain using FEM and suggested the possibility of ap-
plying it to epileptic treatment. Ayati et al. applied EIT to the in vitro localization and
size estimation of intracranial hematomas. They compared the respective advantages and
disadvantages of full array (FA) and semi array (SA) [166]. However, the low electrical
conductivity of the skull reduces the penetration of the excitation current applied by EIT
and distorts the brain resistance imaging. Methods to solve this problem currently remain
to be investigated. EIT has also been used to perform gastrointestinal imaging to visualize
gastric emptying and gastric secretion. There is a significant difference in the electrical
impedance distribution between normal and tumor breast regions, demonstrating that EIT
can be used to detect breast cancer [167]. Moreover, when treating tumors by hyperthermia
(HT), there is a strict requirement for temperature control, whose change can be real-time
reacted to by monitoring the impedance change of the treatment area through EIT; thus
achieving a good temperature control effect [168]. Some application in medical is showed
in Figure 9.
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Figure 9. Application in medical. (a) Use FMG and machine learning techniques to differentiate
between grasping and no grasping [169]; (b) textile electrodes integrated with a clothing belt for EIT
lung imaging [170]; (c) assisted rehabilitation design of 3D printed hand exoskeleton based on FMG
control [171]; (d) EMG biofeedback device for gait rehabilitation [172]; (e) detection of changes in
lower extremity muscle impedance properties immediately after functional electrical stimulation-
assisted cycling training in chronic stroke survivors [173]; (f) an evaluation of spontaneous respiratory
idiopathic pulmonary fibrosis using EIT [174].

6. Summary and Comparison of the Three Techniques

In this section, we will summarize these three different technologies and compare
their advantages and disadvantages.
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6.1. FMG

In the early days, researchers adopted EMG for gesture recognition. On the one hand,
due to the backwardness of the sensor manufacturing process, it is difficult to make a flexible
and high sensitivity force sensor; on the other hand, the machine learning technology is not
yet mature, which makes it difficult to link the movement and the pressure signal on the
muscle surface. Nowadays, FMG has become an alternative to pattern recognition with
higher accuracy than EMG [137].

Compared with EMG, FMG has the following advantages:
1. Considerable output. In the signal processing part, the FMG system often only

uses a voltage divider bias circuit to obtain the required signal [9,17,136], while the EMG
requires a series of operations, such as amplification and wavelet transform.

2. Higher signal-to-noise ratio and anti-interference ability. Piezoresistive force
sensors directly reflect the relationship between pressure and resistance. Based on this
principle, the relationship between pressure and voltage can be obtained. However, for
EMG, the electrical signal fluctuates greatly, and the noise ratio is obvious. At the same
time, FMG has good anti-interference ability. When faced with some daily scenarios, such
as sweating and electromagnetic interference, the EMG signal will be greatly affected, while
FMG is rarely affected, which means FMG has stronger robustness.

3. Lower cost but similar recognition accuracy. Compared to complex EMG systems,
the most frequently used sensors in FMG systems is thin film piezoresistive sensors [29], for
instance, FSR 402, FSR 400, and TPE 502C. Jiang et al. used FMG to build a gesture recogni-
tion system that only cost 1% of the traditional commercial medical-grade sEMG system,
but obtained similar or better recognition accuracy compared to the EMG system [10].

4. Better performance in dynamic motion. In high-speed activity, FMG is considered
to be a more suitable and accurate identification scheme because it can truly reflect the
mechanical motion of human muscles at high speed [122]. However, EMG will be greatly
affected due to high-speed movement.

6.2. EMG

EMG is the most commonly used biological signal when describing a muscle’s con-
dition for a few decades. It is a traditional and easily accessible signal, which is quite
mature and complete. Its signals are generated during the duration of the action, as a direct
response to muscle movement, which means that it does not need outer stimulation. EMG
has some characteristics as follows:

1. EMG is generally proportional to the motion amplitude of the muscle. Generally,
when the muscle contracts stronger, the signal amplitude becomes stronger in accordance.

2. EMG amplitude is very small. The amplitude of the EMG signal depends on the
muscle condition, the type of exercise, and the observation condition. The amplitudes of
the collected EMG signals are different for different people, different muscle types, and
different movements, but they are all within a small range. For sEMG signals, its amplitude
range is usually 0–10 mV [19,21,175].

3. EMG precedes the muscle’s movement. This is because the EMG signal is detected
when the brain sends instructions to muscles to control movement.

6.3. EIT

With the rapid development of imaging technology in modern medicine, many per-
fect methods, such as computed tomography (CT), ultrasound imaging, and magnetic
resonance imaging (MRI), have been developed. However, these traditional technologies
and equipment are complex, expensive, and have their limitations. In contrast, EIT has
different advantages.

1. No radiation and damage. Compared with the X-rays used in traditional X-CT, EIT
injects the current with the frequency and amplitude within the safe range. Furthermore,
nowadays the mainstream EIT uses non-invasive electrodes in human detection instead of
the plug-in electrodes used in traditional EIT and will not cause harm to the human body.
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2. High-time resolution. EIT imaging is rapid and sensitive to the impedance changes
caused by physiological components and state changes. Compared with CT and MRI,
it has better performance in reflecting the physiological activities of the measured parts
in real-time.

3. Simple and portable device. EIT does not need large transmitting and receiving
devices, but only small electrodes. It just needs small volume, low-cost devices, and has no
special requirements for the working environment.

