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Abstract: This paper presents the development of a new complete wearable system for detecting
breast tumors based on fully textile antenna-based sensors. The proposed sensor is compact and
fully made of textiles so that it fits conformably and comfortably on the breasts with dimensions
of 24 × 45 × 0.17 mm3 on a cotton substrate. The proposed antenna sensor is fed with a coplanar
waveguide feed for easy integration with other systems. It realizes impedance bandwidth from
1.6 GHz up to 10 GHz at |S11| ≤ −6 dB (VSWR ≤ 3) and from 1.8 to 2.4 GHz and from 4 up to
10 GHz at |S11| ≤ −10 dB (VSWR ≤ 2). The proposed sensor acquires a low specific absorption
rate (SAR) of 0.55 W/kg and 0.25 W/kg at 1g and 10 g, respectively, at 25 dBm power level over the
operating band. Furthermore, the proposed system utilizes machine-learning algorithms (MLA) to
differentiate between malignant tumor and benign breast tissues. Simulation examples have been
recorded to verify and validate machine-learning algorithms in detecting tumors at different sizes of
10 mm and 20 mm, respectively. The classification accuracy reached 100% on the tested dataset when
considering |S21| parameter features. The proposed system is vision as a “Smart Bra” that is capable
of providing an easy interface for women who require continuous breast monitoring in the comfort
of their homes.

Keywords: wearable; breast cancer; textile antenna sensor; smart bra; coplanar waveguide monopole an-
tenna specific absorption rate (SAR); machine-learning algorithms (MLA); ultra-wide bandwidth (UWB)

1. Introduction

According to the World Health Organization (WHO), the most common cancer de-
tected among women is breast cancer. The incidence rate of women in the world reached
25.2%, and the number of cases diagnosed with breast cancer worldwide reached about
1.7 million [1,2]. According to the American Cancer Society in 2019, more than 40,000 women
died of breast cancer, and more than 260,000 new cases of breast cancer would be diagnosed
in the United States in 2020 [1,2]. More than 22,000 new cases of breast cancer are diagnosed
annually in Egypt, where it accounts for 33% of all female cancer cases [3]. In 2018, there
were about 134,632 new cancer cases and 89,042 cancer-related deaths in Egypt only. De-
tecting breast cancer early enough is key to successful treatment, with a five-year survival
rate of over 90% [4,5]. Therefore, regular check-ups and early detection of breast cancer is
very important.

The current techniques for breast imaging are ultrasound, magnetic resonance imaging,
and the most famous technique, X-ray mammograms [6,7]. Research has shown that more
women in their forties suffer harm from starting regular mammograms than older women.
Mammographic findings revealed that 1212 of the 10,000 women examined turned out to
be a false positive in their forties [6,7]. Adverse effects of mammography include excessive

Biosensors 2023, 13, 87. https://doi.org/10.3390/bios13010087 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios13010087
https://doi.org/10.3390/bios13010087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-6168-7681
https://orcid.org/0000-0002-0179-4020
https://orcid.org/0000-0002-2114-2388
https://orcid.org/0000-0002-9088-7578
https://doi.org/10.3390/bios13010087
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios13010087?type=check_update&version=1


Biosensors 2023, 13, 87 2 of 24

treatment and unnecessary follow-up tests, other than the psychological harm caused by
false positive test results. Ultrasonic pulses are created by placing a transducer on the skin,
which transmits ultrasound pulses to the breasts and listens for their echoes inside the
breasts. Although this procedure is painless and radiation-free, ultrasonography has a low
spatial resolution and cannot differentiate between dangerous and benign tumors. On the
other hand, an MRI creates images of the inside of the body using radio waves and powerful
magnetic fields [8,9]. Additionally, a contrast fluid is injected when it is used on the breasts
(soft tissue) to obtain a crisper image. Prior to surgery, the examination is evaluated using
magnetic resonance imaging. The costs associated with MRI exams are high, and incorrect
placement of the breasts might result in a missed diagnosis [9,10].

Recently, microwave imaging and detection systems offered a great alternative in
terms of resolution, safety, pain-free, as well as low cost and less scanning time. Sensing
using microwaves mainly relies on detecting differences in electrical properties between
normal and cancerous tissues in the breasts [11–31]. Several studies reported a significant
contrast in the range of 1:2.3 to 1:10 between dielectric properties of healthy and cancer-
ous breast tissues [21,24–26,31]. Thus, the idea of developing wearable detection systems
using microwaves is more eminent and will be capable of detecting tissues with breast can-
cer [21,24–26,31]. One of the most important elements in the microwave detection system
is the antenna used to transmit/or receive electromagnetic energy. Many antennas have
been designed for breast cancer detection, such as horn antenna [12], CPW antenna [13],
3D antenna [14], microstrip antenna [15], dielectric resonator antenna (DRA) [16], and
monopole antenna. Thus, developing textile-based antennas as wearable antenna sensors
is emerging in the literature [17–23]. Many textile-based antennas are reported in the
literature for various applications and specifically developed by our group in [24,25]. This
study was conducted towards developing wearable microwave imaging systems for breast
cancer detection and monitoring as shown in Figure 1.
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Figure 1. The proposed breast cancer detection system as a “Smart Bra”.

