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Abstract: Advanced glycosylation end products (AGEs) are continuously produced and accumulated
in the bodies of diabetic patients. To effectively predict disease trends in diabetic patients, a corneal
fluorescence detection device was designed based on the autofluorescence properties of AGEs, and
corneal fluorescence measurements were performed on 83 volunteers. Multiple linear regression
(MLR), extreme gradient boosting (XGBoost), support vector regression (SVR), and back-propagation
neural network (BPNN) were used to predict the human AGE content. Physiological parameters
which may affect corneal AGE content were collected for a correlation analysis to select the features
that had a strong correlation with the corneal concentration of AGEs to participate in modeling. By
comparing the predictive effects of the four models in the two cases of a single-input feature and a
multi-input feature, it was found that the model with the single-input feature had a better predictive
effect. In this case, corneal AGE content was predicted by a single-input SVR model, with the average
error rate (AER), mean square error (MSE), and determination coefficient R-squared (R2) of the SVR
model calculated as 2.43%, 0.026, and 0.932, respectively. These results proved the potential of our
method and device for noninvasive detection of the concentration of AGEs in the cornea.

Keywords: advanced glycation end products; cornea; correlation analysis; machine learning; regression
analysis; noninvasive detection

1. Introduction

An important reason for the production of advanced glycosylation end products
(AGEs) is the long-term persistence of hyperglycemia in the human environment, when
the persistent hyperglycemic state in the body accelerates the Maillard reaction between
carbonyl compounds and amino compounds, eventually forming a class of end products
that the body cannot metabolize [1–3]. AGEs increase slowly with age in normal subjects,
while they accumulate dramatically in diabetic patients. Due to their nonmetabolizable
properties, the concentration of AGEs in the human body can indirectly reflect the long-
term glycemic control of diabetic patients [4,5]. Furthermore, the detection of AGEs can
predict the probability of future diabetic complications in patients and provide a basis for
assessing the degree of diabetes [6,7].

Currently, AGEs are mainly detected by methods such as the enzyme-linked im-
munosorbent assay (ELISA), chromatographic analysis, and the molecular fluorescence
assay (MFA) [8,9]. Compared with ELISA, which is more widely used and more accurate,
MFA has the advantage of being noninvasive and simple to perform [10].

The MFA method for the determination of AGEs is based on the fluorescent properties
of AGEs and is achieved by fitting the relationship between the fluorescent intensity at
a specific wavelength and the concentration of AGEs. Noninvasive detection of AGEs
has become an important research direction in the biomedical field in recent years [11–13].
Hull et al. [14] developed a skin AGEs meter in which a certain bandwidth of ultraviolet
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(UV) light was applied to excite the skin, and thus the concentration of AGEs was measured
by observing the intensity of autofluorescence. However, this method is not perfect. On
the one hand, skin pigmentation severely affects the intensity of autofluorescence. On
the other hand, the short period of metabolism makes it difficult to reflect the long-term
accumulation level of AGEs. Van Best et al. [15] designed an instrument using a 460 nm
excitation light source to measure corneal autofluorescence, demonstrating the existence of
corneal fluorescence and the safety of the test. Compared with the device constructed by
Van Best et al., our instrument adopted an optical fiber conductive structure that reduces
the interference of light and uses excitation light at 370 nm. At the same time, our device
has higher detection accuracy and conforms to the latest international standards, ensuring
safety during measurement.

In this study, we aimed to measure autofluorescence in corneas with good optical
properties and develop a prediction model for AGE content [16]. An instrument designed
for determining the AGE content in corneas based on measurements of the fluorescence
intensity measurement was successfully constructed. In addition, four commonly used
algorithms, namely multiple linear regression (MLR), extreme gradient boosting (XGBoost)
regression, support vector regression (SVR), and back-propagation neural network (BPNN),
were used to develop regression models for predicting the content of AGEs. The functions
in the sklearn library were used for training the model. The training set and test set were
divided appropriately. The feasibility was experimentally verified.