7. Challenge

Despite their various advantages, they still have some problems to solve. In this section,
we will analyze the current problems and challenges faced by these three technologies. The
comparison of the three technologies is shown in Table 5.

Table 5. Comparison of three techniques.

Technique Robustness SNR System
Complexity Frequency Cost Advantage Disadvantage

FMG Excellent High Simple 0–100 Hz Low

Considerable
output, high

anti-interference
ability. Better

performance in
dynamic motion.
Suitable for most

situations

It is difficult to ensure
that the sensors are

exactly installed in the
same location and have

the same pressure.
Sensors may shift

during use

EMG Poor Low Normal 20–500 Hz High
Signal ahead of

action, better
predictability

Equipment noise.
Interference of skin

surface factors. Motion
artifacts and natural
frequency instability

EIT Poor Low Normal 1 k–1 MHz Low
Reflect the internal
physiological state

of the detection area

Low spatial resolution.
Complicated inverse

problem. The results are
difficult to quantify

7.1. FMG

1. Preload error. The performance of the force sensors utilized by FMG is largely
related to the installation position and tightness, which are often not consistent during
installation. This results in a different preload force for each installation process. Although
some errors can be reduced by standardization, such errors still exist and affect the reliability
of the data.

2. Sensor shift. Because the sensor cannot be fixed exactly in a certain position, the
sensor will inevitably shift during vigorous exercise. Although it will only cause small
displacements, when the displacements continue to accumulate the sensors may shift,
largely worsening the reliability of the signals.

7.2. EMG

1. Powerline interference. The frequency of EMG main energy concentrates in
20–150 Hz, and its amplitude is quite small. Therefore, noises, such as 50 Hz working
frequency interference, high-power equipment interference, and background noise, are
not conducive to acquiring EMG signals. Secondly, the electrode noise also needs to be
considered, which is related to the electrostatic interference and the mechanical movement
between the electrode and the skin. The shape of the electrode and the improper placement
might produce noise that cannot be ignored [81].
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2. Interference of skin surface factors. It is mainly aimed at sEMG. When sampling
human skin surface, skin surface condition has a great influence. For example, sweat will
affect the conductivity of the electrode, leading to changes in the impedance between skin
and electrode [5]. The hair on the skin surface and the fat under the skin will also affect
the impedance. To make good contact between the electrode and the skin, pressing can be
adopted, but pressing the electrode will leave pressing marks on the skin surface, which
will affect the impedance as well. In addition, the electrodes may irritate the skin, causing
unstable signal acquisition.

3. Motion artifacts. Motion artifacts are generated by the muscles tested in different
types of contraction, which will pollute the low-frequency components of EMG and lead
to signal distortion [176,177]. Many factors must be considered, including the type of
muscle and contraction being tested, sensor configuration, and the specific noise source.
Eliminating motion artifacts needs to determine the appropriate filter specification.

4. Natural frequency instability of EMG signal. The amplitude of the EMG sig-
nal is random, especially in the frequency range of 0–20 Hz, and most components are
unstable [20].

7.3. EIT

1. The spatial resolution of EIT is relatively low, especially in the areas close to the
center. This seriously affects the application of EIT. At present, some researchers combine
EIT with CT or MRI to obtain CT image-guided EIT (CEIT) and magnetic resonance electri-
cal impedance tomography (MREIT) technology, attempting to improve the resolution of
EIT in this way.

2. Complicated inverse problem. Because of the illness, non-linearity, and uncertainty
of the inverse problem, the algorithm for solving is often computationally intensive and the
results of EIT are not accurate enough to reduce the resolution and affect the imaging time.

3. The 3D characteristics of EIT. The traditional EIT techniques all consider elec-
trical impedance distribution as a two-dimensional problem, based on which electrodes
are placed in a plane and assuming that the current flows only through the plane to be
measured, which reduces the measurement and calculation difficulties, but in fact, the
distribution of electrical impedance is a complex three-dimensional problem, which needs
further study.

4. Quantification of EIT results. Currently, there is still a lack of technology to
quantify EIT, which hinders its application.

8. Outlook

The above sections explain the working principles, device architectures, interpretation
algorithms, practical applications and challenges of EMG-, FMG-, and EIT-based human
body signal detection techniques. Based on the content discussed, the authors believe that
these three technologies have the following development trends in the foreseeable future.

8.1. Complementation and Calibration

From this article, the three technologies reflect the same thing from different per-
spectives and they are correlated closely. Therefore, the fusion of these three biological
signals can compensate for each other’s shortage, which is of great help to improve the
performance of the system [8]. For instance, impedance changes strongly impact the EMG;
hence EIT could be used to retrieve the impedance profile to calibrate the EMG signal.

8.2. Broaden Application Scenarios

Wearables are powerful in monitoring human body signals omnipresently. Therefore,
the three technologies reviewed in this article have the potential to be used in telemedicine.
By collecting the patient’s biosignals, doctors can obtain the patient’s biological indicators
in real-time and provide guidance for the patient’s medical rehabilitation. Secondly, the
fusion of various biological signals makes it possible to build a digital twin model of the



Biosensors 2022, 12, 516 30 of 37

human body [178]. The digital twin model allows doctors to study the impact of different
drugs and different rehabilitation strategies on the patient’s body from the patient’s digital
model, and then choose the best solution for the patient. The biggest advantage of the
digital twin is that it does not affect real individuals, and all work is carried out in the
virtual world, which will be the direction of research in the future.
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