For data classification and interpretation, researchers used machine-learning tech-
niques to improve the performance of microwave imaging systems [26–31]. In [32], the
detection of breast lesions based on radar techniques have utilized machine-learning tech-
niques for detecting lesions. Microwave signals of a generated 3D tumor model created a
dataset of features to train a support vector machine (SVM) as well as logistic regression
classifiers in order to detect malignant tumors. In [33], clinical data of a microwave mammo-
gram were collected to train a classifier that detects breast lesions. The authors achieved a
classification accuracy of 85%; however, they detected the breast tumor with S11 parameters
only, which limits the classification accuracy. Different machine-learning algorithms have
been utilized for classification task on S-parameters of the proposed antenna sensors. These
classification algorithms are applied on both S11 and S21 of microwave antenna sensors.
The classification algorithms are trained and tested to detect tumors of sizes 10 mm and
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20 mm, respectively. These examples show the effect of S21 as well as the tumor size on the
classification accuracy.

This paper proposes a wearable flexible system for breast monitoring and screening.
This is realized by developing antenna-based sensors using only textiles. The proposed
sensors use microwave signal for breast screening. The given system provides a broadband
performance in the ISM band from 1.8 GHz to 10 GHz. The antenna-based sensor is com-
posed of a monopole antenna with an overall compact size of 24 × 45 mm2. Performance of
the monopole antenna allows integration into wearables unlike similar work in the litera-
ture using end-fire Vivaldi antennas. Most systems relying on Vivaldi antennas will require
patients to position themselves into the scanning system. Moreover, specific absorption rate
(SAR) is measured and recorded for the proposed antenna-based sensors. The proposed
antenna-based sensor realized an improved low SAR compared to the standard rated value,
which validates its safety as a single element or array in the proposed wearable system.
Moreover, phantoms for the breast and tumor have been fabricated as well in this paper
to validate the operation of the proposed antenna-based textile sensors. To complement
the proposed system, detection algorithms based on machine learning have been devel-
oped and tested as well using S-parameters of the proposed antenna-based sensors. The
detection results validate the potential of the proposed system for breast cancer detection,
monitoring, as well as imaging.

2. Materials and Methods
2.1. Wearable Breast Cancer Monitoring System

Electronic devices or smart sensors (antennas) can now be worn directly on the body by
using wearable technologies. It has a lot of benefits, including constant health monitoring
with minimal energy use. Due to its low-cost, low-profile, non-ionizing, and non-intrusive
characteristics, wearable microwave detection and imaging systems have gained popularity
as a tool for long-term disease assessment or routine monitoring. It is crucial to employ
soft, pleasant materials while creating wearable technology. The proposed detection and
monitoring system for the breasts is visioned in Figure 1 as a “Smart Bra”.

It proposes a new comfortable wearable system that will help women to receive
regular breast cancer screening safely, specifically young women with dense breasts, using
microwave imaging. The prospective system is planned to use textiles for fabricating antenna-
based sensors. Microwave breast imaging has the potential to replace or act as an additional
tool to the standard X-ray mammography for detecting breast cancer. The system will
provide a graphical user interface connected to the system through a control unit as shown
in Figure 1. The results from microwave breast monitoring systems are very promising
so far due to the difference in dielectric properties between malignant tissue and normal
breast tissue. Thus, electromagnetic sensors’ optimization is critical to design new antenna-
based sensors to enhance detection results focusing on higher gain and broader bands
while keeping the antenna size. Optimizing the size of the single element antenna will
allow building larger arrays with more collected information of the scattered signal for a
successful detection. Realizing a wide bandwidth will help in constructing a high-resolution
image and reducing the distortion in transmission of short-duration pulses. Many efforts are
conducted to investigate new sensors with characteristics suitable to satisfy the competing
requirements of the microwave breast imaging and detection systems.

2.2. Antenna Sensor Fabrication Technologies and Materials

Multiple ways exist to manufacture textile-based antennas acting as antenna sensors,
where performance depends on the material used, fabrication technique, and the substrate
properties [29,34–37]. The antenna sensor with a thin layer of uniform metallization is
deployed on substrates. To encounter for the given application, cotton substrates are chosen
based on the study conducted previously in [24,25]. Cotton is used as substrate material in
the designed proposed antennas with dielectric constant ε = 1.9, loss tangent = 0.04, and
thickness = 2 mm [24,25]. Cotton as a substrate is a good alternative for the fabrication
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of the wearable antenna sensors as it provides comfort, absorption of human sweat, ease
of fabrication, and cost efficiency. Moreover, cotton substrates are biodegradable and
environmentally friendly [34].

A thin layer of uniform metallization layer can form the structure of the given antenna
sensor by using either copper tape, embroidered conductive threads, conductive textile, or
using inkjet screen printing on a non-conductive textile acting as the substrate [35]. Copper
tape was not chosen as it is not ideal for long-term usage as bending and humidity may cause
it to detach from the substrate. Also, the conductive threads that are embroidered to the textile
non-conductive substrate to form the antenna with low radiation efficiency and it is affected
by the washing process. Computer-aided embroidery machines help in constructing complex
antenna structures with neither huge time consumption nor inaccuracy [36]. However, mul-
tiple parameters control the efficiency and the performance of the embroidered antenna.
Firstly, the DC resistance of the conductive threads can affect the radiation efficiency along
with the losses inside the substrate [37]. The DC resistance of the conductive threads are
depend on both a function of the material type and the stitch type, as well as the tension or
the stretching force.

