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Abstract: Covalent organic frameworks (COFs) are gaining growing interest owing to their various
structures and versatility. Since their specific physical-chemical characteristics endow them great
usage potentiality in biosensing, we herein have synthesized spherical COFs with regular shape
and good dispersion, which are further used for the design of a novel nanoprobe by modifying
Histostar on the surface of the COFs. Moreover, we have applied a nanoprobe for the fabrication of
an electrochemical biosensor to detect exosomes. Since Histostar is a special polymer, conjugated
with many secondary antibodies (IgG), and HRP can increase the availability of HRP at the antigenic
site, the biosensor can have a strong signal amplification ability. Meanwhile, since COFs with high
porosity can be loaded with a huge amount of Histostar, the sensitivity of the biosensor can be further
improved. With such a design, the proposed biosensor can achieve a low exosomes detection limit of
318 particles/uL, and a wide linear detection range from 103 particles/uL to 108 particles/uL. So,
this work may offer a promising platform for the ultrasensitive detection of exosomes.
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1. Introduction

Covalent organic frameworks (COFs) are regarded as a rising kind of metal-free
porous crystalline material, formed by the covalent connection and periodic extension of
designed organic structural units [1-4]. Due to their diverse structure, inerratic porosity,
advanced specific surface area, superior thermal stability, and adjustable pore size, COFs are
considered to be promising materials with great potential in the field of energy storage [5-7],
adsorption [8-10], catalysis [11-13], and drug delivery [14-16] and sensing [17-21]. To
date, researchers extensively use solvothermal methods to synthesize COFs. Nevertheless,
it is relatively difficult to control the crystal structure, uniformity, and size of the as-
synthesized COFs, since the solvothermal methods typically require sealed Pyrex tubes,
high temperatures, and inert atmospheres [22-24]. Recently, the strategies of green room-
temperature synthesis for COFs have attracted great attention because they can accurately
control the process of reaction, slow down the reaction rate, and easily acquire high-quality
COFs [25,26].

Exosomes are vesicles with lipid bilayer membrane structures that are released by
most cells and can circulate stably in body fluids [27-29]. Exosomes are considered to
be important players in intercellular communication, and growing evidence shows that
quantities of bioactive molecules are gather in exosomes and can be diverted from donor
cells to recipient cells, resulting in cell-to-cell information transfer [30-32]. The bioactive
substances in exosomes may be taken up by recipient cells, thereby promoting tumorigene-
sis and progression [33-35]. Furthermore, exosomes are not only involved in pre-metastatic
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niche formation, tumor angiogenesis, and tumor immunosuppression, but can also reflect
the changes in the pathological and physiological states of their parental cells [36-39].
Studies have shown that the presence of the epithelial cell adhesion molecule (EpCAM)
in exosomes has diagnostic value for colorectal cancer, while other markers in exosomes
such as the EGFR subtypes can predict the efficacy of treatments for glioblastoma [40—43].
Furthermore, since exosomes can cross the blood-brain barrier, they may also be ideal
candidates for advanced therapy in neurodegenerative diseases [44—46]. Due to these
important functions of exosomes, it is significant to establish methods for exosome analysis
with easy operation, high sensitivity, and dependability.

Herein, we have synthesized spherical COFs with a regular shape and good dispersion
and have used the material to fabricate an electrochemical biosensor for exosome detection.
In order to have a better performance of the biosensor, the COFs are designed to be loaded
with a large amount of Histostar. Histostar is a special polymer that couples multiple
secondary antibodies and HRP on one chain. This structure can increase the availability of
HRP at the antigenic sites and the signal amplification ability. Meanwhile, since COFs can
load a large number of Histostar due to their high porosity, and the exoskeleton of COFs
can maintain the function of Histostar, the sensitivity can be further improved. So, the
electrochemical biosensor fabricated in this work by using Histostar-functionalized COFs
can be used for the sensitive detection of exosomes.

