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Abstract: Diabetes is expected to rise substantially by 2045, prompting extensive research into
accessible glucose electrochemical sensors, especially those based on non-enzymatic materials. In this
context, advancing the knowledge of stable metal-based compounds as alternatives to non-enzymatic
sensors becomes a scientific challenge. Nonetheless, these materials have encountered difficulties in
maintaining stable responses under physiological conditions. This work aims to advance knowledge
related to the synthesis and characterization of copper-based electrodes for glucose detection. The
microelectrode presented here exhibits a wide linear range and a sensitivity of 1009 µA·cm−2·mM−1,
overperfoming the results reported in literature so far. This electrode material has also demonstrated
outstanding results in terms of reproducibility, repeatability, and stability, thereby meeting ISO
15197:2015 standards. Our study guides future research on next-generation sensors that combine
copper with other materials to enhance activity in neutral media.
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1. Introduction

Since COVID-19, healthcare accessibility and well-being have become important
issues worldwide, especially in developing countries [1]. Before the pandemic, the main
challenges to improving the health of the global population focused on increasing life
expectancy and decreasing maternal and childhood mortality. However, the recent health
emergency has highlighted other critical needs related to non-communicable diseases
and their consequences [2]. These aspects are considered in the Sustainable Development
Goals Agenda, notably in goal number 3, which specifies the control of non-communicable
diseases as a target for 2030.

The World Health Organization (WHO) considers diabetes as one of the four major
types of non-communicable diseases (cardiovascular disease, diabetes, cancer, and chronic
respiratory diseases). The number of people suffering from this pathology has grown over
time, from 108 million in 1980 to 422 million in 2014. Apart from the health impact of
this disease, it is estimated that people with diagnosed diabetes have medical expenditure
approximately 2.3 times higher than expenditure in the absence of diabetes [3]. Thus, it is
of vital importance to monitor blood glucose levels for the early diagnosis, prevention, and
treatment of the diabetic patient [4].

Nowadays, the glucose sensor field is dominated by electrochemical methods that are
represented by invasive and minimally/non-invasive commercial devices. In this context,
the electrochemical field for developing glucose sensors has experienced continuous growth
throughout the 21st century. In recent years, several reviews have compiled the latest
advancements [5–9]. The former is a single-use system which involves several fingers
pricks during the day, thereby annoying patients and making it difficult to continuously
monitor glucose levels [10]. Minimally and non-invasive devices provide a continuous
register of glucose levels, which help patients prevent and control hyperglycemic and
hypoglycemic peaks. However, these devices last for only 14 days and must be replaced
by new ones [11–13]. For example, Heo et al. (2019) provided an insightful comparison of
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the lifespan of various commercial continuous glucose sensors [13]. These investigators
revealed a maximum duration of 14 days and pointed out many sensors with a useful life
of 7 days.

Both systems use enzymes to detect glucose in biologically complex fluids and provide
great selectivity and sensitivity for this organic molecule. On the other hand, enzyme
immobilization procedures are complex, they work under critical operational conditions,
and enzymatic systems usually present instability issues that shorten the sensors life [14].
Because of these reasons, minimally/non-invasive electrochemical enzymatic sensors are
considered expensive. In this scenario, non-enzymatic nanostructures have gained much
attention due to their outstanding properties in mimicking enzyme systems [15]. Several
authors have published their results with different non-enzymatic electrodes, which can
detect glucose under physiological conditions, such as neutral pH and in the presence of
common interferences such as ibuprofen or ascorbic acid [16–18]. For example, authors
have developed a TiO2/PAPBA/Au glucose sensor which measures glucose at neutral pH
with good sensitivity [19].