In this paper, the proposed antenna sensors will be fabricated using two technologies
for metallization. The first technology uses a flexible Roger substrate fabricated by using
photographic technique, while the second uses conductive fabric attached on the cotton
substrate using glue [35–37]. The second technology uses conductive fabric. In [38], four
different methods were used for attaching the conductive fabric. The sewing method is
very slow and requires accuracy to not cause any shorting during the sewing procedure.
This technique of manufacturing flexible antenna is more tolerant and practical compared
to using copper tape [38]. On the other hand, conductor fabrics such as nylon (Nora-Dell-
CR Fabric), conductive polymers (PANI/CCo), ShieldIt, and Coatex have constant sheet
resistance per square and are shaped manually using regular cutting tools. The conductive
fabric with adhesive layer is then integrated into the dielectric fabric by ironing or by
sewing directly onto the dielectric fabric. Moreover, heat is totally avoided in connecting
the SMA connector to the textile-based wearable antenna. Instead, conductive glue, known
as an epoxy adhesive, is used to attach connectors to all proposed antenna sensors for
characterization and measurements. The proposed antenna is symmetric with respect to its
axis as shown in Figure 2. The proposed design starts as a simple rectangular patch monopole
antenna with coplanar waveguide fed as shown in Figure 2a, which is developed to the
monopole antenna trapezoidal shape as shown in Figure 2b. A modified ground plane is
used as shown in Figure 2c. Two inset stubs with different impedance transmission line
values are added as shown in Figure 2d. Finally, different stub lengths are added to the feed
line, and the dimensions of the proposed monopole are optimized as shown in Table 1. The
final design of the proposed antenna sensor with all design parameters labelled is shown
in Figure 2e.

Table 1. The optimized dimensions of the proposed antenna sensor (all dimensions in mm).

Antenna Sensor and Substrate Feed Line Ground

Wsub = 24 Wp2 = 7.5 Ls1 = 5
Lsub = 45 Lp2 = 20 Ls2 = 3
Wp1 = 20 Wf = 2.8 Lg = 14.25

Lp1 = 23.75
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2.3. Phantom Fabrication Materials

Many types of mixtures are reported in the literature to replicate breast and tumor
phantoms [39–42]. In the proposed work, as shown in Figure 3a, the recipe reported in [43]
was adopted in the fabrication of both the breast and tumor models. For the breast models,
4.5 g of agar is dissolved in 50 mL of distilled water, 150 mL corn oil, and 30 mL neutral
detergent. Next, sodium chloride and sodium ethate monohydrate are added to the mixture.
After the solution is dissolved, it is heated up to 80 ◦C until bubbles begin to form, and
the mixture becomes transparent. At that stage, the heat is turned off and xanthan gum
is added to the solution and mixed. Finally, polyethylene powder is added to obtain a
homogeneous mixture. The mixture is poured into a mold suitable for the anatomical
structure. On the other hand, the tumor model is prepared in the same way but with
different proportions of 100 mL deionized tri-distilled water, 60 mL ethanol, 1 g NaCl, and
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1.5 g agarose [43]. For all materials used, a little yellow color is used to distinguish the
tumor model as shown in Figure 3b. All models were kept in the refrigerator to solidify.
Figure 3a presents the flow chart of the fabrication of the breast and tumor models as well
as the fabricated breast model with tumor inserted in the middle.
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To verify the electrical properties of the breast and tumor models, SPEAG’s Dielectric
assessment kit (DAK-3.5-TL2) at the microwaves measurements lab in the Electronics
Research Institute (ERI) was used. Figure 4 presents the real and imaginary parts of the
electric permittivity of the models. The real part (ε′) represents the dielectric constant (εr),
while the imaginary part (ε”) represents the losses.
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2.4. Experimentals Setups

This section presents all measurement setups used to evaluate the performance of the
proposed antenna-based sensor in air and in proximity to models of the breast and tumors
in frequency band up 10 GHz. For characterizing reflection and transmission properties, a
two channel Rohde & Schwarz ZVA 67 vector network analyzer with frequency range up
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to 67 GHz is used as shown in Figure 5. Figure 5a shows the overall complete setup for
flexible Roger substrate, while Figure 5b shows the textile antenna-based sensor connected
to the cable during measurements.
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2.5. Specific Absorption Rate (SAR) Measurements

To assess the safety of the wearable antenna-based sensors, specific absorption rate
(SAR) is simulated and measured. A flat phantom for body-worn measurements (meets
both IEC and FCC criteria for tissue-simulating media) as well as the left and right sides
of the SAM head phantom are included in the equipment. Speag Switzerland is used for
SAR measurements (cSAR3D) for conducting high-precision SAR measurements of devices
operated on the body and both sides of the head as specified by IEC62209-1, IEEE 1528,
FCC OET65, etc. cSAR3D performs fast (0.3 s) and repeatable (<0.1 dB) measurements in
the band from 0.65 to 6 GHz [44]. Figure 6a,b show the SAR measurements complete setup
for the flexible Roger substrate and textile-based antenna sensor, respectively.
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2.6. Classification and Detection Algorithms

The proposed detection system is based on utilizing the deployment of different
machine-learning algorithms to predict tumor in breast based on the effective relative
permittivity of the breast tissues. This section provides an illustrative review on different
machine-learning detection algorithms.
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2.6.1. Logistic Regression (LR)

In logistic regression (LR) technique, the prediction of a target variable is based on the
fitting probability of the event on the logistic curve [45]. Logistic regression can be modeled as:

Ŷ = log
(

x
1− x

)
(1)

where x is the probability of interested outcome and Ŷ is the predicted output.