2. Materials and Methods
2.1. Materials and Apparatus

The 2,5-divinylterephthalaldehyde (DVA) was purchased from Jilin Chinese Academy
of Sciences-Yanshen Technology Co., Ltd. (Changchun, China). Acetonitrile (ACN),
tris(hydroxymethyl)aminoethane (Tris), glacial acetic acid (HAc), 1,3,5-Tris (4-aminophenyl)
benzene (TPB), and tetrahydrofuran (THF) were supplied by Aladdin. The 3,3',5,5'-
tetramethylbenzidine (TMB) substrate (H,O, included) was purchased from Sigma-Aldrich.
Anti-CD63 mouse monoclonal antibody was purchased from Sangon Biotech Co., Ltd.
(Shanghai, China). Anti-EpCAM rabbit monoclonal antibody was obtained from Abcam.
Histostar was offered by MBL Beijing Biotech Co., Ltd. (Beijing, China). All other reagents
used were analytical grade. Ultra-pure water was purified by Millipore purification system
(Milli-Q, 18.2 MQ)).

The size and monodispersity of the spherical COFs were obtained using FEI Tecnai
G2 F20 S-TWIN instrument and Hitachi Smur 3400N instrument. Electrochemical studies
were performed by a CHI660D electrochemical workstation. Nanoparticle tracking analysis
were acquired on Malvern instrument.

2.2. Preparation of Spherical COFs

Spherical COFs are obtained based on previous reports and with certain improve-
ments [47]. Firstly, TPB (70 mg) and DVA (56 mg) were mingled with acetonitrile (25 mL)
with 1 min ultrasonic. After that, acetic acid (5 mL, 12 M) was continuously dripped into the
solution and oscillate violently for 10 s. Then, the solution was placed at room temperature
for 3 days. The solids were collected via 9500 rpm centrifugation, washed several times,
and dried in vacuum at 60 °C.

2.3. Preparation of Histostar@COFs

Histostar@COFs was prepared by combining 1 mL of Histostar with COFs dispersion
(1 mL, 0.1 mg mL~!) and stirring for 4 h. Then, the product was obtained via centrifugation
(9500 rpm) and finally dispersed in PBS (1 mL, 10 mM).

2.4. Cell Culture and Exosome Isolation

The cells were cultured in 1640 medium containing 1% (v/v) penicillin-streptomycin
and 10% (v/v) FBS under a moist environment with 5% CO,. When the cells grew to 70%,
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the supernatant was discarded and the cells were transferred into serum-free medium for
two days. Finally, the treated supernatant was collected for exosome isolation.

Centrifuge (2000 g, 20 min) the collected supernatant to remove cell fragments and
larger molecules. Then, centrifuge at 11,000x g for 0.5 h, and then ultrafiltration (0.22 pm
pore diameter). The exosomes were obtained by centrifuging the solution at 120,000 x g for
2 h, and the obtained exosome was kept in —80 °C for further use. Nanoparticle tracking
analysis (NTA) was used to measure the concentration of exosome.

2.5. Preparation of the Biosensor

The gold electrodes were pretreated based on the previous literature [48]. The anti-
CD63 mouse monoclonal antibody (Ab1) was immobilized onto the gold electrodes via
thiol-modification of primary amines (-NHj) of the Ab1 to introduce sulthydryl (-SH)
groups, thus allowing covalent immobilization of the thiolated antibodies to the gold
electrode (the electrode was labeled as Ab1/Au). After washing with PBS, the electrode
was treated with 3% BSA for 1 h in order to prevent non-specific adsorption. Next, 5 pL
of exosomes at different concentrations were dropped onto the Abl/Au and incubated
at 37 °C for 2 h. After washing with PBS, 5 uL of 0.5 mg mL~! anti-EpCAM rabbit mon-
oclonal antibody (Ab2) was dripped onto the exosome/Abl/Au electrode surface and
incubated at 37 °C for 1 h. The prepared electrode was labeled as Ab2/exosome/Abl/Au.
After washing PBS for three times, the prepared Histostar@COFs was dripped onto the
Ab2/exosome/Abl/Au and incubated for 1 h, and the electrode was labeled as His-
tostar@COFs/Ab2/exosome/Abl/Au.