The materials used for non-enzymatic glucose sensors can be common metal structures,
complex metallic combinations or even mixtures with carbon derivatives or conductive
polymers [20–23]. Noble metals such as gold and platinum have been comprehensively
studied because of their biocompatibility in human biofluids [24], however, high prices
and poisoning issues from noble metals have promoted searches for other materials for
commercial applications [25]. Today, metal oxides represent reliable alternatives for the
sensing field since they are affordable materials with high catalytic capacity and they are
easy to manipulate [26]. The application of these materials to multiple fields (environmen-
tal, healthcare, or food and beverage industries) has been largely considered because of
aforementioned advantages. However, for healthcare, electrodes must be active at neutral
pH since all biofluids do not exceed a pH range of 5.5–7.5, and not all metal oxides pro-
vide stable responses under these conditions. In this scenario, the scientific community is
working intensively to overcome these issues through the implementation of pH control
systems in sensors or through combinations with other metals and carbon derivatives.
Since glucose sensor technology is moving toward noninvasive skin patches, pH control is
a practicable choice for the implementation of metal oxides. These patches control glucose
levels by measuring sweat parameters through a capillarity system, where pH control
can be implemented [27]. However, the implementation of a pH control system is still
under investigation and requires further refinement to minimize additional costs. Several
authors have suggested the implementation of NaOH crystals on electrode working areas
or the inclusion of a hydroxyl layer adsorbed onto the electrode design without interfering
with biofluid characteristics, thus only measured samples will be affected by modifying its
pH [28]. Non-enzymatic sensors based on metal oxides could reach the diabetes market in
the upcoming future thanks to the effective combination of different catalytic materials or
the addition of hydroxyl groups to sensor designs.

In this work, new results obtained with a copper oxide-based electrode for glucose
detection are presented. Copper was selected because of its promising results, abundance,
and biocompatibility [29,30], and it also represents a good choice for tumor microenviron-
ments since CuO catalyzes endogenous H2O2 into O2 to relieve tumor hypoxia [31]. This
provides copper materials with great potential for medical applications, especially in sensor
development based on electrochemistry principles.

Although there is still much work to be done, the outcomes reported here represent a
step forward in the application of copper to the non-enzymatic glucose sensor field for its
outstanding results and ease of synthesis.

2. Materials and Methods

Materials and methods are reported in this section. The developed synthesis method
pays special attention to reproducibility, effectiveness, and environmental aspects.
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2.1. Apparatus and Chemicals

Copper (II) sulfate pentahydrate (≥99.9%), L-ascorbic acid reagent (99.7%), Ibuprofen
(≥98%), Sulfuric acid (≥99.7%), and Nafion TM 117 (5%) were purchased from Sigma-
Aldrich Corporation (St. Louis, MO, USA). D(+)-glucose anhydrous (97%), ethanol (ab-
solute pure), potassium chloride, and sodium hydroxide pellets were purchased from
PanReac AppliChem. Uric acid (99%) was acquired from Alfa Aesar Chemicals (Haver-
hill, MA, USA). Hexaammineruthenium (III) chloride (Ru(NH3)6Cl3) was acquired from
Sigma Aldrich. All chemicals were utilized without additional purification. Distilled water
(18.2 MU cm), purified using the Millipore Advantage A10 water system, was used in all
experiments for solution preparation.

2.2. Electrode Synthesis and Preparation

The working electrode was prepared by first reconditioning the screen carbon printed
electrode (SCPE). It underwent a cleaning process involving washing with distilled water
followed immediately by rinsing with pure ethanol. Subsequently, the electrode surface
was air-dried under ambient conditions. Prior to the electrodeposition of copper particles,
the cleaned surface underwent two cyclic voltammetry runs in the range from −0.6 V to
0.6 V vs. Ag/AgCl at a scan rate of 100 mV s−1, utilizing 0.1 M CuSO4·5H2O and 0.1 M
H2SO4. The solution was carefully poured onto the electrode surface with a micropipette
in a volume of 150 µL.

Cu particles were electrodeposited through the chemical reduction of 0.1 M CuSO4·5H2O
in 0.1 M H2SO4, using a chronoamperometry technique at −0.366 V vs. Ag/AgCl, as per a
prior study [32]. The deposition time of Cu particles on the carbon-printed electrode (CPE)
was systematically studied using Taguchi methods. It is well known that the electrodeposition
time affects electrode performance since a high copper surface thickness may hinder contact
between the catalyst and the electrolyte, resulting in reduced responses to glucose [33].

For the oxidation of copper particles, the electrode was submerged for 4 days in an
oxidation medium containing 6 mL of 10 M NaOH, 3 mL 0.2 M (NH4)2S2O8, and 21 mL UP
water [34]. These variables were optimized following Taguchi methodology, as described
in the next section. Figure 1 shows the qualitative color changes of the electrode during the
synthesis process. The diameter of the electrode is 2 mm.
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Screen carbon printed electrodes with a visual area of 0.12 cm2 were purchased from
Metrohm Dropsens. All measurements were performed with a Palm-Sens 4 potentiostat
galvanostat impedance analyzer. The apparatus had a large potential range (from −10 V to
10 V) and a current range (from 100 pA to 10 mA). PSTrace 7 software was used to collect
and display measurements for glucose detection electrodes.