2.6.2. Support Vector Machine (SVM)

Support vector machines (SVMs) are used for classification and regression tasks [45,46].
They are based on separating data of different classes using a separating hyper-plane the
SVM can be calculated as follow:

If Yi = +1; wxi + b ≥ 1
If Yi = −1; wxi + b ≤ 1

Foralli; yi(wxi + b) ≤ 1
(2)

where x is a vector data point, b is a constant term that indicates the distance from the
origin, and w is a weight vector as shown in Figure 7 [46]. The data [a] should always be
greater than zero in order to separate it. The SVM selects the best hyper-plane where the
distance between separated data is as large as possible. The optimum hyper-plane yields
the maximum margin between closest points.
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The SVM finds the hypothesis function, f (x) that separates different classes with maxi-
mum margins [46]. The SVM implements non-linear input vectors through mapping with
a linear model. To tackle this problem, the SVM’s kernel function and hyper-parameters
have to be properly defined. A proper setting of these parameters directly affects the model
prediction performance [47].

Given an input training dataset, (X, Y) = (x1, y1), (x2, y2), · · · , (xN , yN), the pre-
dicted output response (ŷ) of f (x) can be expressed as follows:

ŷ = 〈ω, φ(x)〉+ b =
N

∑
i=1

(αik(xi, x)) (3)

where the weight vector is denoted by ω, the feature vector is denoted by φ(x), αi are the
support vectors coefficients, the non-linear feature kernel is k(xi,x), and b is a constant term.
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A polynomial kernel function is used to learn non-linear feature parameters as in [46]. The
predicted output decision ŷ is denoted as:

ŷ = 〈ω, φ(x)〉+ b =
N

∑
i=1

(
αi

(
γxTx′ + c

)d
)
+ b (4)

2.6.3. Decision Trees (DT)

Decision trees are used by many machine-learning applications due its ability for clas-
sification and prediction tasks [47–49]. A decision tree is a supervised learning algorithm
based on a hierarchical structure for recursive splits of nodes with smaller steps. It consists
of decision nodes and terminal leaves where the decision nodes are connected together by
a predictive model and each leaf represents a class. The decision tree model is illustrated in
Figure 8.
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2.6.4. Random Forest (RF)

Random forest is a supervised algorithm used by many researchers for classification
tasks [50–52]. It uses ensemble learning where multiple classifiers are combined to solve
complex problems. Random forest (RF) consists of different decision trees (DT) on various
subsets of the given dataset. The decision of these trees is averaged to improve the predic-
tive accuracy of that dataset. The RF algorithm utilizes ensemble voting of predictions to
predict the final output instead of estimating prediction of a single decision tree.

2.6.5. Gradient Boosting Methods (GBM)

Gradient boosting focuses on combining different decision trees as a weak learner
to create a strong learner for accurate prediction [53,54]. It uses gradient descent as the
optimization algorithm to minimize the loss function to obtain an improved learner. The
gradient boosting for a specific loss function is illustrated as ψ(y, f ) and for a base learner
as h(x, θ) as mention in [53,54]. The algorithm yields h(x, θt) that is parallel to the negative
gradient {gt(xi)}N

i=1 of the data as mentioned in [53,54]:

gt(x) = Ey

[
∂ψ(y, f (x))

∂ f (x)

∣∣∣∣x]
f (x)= f̂ t−1(x)

(5)
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It ends up with optimized least-squares solution as:

(ρt, θt) = argminρ,θ

N

∑
i=1

[−gt(xi) + ρh(xi, θ)]2 (6)

2.6.6. Extreme Gradient Boosting (XGBoost)

Extreme gradient boosting (XGBoost) uses ensemble boosting for a decision tree
algorithm [54,55]. The XGBoost combines multiple weak models to yield a better model.
For different inputs and outputs, (x1, y1), (x2, y2), · · · , (xn, yn), the ensemble algorithm
uses K additive functions to predict an output as mentioned in [54,55]:

ŷi =
K

∑
k=0

fk(x), f ∈ F (7)

where f ∈ F is the space of CARTS. The function is approximated by minimizing regular-
ized objective function for a given set of parameters θ as:

obj(θ) =
n

∑
i=0

l(ŷi, yi) +
K

∑
k=0

Ω( fk) (8)

where l(ŷi, yi) represents the training loss function of the predicted and real values, while
Ω( fk) denotes the regularization term that penalizes the model complexity as mentioned
in [54,55].

2.6.7. Light Gradient Boosting Machine (Light GBM)

Light gradient boosting machine (Light GBM) is a lightweight gradient boosting algo-
rithm [56,57]. Light GBM is an accurate decision tree algorithm that produces complicated
trees. It is based on the histogram algorithm where the data features eigenvalues that are
converted into a histogram and the k bins intervals. Selecting appropriate parameters
prevents overfitting of the model.

2.6.8. Categorical Boost (“CatBoost”)

In this technique, both gradient boosting as well as categorical features are integrated
together to yield the “CatBoost” algorithm [58,59]. It utilizes a random permutation and
one-hot-max-size to emphasize categorical features to enhance algorithm robustness [59].
In “CatBoost”, a random permutation of the dataset is performed with an average label
value assigned for each data sample [59]. In binary classification task, “CatBoost” boosts
the classification accuracy with fast training speed.

3. Results

This section will be classified into three main subsections. The first section will repre-
sent both simulations and measurements for the textile-based antenna sensor in the free
space. The second section will present both simulations and measurements of the pro-
posed microwave antenna sensor while being placed on the breast phantom. Using breast
phantoms in simulations and measurements will be performed in two scenarios: normal
breast model and breast model with inclusion of tumor. The third section will represent the
results of classification and detection techniques addressed in Section 2.5.