2.6. Electrochemical Detection

Electrochemical impedance spectroscopy (EIS) and amperometric i-t curves were
measured by a CHI660D electrochemical workstation. Gold electrodes, saturated calomel
electrodes (SCE), and platinum electrodes were used as working electrodes, reference
electrodes, and counter electrodes, respectively. EIS was measured in 0.1 M PBS buffer
containing 5.0 mM [Fe(CN)g]*~/4~ and 0.1 M KClI (pH =7.4) with a ranging frequency from
0.1 to 10° Hz. The i-t curves were measured in a TMB substrate solution (H,O, included)
at a voltage of —0.1 V.

3. Results and Discussion
3.1. Principle of the Biosensor

Figure 1 depicts the preparation process of the COFs-based nanoprobes as well as the
principle of the proposed biosensor for exosome detection. Firstly, COFs are synthesized
by TPB and DVA at room temperature. Then, a large amount of Histostar is loaded on the
surface of spherical COFs. Histostar is a special polymer that couples multiple secondary
antibodies and HRP on one chain. This structure can increase the availability of HRP at
antigen sites and, thus, has a very effective signal amplification effect. Meanwhile, due to
their high porosity, COFs are able to carry a huge amount of Histostar, and the stability of
Histostar can be significantly improved by the exoskeleton of COFs. For the detection of the
exosome, the anti-CD63 mouse monoclonal antibody is firstly immobilized on the surface
of the electrode. After exosomes are captured on the electrode, the anti-EpCAM rabbit
monoclonal antibody will combine with the EpCAM on the exosome surface. After that,
through the specific recognition between primary and secondary antibody, the captured
anti-EpCAM rabbit monoclonal antibody can further combine with the secondary antibody
IgG in Histostar@COFs, thus introducing a large amount of HRP to the electrode surface.
Under the action of TMB and H,O5, strong electrochemical signals can be produced for the
quantitative detection of exosomes.

3.2. Characterization of Materials

We have characterized the size and morphology of the prepared nanomaterials through
SEM and TEM. Figure 2A,B exhibits the typical SEM image (Figure 2A) and the TEM image
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(Figure 2B) of the spherical COFs. The prepared COFs are of uniform sphere and have
good dispersibility. The average diameter is about 450 nm. To verify the performance of
the material, the comparison of Histostar@COFs and HRP-labeled mouse anti-rabbit IgG
(HRP-IgG) has been provided, and the results are shown in Figure 2C. The experimental
results indicate that the current response in the presence of Histostar@COFs is significantly
higher than that of HRP-IgG, which suggests that Histostar@COFs can effectively amplify
the signal.
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Figure 1. Schematic graph for (A) the preparation process of Histostar@COFs and (B) the principle of
the proposed biosensor for the detection of exosomes.

Current {pA}

Figure 2. SEM(A) and TEM (B) images of COFs. (C) The current response of (a) Histostar@ COFs
and (b) HRP-IgG.
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3.3. Feasibility Verification of the Method

The preparation process of this biosensor has been characterized by EIS. As shown
in Figure 3A, the bare gold electrode (curve a) possesses a negligible semicircle, which
indicates that the charge transfer resistance (Rt) is very low. When Ab1 (curve b), exo-
somes (curve c), and Ab2 (curve d) are modified on the electrode surface, the R¢; values
increase significantly, because the electron transfer of [Fe(CN)e]’~/#~ is hindered by the
antibodies and exosomes. When Histostar@COFs (curve e) are modified on the electrode,
the Rt further increases, indicating the successful combination between the exosomes
and Histostar@COFs. In addition, we have measured the current response of different
modified electrodes to confirm the preparation of this biosensor. As shown in Figure 3B,
since the Histostar@COFs nanoprobe cannot bind to the electrode, the bare electrode (curve
a) and electrode without exosomes (curve b) only exhibit weak currents. Nevertheless,
when exosomes are present in the sample, the current increases significantly (curve c). The
reason is that a large amount of HRP has been introduced to the electrode surface, which
can generate a strong electrochemical signal. So, this method is feasible for the detection
of exosomes.
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Figure 3. (A) EIS measurements of (a) bare gold electrode, (b) Ab1/Au, (c) exosomes/Abl/Au,
(d) Ab2/exosome/Abl/Au, and (e) Histostar@ COFs/Ab2/exosome/Ab1/Au. (B) Currents of differ-
ent electrodes in detection buffer: (a) bare Au, (b) Histostar@COFs/Ab2/exosome/Abl/Au when
the exosome concentration was 0 particles/uL, and (c) Histostar@COFs/Ab2/exosome/Abl/Au
with 10° particles /L concentration exosomes.