2. Principles and Device
2.1. Principles of Fluorescence Quantification of AGEs

AGEs are compounds with multiple structures, and some of them have fluorescent
properties. For example, pentosidine and tyrosine have strong fluorescence characteristics.
The former are excited at approximately 335 nm and emit at 385 nm, and the latter are
excited at 275 nm with a fluorescence emission peak at 300 nm. We chose to assay the con-
centration of glycosylated collagen, a substance that correlates with the total concentration
of AGEs. The excitation wavelength of glycosylated collagen is 370 nm and the emission
wavelength is 440 nm [17,18]. Therefore, the excitation light wavelength was 370 nm, and
the emission wavelength at 440 nm was detected.

The intensity of fluorescence emitted by a fluorescent substance is proportional to its
absorbed light intensity, as shown in Equation (1)

F = K′(I0 − I) (1)

where F represents the intensity of fluorescence emitted by the excitation of the fluorescent
substance, I0 represents the incident intensity of the specific wavelength of the excita-
tion light used when irradiating the fluorescent substance, I represents the transmitted
light’s intensity after the excitation light irradiates the fluorescent substance, and K′ is the
fluorescence quantum yield of the substance being tested [19].

According to the Lambert–Beer law, as shown in Equation (2):

I = I010−εbc (2)

In the equation above, ε indicates the absorption coefficient of the fluorescent substance
to the excitation light affected by the concentration of the substance and other factors, b
indicates the distance passed when the excitation light irradiates the fluorescent substance,
which is related to the thickness of the substance, and c indicates the concentration of the
fluorescent substance in the solution. According to Equations (1) and (2), we obtained
the following.

F = K′ I0

(
1− 10−εbc

)
= K′ I0

(
1− e−2.303εbc

)
(3)
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Assuming that the values of c and K = 2.303K′ I0εbc are small, when εbc ≤ 0.05,
e−2.303εbc ≈ 1, Equation (3) can be reduced to:

F = 2.303K′ I0εbc = Kc (4)

In Equation (4), K = 2.303K′ I0εb is a constant and c is the concentration of the sub-
stance. From Equation (4), it can be seen that when c is small, c and F can achieve an ideal
linear function, which means that once the fluorescence intensity has been measured, c
can be determined. This relationship can be used as a basis for the quantitative analysis of
fluorescent substances [20].

2.2. Composition of the System

We developed a portable fluorescence detection device to measure the autofluorescence
in the cornea. The detection system mainly consists of a light source system, a fluorescence
acquisition system, and a prediction system. The working process of the system is shown
in Figure 1.

Figure 1. Working process of the proposed device.

2.3. Corneal Fluorometry Device

In this study, we designed a corneal AGE detector based on human autofluorescence
properties. The device is composed of two main parts: an excitation light source system
and a fluorescence acquisition system. The micro control unit (MCU) controls the LED
driver unit to generate a sTable 370 nm excitation light. The excitation light is coupled to
a Y-type 12+1 fiber for transmission. The procedure of detection is to excite and collect
the emitted fluorescence by irradiating the cornea, which is then detected using a Y-
type 12+1 fiber coupled to a photoconverter. To reduce interference, narrow band filters
were added to the excitation and emission light paths. A photoconverter with a high-
sensitivity programmable photoelectric sensor was sourced from American Texas Advanced
Optoelectronic Solutions (TAOS). To ensure the stable operation of the system, the system
incorporated an independent temperature control unit and a high-power heat sink to ensure
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that the device was not affected by temperature variations. In order to maintain the optimal
distance between the equipment and the eyes, the volunteers’ heads were fixed, and the
distance between the optical fiber probe and the eyes was adjusted within a reasonable
range. On the basis of these principles, the fluorescence intensity of the cornea under a
specific wavelength of excitation light could be measured, and thus the AGE content could
be inferred. A schematic diagram of the device is shown in Figure 2.