3.1. Characterization for Textile Antenna-Based Sensor
3.1.1. Simulation Results

In this section, insights concerning the simulation and measurement results of the
designed antenna sensor (CPW-based antenna) will be explored. The proposed monopole
UWB antenna is simulated using HFSS v.15.0 based on finite element method (FEM).
Moreover, a comparison of the performance of the antenna-based sensor using two types
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of conductors will be presented. The first conductor is flexible Roger as RT/Duroid 3003
substrate with height h = 0.13 mm, relative permittivity εr = 3, with 0.0025 loss tangent, and
the second is conductive fabric with sheet resistance of 0.5 Ω/� as shown in Figure 9.
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The effective dielectric constant (εre f f ) could be expressed by using Equation (19):

εre f f =

(
εr + 1

2

)
+

(
εr − 1

2

)(
1 +

12× h
w

)− 1
2

(9)

The resonance frequency of the proposed rectangular monopole patch antenna could
be calculated by using Equations (10) and (11), according to the standard formula [60].

The first resonant frequency ( fr) is:

fr =
1.8411c

2πD1
[
εre f f

{
1 + 2h

πLεr

(
ln
(

L
2h

)
+ (1.44εr + 1.77) + h

L (0.258εr + 1.65)
)}]1/2

∼=
c

4 ∗ L ∗ √εre f f
(10)

L = Lp1 +
(

Lsub −
(

Lg + Lp1 + 3.8
))

mm (11)

where (c) is the velocity of light, ( fr) is the resonant of the frequency, Lp1 is the length of the
rectangular radiator patch, (εr) is the dielectric constant of the substrate, and h is the height
of the substrate. So, by using the above equations εre f f = 2.8 and L = 25.5 mm, the first
resonant frequency is about 2 GHz, and when the ground plane is modified and etched
multiple slots the resonant frequency is reduced to 1.55 GHz.

Both types of conductors reveal similar operation in terms of reflection coefficient,
impedance matching (real and imaginary), and gain as shown in Figure 10a,b, respectively.
The real and imaginary values of the impedance for both materials at frequency less than
6 GHz are almost the same as shown in Figure 10a. The gain shown in Figure 10b of
flexible conductor substrate is higher than the textile antenna by 3 dBi on average over
the operating proposed antenna band. Figure 11 shows the current distribution over the
proposed antenna-based sensor at different frequencies over the operating band (2.5 GHz,
5 GHz, 7.5 GHz, and 10 GHz).
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3.1.2. Experimental Results

To validate the performance of the proposed antenna, the proposed antenna-based
sensor is fabricated using two types of conductors tested in simulation models: flexible
Roger substrate and conductive textile materials.

Conductors are used for radiators and ground planes, while cotton is used for substrate
as shown in Figures 12 and 13. The antenna measurements are conducted using the VNR:
67 R&S® ZVA VNA with frequency range up to 67 GHz (vector network analyzer) in
the Electronics Research Institute (ERI) Labs. The SMA connector is connected by using
carbon adhesion conductor epoxy with textile fabric conductor. Both figures show very
good agreement between the measured and simulated results. This could be linked to the
high quality of photolithographic shown in Figure 12, as well as high quality of textile
fabrication by using laser cutting machine as shown in Figure 13.
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3.2. Characterization for Textile-Based Antenna-Based Sensor with Breast Models
3.2.1. Simulation Results: Reflection and Transmission Measurements

To study the effect of the proposed antenna sensor on the body and its detection
capability, a breast model is fabricated. The model is composed of one layer equivalent
to the three main breast tissue layers of interest (skin, fat, and glandular tissue) [24,25].
It is slightly less accurate compared to three-layer models but significantly reduces the
computation time. Two simulation scenarios were conducted: The first scenario use one
antenna sensor in proximity to the breast phantom as shown in Figure 14a. The second
scenario uses two antennas at both breast sides as shown in Figure 14b.
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Two antennas configuration is used to further test transmission through the breast. The
antenna is placed above the breast model with a buffer separation distance of 2 mm filled with
cotton material. For the two scenarios, S-parameters with and without tumor are recorded
as shown in Figures 15–17. The parameters of the breast at 2.45 GHz are dielectric constant
(εr) = 11 F/m and conductivity (σ) = 2 S/m. The parameters of the tumor are dielectric
constant (εr) = 56 and conductivity (σ) = 5 S/m. Figure 14 presents the simulated |S11|
magnitude and phase of the proposed monopole antenna without and with tumor at
different sizes of tumor for the first scenario.
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Figure 16. Simulated |S11| of proposed monopole textile antenna with and without tumor (second
scenario shown in Figure 14b) at different sizes of tumor: (a) magnitude in dB and (b) phase in degrees.

Figures 16 and 17 present the magnitude and phase of the reflection coefficient and
transmission, respectively, for the second scenario. The reflection coefficient of Figures 15–17
is less sensitive at small tumor size less than 10 mm. While the tumor size increases, the
S11 becomes more sensitive and the variation of S11 values becomes noticeable, especially
at lower frequency less than 2.5 GHz band and higher frequency larger than 7 GHz band
for the first and second scenario, respectively. Figure 17 shows the effect of tumor size on
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the transmission coefficient coupled between the two antenna elements over the operating
band at different tumor sizes.

Figure 17. Simulated |S21| of proposed monopole antenna with and without tumor (second scenario
shown in in Figure 14b) at different sizes of tumor: (a) |S21| magnitude in dB and (b) |S21|phase
in degrees.