Electrode characterization was conducted using scanning electron microscopy (SEM)
and Energy X-ray Powder Diffraction analysis in combination with SEM microscopy EVO
MA15 ZEISS® (Germany). SEM images were used to analyze the morphology and structure
of the microelectrode surface following the synthesis process. Electrochemical measure-
ments were performed using cyclic voltammetry and pulsed amperometry techniques. For
the former, the problem solution was dripped onto the electrode surface and then a specific
potential sweep was applied to the working electrode. When applying pulsed amperometry,
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the electrode was submerged into the problem solution under constant stirring. In this case,
a dedicated potential was applied at defined time intervals.

2.3. Taguchi Experimental Design

Optimization was used to perfect a designed system; in this sense, several authors have
incorporated this aspect to sensor research [35]. The Taguchi method involves reducing
the variation of device performance in a process through robust experimental design.
The overall objective of this methodology is to produce high quality results, in this case,
robust non-enzymatic electrodes. Economy and cost reductions addressed by the Taguchi
methodology emphasize the reduction of variations of electrode signals, particularly when
total product variation is within the specification limits of the product [36,37]. In this
study, the following variables were selected and optimized: CuSO4·5H2O concentrations,
electrode oxidation times, chronoamperometry times, and number of chronoamperometry
cycles. Other variables such as the concentration of the oxidative species or the number
of cyclic voltammetries before copper electrodeposition were not included because they
would complicate the optimization tool. They had less influence on the synthesis process
than selected variables, which were directly related to crystal growth synthesis.

Table 1 presents the selected variables. The selection of these variables was based
on their ease of manipulation. Table S1 in Supplementary Materials shows the selected
orthogonal array for experiments.

Table 1. Taguchi parameters used in this work.

Variable Level 1 Level 2 Level 3

Concentration (I) 0.01 M 0.1 M 1 M
Chrono. Cycles (II) 1 2 3
Chrono. Time (III) 200 s 300 s 400 s

Oxidation time (IV) 2 days 3 days 4 days

3. Results and Discussion
3.1. Optimization of the Synthesis Method

This research included methodology optimization to maximize electrode signals in
the presence of glucose. Since the synthesis process included several variables, such as
precursor concentrations or oxidation times, the determination of exact parameters would
be time and resource consuming. By implementing Taguchi tools in research, the scientific
community can save time and materials.

Figure 2 depicts the results of the Taguchi analysis using Minitab 20.4 software. The
electrochemical technique used was cyclic voltammetry (from −0.6 to 0.6 V vs. Ag/AgCl,
1 cycle) with a solution of 2 mM of glucose in 0.1 M NaOH media. Each electrode was
previously conditioned with three cyclic voltammetry runs of 0.1 M NaOH. Each plot
represented one studied variable and the mean of all experiments at the selected level (see
Table 1). Blue dots represent the mean value of all performed experiments. Thus, the effect
of one level could be compared to the average signal.

As observed, oxidation times and the number of chronoamperometric cycles were the
variables that most affected the final electrode signal. Thus, for the remaining experiments,
variables were set at 0.1 M CuSO4·5H2O, three chronoamperometry runs of 300 s, and
4 days of oxidation. These values were chosen considering the trade-off between the
maximum signal and minimizing synthesis process times.
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3.2. Electrode Characterization and Active Area

Figure 3 depicts the SEM morphology of synthesized sensors. The image shows the
presence of copper oxide microstructures on the carbon surface. The length of copper oxide
microfeathers is 1–2 µm. This size is in good agreement with previous results and provides
a high increment in electrode surface area [38,39]. The particles were homogeneously
dispersed as shown in Figure 3. Figures S1 and S2 in Supplementary Materials show the
chemical composition of the studied electrode.
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To determine active areas in copper- and copper oxide-based electrodes, Ru(NH3)6Cl3
was selected as an electroactive probe because of its rapid electron transfer capabilities.
Several cyclic voltammetry runs were performed varying scan rates from 20 mV/s to
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200 mV/s within the range from −0.5 V to 0.8 V to promote the following electrochemical
reaction [33]:

[Ru(NH3)6]3+ + e− ↔ [Ru(NH3)6]2+ (1)