Figure 2. Structure of the device.

Figure 3 shows a physical diagram of the corneal fluorescence measurement device. It
mainly consists of a Y-type 12+1 fiberoptic on the left-hand side and the main unit of the
device on the right-hand side.

Figure 3. Physical view of the corneal fluorescence measurement device.
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3. Methods and Feature Selection
3.1. Experimental Procedure

In this study, we recruited 83 volunteers from a hospital in Ganzhou City, including
67 volunteers with Type 2 diabetes. There were 39 males and 28 females in the diseased
group, and 8 males and 8 females in the healthy group. All volunteers were informed
about the experiment and the possible risks they faced. The experiments met the ethical
standards and were conducted after the volunteers signed an informed consent form.

The steps of the experiment were as follows. Each volunteer was tested in the morning
on an empty stomach, and physiological data such as height, weight, duration of illness,
blood pressure, heart rate, fasting blood glucose (GLU), and glycated hemoglobin (HbA1c)
were obtained from the volunteers with the help of medical personnel. After each volunteer
in the hospital had their blood sample drawn, they were placed in a darkened space to avoid
disturbance from environmental factors. Before starting the measurement, the volunteer
was asked to sit comfortably in a chair and wait for a stable state so we could perform
the corneal fluorescence measurement using the corneal fluorescence measurement device.
When the excitation light source was relatively stable, the process of collecting the data
on the AGEs’ fluorescence intensity in the corneas was started. Patients were tested three
times separately, with a 5-min interval between each test. Three consecutive measurements
were taken for a single test and averaged, with the final result being the results of the
three tests averaged again. In addition, ELISA kits (96T, Jiubang Bio, China) were used
to measure AGEs in volunteers’ sera separately in the hospital’s laboratory department.
These professional operations were performed by medical personnel. The physiological
parameters and the data on the fluorescence intensity of corneal AGEs are shown in Table 1.

Table 1. Physiological parameters and data on the fluorescence intensity of corneal AGEs.

Parameters Diabetic Group Healthy Group

Age (years) 53 ± 15 44 ± 13
Height (cm) 164.1 ± 6.5 162.4 ± 6.1
Weight (kg) 63.4 ± 7.2 56.7 ± 6.5

BMI (kg/m2) 23.51 ± 2.16 21.48 ± 1.72
Heart rate (beats/min) 76 ± 10 81 ± 8

Systolic pressure (mmHg) 131.50 ± 12.61 128.10 ± 6.62
Diastolic pressure (mmHg) 79.82 ± 8.30 80.10 ± 4.50

HbA1c (%) 8.30 ± 1.96 5.08 ± 0.37
GLU (mmol/L) 9.33 ± 2.27 5.25 ± 0.49

Fluorescence intensity of corneal AGEs 23.80 ± 2.12 13.27 ± 1.65

3.2. Selection of Features

The alternative modeling parameters were professionally tested in the hospital, and the
collected alternative modeling parameters (weight, age, duration of disease, blood pressure,
heart rate, HbA1c, GLU, and corneal AGEs’ fluorescence intensity values) were analyzed
for correlation. Pearson’s correlation coefficient was used to calculate the correlation matrix
of the data, and a heat map of the data correlation analysis was drawn to easily see the
correlation of the data, as shown in Figure 4. In Figure 4, we can easily see that the
concentration of corneal AGEs was strongly correlated with corneal AGEs’ fluorescence
intensity values; moderately correlated with the duration of the disease, GLU, and HbA1c;
weakly correlated with age and BMI; and not correlated with blood pressure and heart rate.
The weakly correlated features did not improve the accuracy of the model. Since the feature
of corneal AGEs’ fluorescence intensity value had a strong correlation with the target and
with three features (duration of the disease, HbA1c, and fasting GLU), we decided to use
the four input features of corneal AGEs’ fluorescence intensity, duration of the disease,
HbA1c, and fasting GLU for further modeling.
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Figure 4. Correlation matrix heatmap.