3.2.2. Experimental Results: Reflection and Transmission Measurements

The response of the reflection coefficient of the proposed antenna sensor using different
conductors used flexible Roger and textile fabric conductor as shown in Figures 18 and 19,
respectively. Figure 18 shows the measured proposed monopole|S11| magnitude and phase
of flexible Roger substrate antenna performance in free space and applied to the tumor and
breast with tumor. Figures 19 and 20 show the measured proposed monopole|S11| and
|S21| magnitude and phase of the textile antenna performance, respectively, in free space
and when applied to the tumor and breast with tumor.
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Figure 20. Measured S21 of conductive fabric antenna performance with breast phantom and tumor:
(a) magnitude and (b) phase.

3.2.3. SAR Measurements

The specific absorption rate (SAR) can determine how much power of these radiations
the human tissues absorb. The antenna can be called safe if its max SAR value does not
exceed 1.6 W/kg [39,44]. As a guide, the patient should not be exposed to any health hazards
because a mobile phone uses the same frequency band and microwave breast cancer imaging
uses less radiation than a mobile phone. The measurements are also made at the central
laboratories in the Electronics Research Institute using a special device for measuring SAR
at different power levels for both antennas. Tables 2 and 3 show the measured SAR levels
for the two types of proposed monopole antenna (Roger substrate and textile) at 2.45 GHz
and 5.2 GHz, respectively.
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Table 2. Comparison of measured SAR levels for the proposed monopole antenna at 2.45 GHz.

Flexible Monopole Antenna Textile Monopole Antenna Power Level

10 g 1 g 10 g 1 g (dBm)

0.035 W/kg 0.172 W/kg 0.034 W/kg 0.073 W/kg 5
0.110 W/kg 0.332 W/kg 0.110 W/kg 0.232 W/kg 10
0.223 W/kg 0.463 W/kg 0.123 W/kg 0.263 W/kg 15
0.32 W/kg 0.657 W/kg 0.125 W/kg 0.267 W/kg 20
0.75 W/kg 1.24 W/kg 0.25 W/kg 0.55 W/kg 25

Table 3. Comparison of measured SAR levels for the proposed monopole antenna at 5.2 GHz.

Proposed Monopole Antenna Copper Proposed Monopole Antenna Textile Power Level

10 g 1 g 10 g 1 g (dBm)

0.010 W/kg 0.039 W/kg 0.010 W/kg 0.039 W/kg 5
0.018 W/kg 0.054 W/kg 0.016 W/kg 0.065 W/kg 10
0.115 W/kg 0.280 W/kg 0.036 W/kg 0.088 W/kg 15
0.174 W/kg 0.542 W/kg 0.115 W/kg 0.280 W/kg 20
0.547 W/kg 1.70 W/kg 0.3 W/kg 0.624 W/kg 25

3.3. Detection Results

In this section, two experimental examples have been carried out to compare between
different machine-learning classification algorithms for breast tumor detection. These ex-
periments utilized the |S11| and |S21| parameters, and radial antenna in detection and
classification of the tumor.

These examples verify the importance of the S21 parameter as an additional degree of
freedom in increasing the classification accuracy. Moreover, the classification accuracy is
influenced by the tumor size as well as number of features. The results demonstrate the
sensitivity of the machine-learning algorithms for the detection tumors in the form of class
testing accuracy.

3.3.1. Dataset

The dataset samples are created using simulated S-parameters in two scenarios. The
first scenario utilizes one antenna-based sensor placed above the breast nipple model and
the tumor is placed in the middle of the breast at a distance of 60 mm as shown in Figure 14a.
The tumor size is increased in the study from 5 mm to 10 mm and 20 mm, respectively, as
shown in Figure 15. It is worth mentioning that the tumor size of 5mm has no noticeable
effect. Therefore, the developed dataset is chosen to have 10 mm as well as 20 mm tumor
size. In the first scenario dataset, the tumor is detected using single microwave antenna
sensor with reflection coefficient parameter features (|S11| magnitude and phase) as well
as axial antenna for each 10 mm and 20 mm tumor size. The data samples are 366 samples
associated with their labels for each tumor size detected over frequencies 2 GHz–8 GHz.
The data is balanced for benign and malignant tumor cases.

In the second scenario dataset, two antenna-based sensors are utilized at different
sides of the breast model as shown in Figure 14b, with different sizes of tumor as shown
in Figures 16 and 17. The size of the datasets are equal to the number of frequency points
selected. The second dataset features parameters of both (|S11| and |S21| magnitude and
phase) as well as axial antenna for 10 mm and 20 mm tumor size. The data samples are
183 samples associated with their labels for each tumor size detected over frequencies 2
GHz–8 GHz. The labels were encoded into 0, 1, and 2, representing ‘No Tumor Found’,
’10 mm Tumor found’, and ‘20mm Tumor found’, respectively. The dataset samples are
divided into two parts; training data and testing data. The training data are fed to multiple
machine-learning models to train, and then tested on the testing dataset.
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3.3.2. Preprocessing

Feature scaling and stratified sampling were used to scale the data samples’ features
and split the data into training and testing datasets. Mean normalization was used as a data
normalization technique to normalize the data features. Stratified sampling was used as a
data separator in splitting the data into training and testing data along with shuffling the
samples to ensure that all the data categories are represented equally in the testing phase.