Equation (1) for the determination of the active area is applied when the redox process
is quasi- or irreversible. For this purpose, a peak to peak distance (∆Ep) analysis of cyclic
voltammetry profiles was needed. For those cases where ∆ep = 57 mV for all scan rates,
the redox process was classified as reversible; while peak to peak distances depended on
the scan rate; this process was defined as irreversible [40]. The Randles–Sevcik Equation at
298.15 K is:

Ip = (2.99·105)·n3/2·A·C·D1/2·v1/2 (2)

where 2.99 × 105 is a known constant with units C mol−1 v−1/2, n represents the number of
electrons involved in the redox half-reaction (-), D is the diffusion coefficient for the redox-
active species in the solution medium (cm2 s−1), C denotes the solution molar concentration
of the redox species (mol cm−3), A indicates the surface area (cm2), and v represents the
scan rate of the experiment (V s−1). The diffusion coefficient for 5 mM Ru(NH3)6Cl3 in
0.1 M KCl is 8.43 × 10−6 cm2 s−1, according to Lee et al. [41].

Figures S3 and S4 show the linear regression of the Randles–Sevcik equation for
microfeather electrodes. The average active area of the 10 electrodes was 0.7 ± 0.1 cm2

which agreed with values reported by different authors [42–44]. This value was compared
with bare electrodes, proving that the area was highly increased [32].

This parameter correlated to the number of active sites, where glucose oxidation
occurs. Increasing the active area is critical for the optimal performance of the sensor. In
this sense, the microfeather structure meets all the characteristics required for correct sensor
applications.

3.3. Linear Range

Cyclic voltammetry was used as the electrochemical technique to determine sensitivity
to glucose detection within a wide range of glucose concentrations, from 0 to 20 mM. This
range was selected to simulate blood glucose levels. The linear range of microfeathers
increased to 8 mM of glucose with a sensitivity of 1091 µA·Mm−1·cm−2.

Regarding the reaction mechanism, the equations below represent the reaction mechanisms
for glucose oxidation with the copper electrode. Equations (6) and (7) occur on the surface of
the electrode since its main component is copper oxide, CuO, as discussed previously.

Cu → Cu2+ + 2e− (3)

Cu2+ + 2OH− → Cu(OH)2 (4)

Cu(OH)2 → CuO + H2O (5)

CuO + OH− → CuOOH + e− (6)

CuOOH + glucose → 2 CuO + glucolactone + H2O (7)

The sensor detection limit was determined at 30 µM. These parameters were estab-
lished according to the method described by Zare et al. [45]. Figure 4 represents the linear
range of the synthetized sensor.

Three different cyclic voltammetry runs (from −0.6 to 0.6 V vs. Ag/AgCl, 1 cycle)
were performed for each concentration, with an error less than 12%. Each electrode was
conditioned by developing three 0.1 M NaOH cyclic voltammetry runs.
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Figure 4. (a) Cyclic voltammetry technique (from −0.6 to 0.6 V vs. Ag/AgCl) for glucose detection
analysis for 0 to 7 mM in 0.1 M NaOH; (b) linear range of the microfeather electrode using cyclic
voltammetry technique in 0.1 M NaOH. Values are fixed at +0.55 V vs. Ag/AgCl.

3.4. Reproducibility, Repeatability, and Stability

Repeatability, reproducibility, and stability were studied according to previous pro-
tocols. Moreover, actual normative ISO standards were considered since they established
actual commercial requirements. Accordingly, the error for glucometers must be less than
15% [46].

Figure 5 shows the cyclic voltammetry profile of 25 measurements performed with
the same electrode (each color represents a different cyclic voltammetry), generating a
repeatability error of 1.9% at +0.55 V vs. Ag/AgCl. This value was very competitive when
compared to similar electrodes in the literature.

Regarding reproducibility, five different electrodes were tested using different glucose
concentrations, as seen in Figure 6. The variation in electrode responses was more signifi-
cant for high concentrations, generating a maximum error of 7% for the measurement of
4 mmol·L−1. By increasing the concentration to 6 mmol·L−1, this error dropped to 5%. All
results met ISO requirements and agreed with results reported by different authors; Fang
et al. reported an error of 4% within seven different electrodes that were made with copper
Cu(I)/Cu(II) aerogels. Other similar electrodes also reported errors below 5%.
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Figure 6. Reproducibility of microfeather electrodes. Measurements with 2, 4, 6, and 8 mM glucose in
0.1 M NaOH (EX where X is the electrode number).