For the processing of the missing values of the input features, since the samples
collected from the experiments in this study were only missing the disease duration for
three patients, the average of the remaining data of this feature was taken for filling the
missing data to ensure the sample size and data reliability [21].

4. Machine Learning Model for Predicting the Level of AGEs
4.1. MLR Model

MLR is a method of data analysis that looks for the intrinsic links that exist between
variables [22]. For the experiments in this study, the functional relationships for the cases
with a single input and with four inputs are as follows:

f1(x) = a1x1 + c (5)

f4(x) = b1x1 + b2x2 + b3x3 + b4x4 + c∗ (6)

where x1, x2, x3, and x4 represent the four features of corneal AGEs’ fluorescence inten-
sity, disease duration, GLU, and HbA1c, respectively; a1 is the feature coefficient of the
single-input feature model; b1–b4 are the individual feature coefficients of the four-input
feature model; c and c* are the intercept terms of both; and f 1(x) and f 4(x) represent the
concentration of corneal AGEs. A general diagram of the four-input feature model is shown
in Figure 5.
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Figure 5. The MLR model used for prediction.

4.2. XGBoost Regression Model

XGBoost is a tree-based integration algorithm proposed by Chen et al. [23]. It models
by using multiple learners and has higher accuracy than a single learner. XGBoost uses
the idea of boosting, which generates subtrees in a parallel manner, and finally sums up
the predictions of multiple decision trees to obtain the final prediction result. It is different
from the gradient boosting decision tree (GBDT) algorithm, which also uses the idea of
boosting. In GBDT, each time the next weak learner is generated, the gradient of the loss
function is used as the learning target, which is equivalent to optimizing with the gradient
descent to approximate the minimum of the loss function, even if the loss function is
zero and the final learner is as close to the true result as possible [24,25]. However, in
XGBoost, the difference of the second-order Taylor expansion of the loss function was taken
as the learning objective, which is equivalent to using Newton’s method of optimization
to approximate the minimum of the loss function, which means making the loss function
equal to zero. The model’s structure can be represented as follows:

ŷ =
L

∑
l

f
(
xj
)
, fl ∈ F (7)

where ŷ is the final prediction of the model, L denotes the number of combined decision
trees as the number of trees to be reconciled, fl is the lth tree, xj means the jth input sample,
and F means the set of all tree models. The objective function and canonical terms used in
the model are as follows:

Obj(t) =
n

∑
j=1

loss
(

ŷj
(t−1), yj + ft

(
xj
))

+ Ω( ft) (8)

In Equation (8), loss
(

ŷj
(t−1), yj + ft

(
xj
))

is the loss function, Ω( ft) is the canonical

term, Ω( ft) = γT + 1
2 λ ∑T

i=0 w2
0. T is the number of leaf nodes, wj is the output of leaf node

j, λ is the number of leaf nodes, and γ is the regularization parameter of the output. The
model structure can be represented as shown in Figure 6.

Figure 6. The XGBoost model used for prediction.
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4.3. SVR Model

Support Vector Machine (SVM) is a machine learning algorithm that determines the
values of the parameters w and b by training the model on samples to finally obtain a
regression function of the form f (x) = ωTx + b [26]. In this experiment, for the nonlinear
data, the samples first need to be linearly separated in a higher-dimensional space by
nonlinear mapping. At this point, the computational volume will be explosive, and a kernel
function needs to be introduced to reduce the computational complexity [27]. With the
introduction of the kernel function, the SVM’s nonlinear fitting function is as follows:

f (x) = ωTx + b =
n

∑
i=1

(ai − a∗i )K
(
xi, xj

)
+ b (9)

where K
(

xi, xj
)

is the kernel function, which represents the inner product operation of the map-
ping results of the input eigenvalues of the samples i and j; ai and a∗i are Lagrangian multipliers.