XStand =
x−mean(x)

standard deviation (x)
(12)

3.3.3. Evaluation

The evaluation metric used for verifying the performance of the classification algo-
rithms is the accuracy which is defined as the total number of correctly classified patterns
divided by the total numbers of patterns:

Accuracy =
TP + TN

TP + FP + FN + TN
(13)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively:

1. True negative: the observation is correctly classified as negative.
2. False negative: the observation is incorrectly classified as negative.
3. True positive: a positive class is correctly classified by the model.
4. False positive: a negative observation is incorrectly classified.

To verify the model evaluation performance, a confusion matrix is used for represent-
ing the ability of the model to classify labels correctly. The confusion matrix describes the
performance parameters for the classifier. The training data is fed to multiple machine-
learning models to train, and then tested on the testing dataset as shown in Table 4. This
table shows the sensitivity of each algorithm towards each class. In the first dataset, where
S11 magnitude and phase parameters are considered, the “CatBoost” algorithm has the
highest accuracy with 67% and 69% for 10 mm and 20 mm tumor sizes, respectively. In the
second dataset, where the number of data featured is increased by adding S21 magnitude
and phase, it is clearly shown that the classification accuracy has greatly improved to
83% and 100% for 10 mm and 20 mm tumor sizes, respectively, as shown in Table 5 and
Figure 21.

Table 4. Classification accuracy of different algorithms for both datasets.

|S11| + Phase |S11| + |S21| + Phase

Classes No Tumor 10 mm 20 mm Total No Tumor 10 mm 20 mm Total

Logistic Regression 33% 50% 38% 40% 67% 17% 43% 31%
Support Vector Machine 33% 50% 46% 43% 33% 17% 29% 26%

Decision Tree 42% 58% 54% 51% 67% 50% 100% 73%
Random Forest 58% 58% 31% 48% 67% 17% 43% 42%

LightGBM 50% 58% 46% 51% 50% 100% 57% 68%
Kneighbors 58% 42% 54% 51% 67% 33% 57% 52%
XGBboost 42% 67% 54% 54% 67% 83% 43% 63%
AdaBoost 33% 50% 38% 40% 67% 33% 57% 52%
CatBoost 42% 67% 69% 59% 83% 83% 100% 89%
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Table 5. Feature importance of each parameter in the two datasets for the “CatBoost” algorithm.

|S11| + Phase |S11|+ |S21| + Phase

Frequency 14.0% 7.0%
S11 Phase 14.8% 9.1%

S11 Magnitude 28.2% 13.9%
S11 Axial 42.9% 19.5%
S21 Phase - 28.3%

S21 Magnitude - 22.2%
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3.3.4. Feature Importance

Feature importance illustrates the impact of training features regarding the prediction
target, quantifying the effectiveness of the relevant features against the predicted decision.
The table below shows each feature among the two conducted experiments and its exact
percentage of contribution, introducing S11 parameters with magnitude and phase antenna
along with the effect of the addition of S21 parameters. The figure below represents the
importance of comparison of the data samples’ features. It verifies the strength of each data
samples’ features.

4. Discussion

This paper presents the development of a complete wearable breast cancer detection
and monitoring system based on flexible antennas acting as sensors in the microwave
band. The study in this paper develops compact and ultra-wideband flexible sensors using
two technologies. The first technology used is flexible Roger substrate while the second is
conductive fabric implemented on cotton substrate. The performance of the proposed antenna-
based sensor using the two technologies is recorded and compared. The simulations validate
similar performance of the proposed antenna-based sensor antenna using conductor fabric
compared to flexible Roger substrate, especially at frequency less than 7 GHz. Both types
of conductors reveal similar operation in terms of reflection coefficient and impedance
matching. The wearable textile antenna sensors acquire UWB performance with extended
bandwidth from 1.6 GHz up to 10 GHz at |S11| ≤ −6 dB and acceptable antenna average
gain of about 3 dBi. The gain using flexible conductor substrate is higher than the textile
antenna by 3 dBi on average over the operating antenna band. The sensors fabricated with
conductive fabric show better performance compared to those with flexible Roger substrate
sheet as it provides lower substrate loss and better fitting with women’s breasts where
there is no air in between. On the other hand, the sensor fabricated using flexible copper
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surface interacts with human sweat and could be subjected to rusting over time. Thus,
conductive fabrics are more favored for fabricating wearable sensors in this study.

This system relies on electromagnetic microwave technology to detect differences in
electrical properties by measuring magnitude and phase of reflection and transmission
coefficient between normal breast tissue and tumor-affected tissue. This is highly shown in
terms of detection tumors in measurements and simulations results. Two testing scenarios
have been proposed in this paper. The first scenario uses one sensor over breast phantoms,
while the second scenario uses two sensors. The second scenario allows collecting trans-
mission data (S21) in addition to reflection (S11) as the first scenario. Each S-parameter
adds two parameters, the magnitude and the phase, for detection dataset data. Simulations
show that the reflection coefficient magnitude and phase difference increased by increasing
the tumor size, especially within the band from 1 GHz to 3 GHz for the first scenario. In
addition, for the second scenario, the reflection coefficient magnitude and phase difference
increased as the tumor size increased, especially within higher frequency of operation
larger than 7 GHz. Transmission coefficient (S21) shows high sensitivity in detection over
the operating band. Simulation studies have been conducted using the effective model
of the breast (one layer with effective dielectric constant (εr = 11) representing skin, fat,
and glandular tissues of the breast. The given model succeeds in showing the change in
response by changing the size of the tumor even with matching level −6 dB for reflection
coefficient while being on the breast. Figures 15a and 16a record the changes in reflection
coefficient at matching levels of −6 dB. The proposed system is very good in detecting the
malignant tumor in the second and third stage.