3.4. Analytical Performance of the Biosensor

The proposed biosensor has been used for the analysis of exosomes at various concen-
trations. Experimental results reveal that the current increases with the increase in exosome
concentration from 103 to 10® particles/uL (Figure 4A). There is a linear relationship be-
tween the current response and the logarithm of the exosome concentration (Figure 4B).
The regression equation is I = 0.4140 logc—0.7615, and the correlation coefficient is 0.9952.
The limit of detection is 318 particles/ L (S/N = 3). Compared with some other reports for
exosome detection (Table 1), this method possesses a wider linear range and a relatively
low detection limit, suggesting its excellent performance.

To assess the selectivity of this sensor, we have selected some substances that may
coexist in biological samples as interferences, such as cysteine, glucose, glutathione, and
BSA (the concentration of exosomes is 100 particles/uL, and the concentrations of inter-
ferents are 1 mM). As shown in Figure 5A, compared with the other three interferers,
the current response for exosomes is significantly higher, indicating that the biosensor
has good selectivity for exosome detection in biological samples. In addition, we have
evaluated the reproducibility of this biosensor through relative standard deviation (RSD).
Six tests have been conducted, respectively, with the concentration of exosomes as 100
particles/pL (Figure 5B). The RSD of the six tests is 2.27%, indicating the good reproducibil-
ity of this biosensor.
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Figure 4. (A) Current curves for different concentrations of exosomes. a-g are 0, 103, 10%, 10, 10°,
107, and 10® particles/pL, respectively. (B) The linear relationship between the current intensity and
the logarithm of exosome concentration.

Table 1. Comparison of the developed method with some other reports.

Technique Linear Range Detection Limit Reference
! Particles/uL Particles/uL
Fluorescence 8.5 x 10% to 8.5 x 10° 45 % 10% [49]
Fluorescence 10° to 10° 10° [50]
Fluorescence 1.1 x 10*to 1.1 x 107 562 [51]
Surface plasmon resonance 0.1 to 107 10* [52]
Electrochemiluminescence 10 to 10° 400 [53]
Colorimetry 2.0 x 103 to 5.0 x 10° 1.2 x 10 [54]
Colorimetry 108 to 1010 1.5 x 108 [55]
Electrochemistry 10* to 107 9661 [56]
Electrochemistry 103 to 108 318 This work
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Figure 5. (A) Current change (Al) before and after addition of exosomes and interferents. a—e are
exosome, cysteine, glucose, glutathione, and BSA, respectively. (B) Reproducibility of the biosensor.

4. Conclusions

In this work, we have synthesized spherical COFs with a regular shape at room tem-
perature by the Schiff base reaction between DVA and TPB. Through the reasonable control
of the reaction conditions, the obtained COFs present good crystallinity and morphology, a
large specific surface area, and good stability. After preparation, the COFs have been further
functionalized with Histostar and then applied for the sensitive detection of exosomes. So,
this work may open up a new avenue for the application of COFs in biosensing, while it
also provides a simple and effective method for exosome detection. The simple and easy
preparation method of spherical COFs as well as their functionalization by Histostar may
advance the development of biosensors based on metal-free porous crystalline materials.
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