Figure 6 shows the system accuracy according to ISO 15197 standards [46]. For glucose
concentrations > 5.55 mmol·L−1, the error must be less than 15%. For concentrations lower
than 5.55 mmol·L−1, the allowed deviation was 0.83 mmol·L−1 which translated to an
error of 15% at 5.55 mmol·L−1 and 83% at 1 mmol·L−1. This normative was exclusively
applied to commercial glucometers designed for biofluids such as blood and interstitial
liquid, where glucose concentrations were always above 4 mmol·L−1.

These aspects are shown in Figure 7, where a multiple assay with five different elec-
trodes was carried out to test the validity of microfeather electrodes. Dash line represents
the limit provided by ISO 15197 standards.

Again, reproducibility was tested and showed little disparity within electrodes, smaller
than 5% RSD (Relative Standard Deviation). Regarding electrode viability for commercial
applications, in the case of concentrations lower than 8 mmol·L−1, the system showed
a negligible deviation. According to commercial requirements defined by ISO 15197
normative standards, the system was valid up to 10 mmol·L−1. The mean deviation
increased with molarity until it surpassed ISO 15197 margins. In this scenario, the copper-
based electrode could be proposed for commercial applications since it measured glucose
ranges in common biofluids, from 4 mmol·L−1 to 11 mmol·L−1.
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Figure 7. Electrode accuracy according to ISO 15197 standards.

Finally, stability and responses under common electrode interferences were studied
using Pulsed Amperometry Detection (PAD). This electrochemical method simulates mini-
mally invasive continuous glucometer behavior, where the sensor takes measures every
5 min for almost 2 weeks. In this study, the interval between measurements was reduced
to 8 s and measurements were carried out for 2 h every day. Other relevant studies have
examined the impact of time over a 3 month period, measuring electrode signals at the
beginning and at the end of this period. The results showed a significant decrease in signal
strength of 20%. However, this aspect was not evaluated in our work since it did not
properly represent the performance of a continuous glucometer. Commercial applications
require robust materials to measure in continuous mode in short intervals of time for
2 or more weeks. Testing electrode performance after several months differs from real
operations.

Figure 8 shows the stability profile of the microfeather electrode; all measurements
were within the range as defined by ISO 15197 standards. The average signal within 5 days
was 142 µA with an error of 13% (excluding the daily stabilization measurement). The
number of measurements was 4500 while a commercial glucometer only takes 4000 measure-
ments after 2 weeks. In this case, our copper-based electrode maintained its performance
for an estimated time of 20 days.
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Figure 8. Microfeather electrode stability using PAD at +0.55 V vs. Ag/AgCl. Measurements with
2 mM glucose in 0.1 M NaOH for 5 days. Yellow line represents the separation among days.

Electrode responses under common interferences are shown in Figure 9. Ascorbic Acid
(AA) and Uric acid (UA) were added to 2 mM glucose in 0.1 NaOH samples. Biological
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ascorbic and uric acid ranges were chosen according to the literature, where ascorbic
acid blood levels range from 0.003 to 0.1 mM, while uric acid levels range from 0.15 to
0.45 mM [47,48]. These interferences are also present at lower concentrations in sweat
biofluids making this test valid for multiple biofluid applications.
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Figure 9. Microfeather electrode interference study using PAD at +0.55 V vs. Ag/AgCl. Measurements
with 2 mM glucose in 0.1 M NaOH in the presence of 0.41 mM (UA) and 0.1 mM Ascorbic Acid (AA).

Although the presence of common interferences affected the amperometric signal of
the microfeather electrode, the deviation still met commercial requirements. The signal was
decreased to only 10% while ISO 15197 standards permitted ± 0.83 mmol·L−1. Finally, our
electrode was compared to previous literature results, Table 2 The microfeather electrode
provided a good linearity range and good sensitivity compared to other electrodes.

Table 2. Copper- and copper oxide-based electrodes for glucose sensing.