Furthermore, breast and tumor phantoms have been fabricated and characterized
using DAK-3.5-TL2 (dielectric probe station) in the range of 1–9 GHz. Figure 4 shows that
there are distinguished differences in electrical properties between the breast and the tumor
models over the operating band extended from 1 GHz to 9 GHz. The average real part of
the breast phantom ε′r is about 7, while the tumor ε′r is about 55. Moreover, the imaginary
part of the breast phantom and tumor ε”r is about 4 and 27, respectively. This validates
sensing tumor tissue inside the breast with measured contrast ratio 1:8. The proposed
sensors have been placed on fabricated phantoms and measured using a vector network
analyzer (VNA). Variations have been recorded in both reflection (S11) and transmission
(S21) as shown in Figures 18–20 when tumor phantom is inserted inside the breast model.

The proposed antenna-based sensors measured low SAR values below 1.6 W/kg at
different operating frequencies (2.45 GHz and 5.2 GHz). The antenna-based sensor using
conductive fabric realized lower SAR compared to flexible Roger substrate at different
power levels as shown in Tables 2 and 3. The antenna-based sensor using conductive fabric
realized lower SAR of 0.55 W/kg at 1g compared to flexible Roger substrate with SAR level
of 1.24 W/kg at 25 dBm power level. The given low SAR level validates the safety of the
proposed antenna sensor as a wearable device. It also allows future implementation of
multiple antenna sensors for the required detection system.

Moreover, machine-learning algorithms have been developed and used to classify
different scanning states using recorded S-parameters. The simulation examples also ver-
ify the capabilities of machine-learning algorithms in breast cancer tumor classification.
A comparison between different classification techniques has been carried out for differ-
ent datasets of different tumor sizes. These examples verify the effectiveness of the S21
parameter in improving the classification accuracy of “CatBoost” from 69% to 100% for
20mm tumor size. It has also shown that the classification accuracy is influenced by the
tumor size, in which the accuracy improved from 83% to 100% between 10 mm and 20 mm
tumor sizes.

Table 6 compares the performance of the proposed flexible antenna-based sensor using
conductive fabric with other designs presented in the literature for breast cancer. Table 6
shows a comparison for only systems that use microwave signal for breast cancer detection
and imaging. It could be noted that most of the published work used the rigid FR4 substrate
compared to the proposed flexible substrate in this study for sensor fabrication. Flexible
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substrates allow conformal and comfortable placement on the human body and are more
appealing in terms of developing wearable systems. Most of the antenna-based sensors
are of type Vivaldi with end-fire operation. Systems based on Vivaldi antennas will limit
the detection system fixed in the CT room and are very hard to develop as self-screening
systems. Moreover, most of the published work acquired limited bandwidth and some did
not study or record SAR values as shown in Table 6. SAR value is highly important for
sensors intended to be in proximity with the human body.

Table 6. Comparison of proposed antenna and others reported in the literature (* work presented in
the manuscript).

Ref. Antenna Type Size
mm3 Ag

(
λ2

g
)

Flexible
Operating
Bandwidth

GHz

Efficiency
η %

Imaging
Method

Gain
(dBi)

SAR
(W/kg) Wearable

[21] Monopole 30 × 30 × 0.05 0.22 × 0.22 Yes 2–4 NM NM NM 1.6 Yes
[61] Monopole 13 × 13 × 0.0125 0.35 × 0.35 Yes 7 to 14 65 NM 4.4 NM Yes
[62] Vivaldi 40 × 40 × 1.6 0.4 × 0.4 No (FR4) 2.5–11 77 MERIT 7.2 NM No
[63] Monopole 30 × 30 × 0.1 1.09 × 1.09 Yes 5.71–5.99 80.5 NM 3.08 0.174 Yes
[64] Vivaldi 49 × 46 × 0.8 1.1 × 1 No (FR4) 3.1–10.6 NM DMAS 7.5 NM No
[65] Vivaldi 51 × 42 × 0.05 0.8 × 0.65 No (Roger 5870) 2.8–7 70 IC-DAS 7.5 NM No

[66] Vivaldi 25 × 20 × 0.1 0.58 × 0.47 No (Polyamide
substrate) 3.8–4 & 8–10 NM MERIT 2.33 NM Not

Our Monopole 24 × 45 × 0.17 0.38 × 0.2 Yes 1.8–10 70 CatBoost 3.5 0.58 Yes

NM: not mentioned; IC-DAS: iteratively corrected delay and sum; MERIT: microwave radar-based imaging
toolbox; DMAS: delay multiply and sum; MLA: machine-learning algorithms.

To compare the performance of different sensors in the literature with the proposed
sensor in this paper, the figure of merit of antenna-based sensor (FOMA) equation developed
in [60] will be used. The given equation is used to compare the performance of planar
sensors in biomedical applications. From [61], the overall performance of a planar sensor is
improved when the FOMA is increased. Using the given equation to compare the monopole
antennas in Table 6 acting as sensors, our proposed sensor realizes −15 dB compared to
−51.67 dB in [64] and −37.38 dB in [61].

The proposed system is implemented using fully conductive fabric with low SAR
value, which makes the system safe, portable, and easily wearable as a “Smart Bra”. This
proposed system has the potential to be a great addition to women’s health care. The
proposed system will provide a user-friendly, in-house, pain-free, low-cost scanning system
for women who require continuous examination of their breasts.
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