Electrode Linear Range
(mM)

Reproducibility STD
(%)

Sensitivity
(µA·mM−1·cm−2) Media NaOH Ref

CuO/CNTs 5–100 µM 1.07 15300 0.1 M [49]

CuO/rGO/CNT 10–1000 µM 4.1 9278 0.1 M [42]

CuO/PCA/MWCNT 0.002–9 4.6 2412 0.1 M [50]

CuO/CS 0.05–1 3.0 503 0.1 M [51]

Cu2O/GCE 0.1–1 N/A 1082.5 0.1 M [52]

CuO microfeathers 0.03–8 7 1091 0.1 M This work
PCA = Poly(caffeic acid), CS = chitosan, N/A = Not available

As observed in Table 2, high sensitivity electrodes are specific for small linear range
applications, for biofluids with low glucose concentrations, such as lacrimal and urine
biofluids. Nowadays, there are no commercial tools for the continuous measurement of
glucose in these biofluids; only discrete testing is done for medical reason which does not
allow users to control and prevent glycemic alterations such as hyperglycemic peaks after
meals. Those sensors with higher linear ranges can be used to detect glucose in interstitial
fluid or blood. There is a trade-off between sensitivity and linear detection ranges. For
example, CuO/CNT-based electrodes provide a sensitivity of 15,300 µA·mM−1·cm−2 and
a linear range which only goes up to 0.1 mM. By contrast, CuO/CS electrodes show a
linear range of up to 1 mM with a sensitivity of 503 µA·mM−1· cm−2. In this scenario, our
electrode demonstrated the best options considering sensitivity and linear ranges. The
only comparable electrode was CuO/PCA/MWCNT as proposed by Kuznowicz et al. This
electrode had a linear range up to 9 mmol·L−1 with a sensitivity of 2412 µA·mM−1·cm−2.
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However, their catalytic material was formed with more complex substances. In this case,
the electrode required poly(Caffeic Acid), multiwalled carbon nanotubes, and copper oxide
nanoparticles, while our electrode was made only with a copper precursor and a simple
carbon base. This difference significantly impacts on the associated costs of the final product
and its viability for macroscale production.

Other studies based on more complex catalyst materials reported very good results for
glucose detection in sweat applications; Zha et al. (2022) developed a sensor based on a two-
dimensional nanosheet array composed of trimesic acid (H3BTC) and a bimetal metal−organic
framework (MOF) on a carbon cloth (CC) [53]. Sweat, as a biofluid for continuous testing, is
a potential application since any sensor would be completely non-invasive considering that
sweat is accessible without pricking. Several authors have begun to explore this concept using
sensor patches, although there are no commercial applications yet [54,55].

4. Conclusions

This work reports the optimized synthesis of copper-based microelectrodes for glucose
measurements. To this end, a Taguchi experimental design was carried out to ana-lyse the
main variables influencing the synthesis process and electrode responses. This methodology
provides essential information regarding the key operational variables in developing sensors
with minimum costs and time, whilst maintaining outstanding electrode performance.

Electrode performance was characterized in terms of linear range, repeatability, repro-
ducibility, and stability, with results satisfactorily meeting ISO 15197 commercial require-
ments and showing robust stability for 5 days. This cost effective and reliable electrode
provides high sensitivity of up to 8 mM of glucose, which corresponds with normal blood
and interstitial fluid glucose levels. The wide linear range relies on the synthetized micro-
structure; microfeathers provide numerous active sites promoting glucose oxidation. The
active area increased almost seven times compared to the visual electrode surface which
made this structure highly applicable to different sensor industries (healthcare, environ-
ment or food industries). In healthcare, this material with its morphology can be combined
with other materials to overcome OH dependency, or integrated into a sensor with pH
control, which has been widely addressed in the literature. In this scenario, our material
will be competitive with commercial sensors that typically last no longer than 2 weeks and
involve higher associated costs.

This promising copper-based electrode, synthetized using an inexpensive and simple
wet method, offers a robust and affordable catalytic material for the development of new
nanostructures and metallic combinations sensitive to physiological conditions. In this
sense, non-enzymatic structures will be very competitive with actual glucose sensors
based on enzymes. Thus, although further efforts are required in the development of
electrodes capable of measuring at neutral pH, this work represents an advance in the field
of non-enzymatic sensors for glucose detection in commercial applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13121032/s1. Figure S1. Atomic presence in the microfeather
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Ru(NH3)6Cl3 in 0.1M KCl with a scan range from 200 to 20 mV s−1. Figure S4. Linear regression of
the Randles–Sevcik equation. Table S1. Three Level Orthogonal Array.
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