SVR is an important application branch of SVM and is a model of SVM applied to
regression problems. Moreover, the SVR model has many variants based on different kernel
functions [28]. Since the problem to be solved in this study had no previous research to
refer to, after several attempts, we finally selected the Gaussian kernel function with the
best results for the prediction of the model. The comparison results of the kernel functions
we adopted are shown in Table 2.

Table 2. Model effects under different kernel functions.

Kernel Linear Poly Rbf

R2 0.926 0.926 0.932

MSE 0.028 0.028 0.026

4.4. BPNN

The BPNN is divided into two propagation processes: forward and reverse. To
avoid overfitting due to excessive complexity, a single implicit layer was used and the
number of nodes in the implicit layer was set to 8 through several experiments. Adam was
chosen as the optimizer and 3-fold cross-validation was used. The grid search function
GridSearchCV was used to optimize the super-parameters of the model. The hidden layer
used Tansigs-type functions and the model was trained using the Levenberg–Marquardt
back-propagation algorithm [29,30]. After the forward propagation of each input to the
output layer, the error back-propagation training corrected the weights and thresholds. The
weights and thresholds were adjusted in several iterations until the errors were within the
set requirements [31].

An overall representation of the BPNN model is shown in Figure 7.

Figure 7. The BPNN model used for prediction.
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5. Results and Analysis

Single-input features and four-input features were added into the four modeling
algorithms, and the two datasets were randomly divided into a training set and a test
set at the ratio of 7:3, with 58 samples in the training set and 25 samples in the test set.
Table 3 shows a comparison of the single-input and four-input prediction effects of the four
models. The deviation between the real value and the model’s predicted value, and the
goodness of the model’s predictive effect, were used as evaluation indices to investigate
the mean square error (MSE) and the coefficient of determination (R2) of the final results.
The predictions using single-input features in this dataset were better than those with
four-input features, indicating that the introduction of the three selected features would
add noise effects to the model [32]. This is mainly because the correlation between AGEs’
fluorescence intensity and the concentration of corneal AGEs is too high. Therefore, the
final results of these four quantitative prediction models with single-input features were
compared and analyzed next.

Table 3. Comparison of the predictive effects.

Evaluation Indices
MLR XGBoost SVR BPNN

Single Input Four Inputs Single Input Four Inputs Single Input Four Inputs Single Input Four Inputs

MSE 0.027 0.054 0.06 0.050 0.026 0.065 0.0283 0.075
R2 0.928 0.900 0.928 0.930 0.932 0.808 0.925 0.779

AER 2.96% 3.51% 2.73% 3.42% 2.43% 3.68% 2.90% 3.82%

With a single-input feature, the MLR prediction model had the highest average error
rate (AER) of 2.96%, while the SVR prediction model had the lowest AER of 2.43%. In
addition, SVR had the best performance for both MSE and R-squared (R2).

Figure 8 shows a comparison of the predictions for the single-input case, and it can be
intuitively seen that the predictions of SVR were closest to the true values. In summary,
the SVR prediction model had better predictions in this work and was more suitable for
modeling this dataset.

Figure 8. Comparison of the predictions.

6. Conclusions

In this study, we designed a device to measure corneal AGEs based on the fluorescent
properties of AGEs. To build an effective regression model to measure the concentration
of human AGEs, we tested the performance of four machine learning models (SVR, BP,
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XGBoost, and MLR). Furthermore, we recruited 83 volunteers for clinical trials to obtain
real data. The experimental results showed that the predictive effects of the model with
a single-input feature were better than those with four inputs because the three features
of disease duration, HbA1c, and GLU added noise to the model. In conclusion, the SVR
prediction model had the best predictions among the four models developed with this
dataset. With the SVR model, an AER of 2.43%, an MSE of 0.026, and an R2 of 0.932
were obtained.

In further research, the range of test points should be widened to obtain a larger
sample to improve the reliability of the test. In addition, the modeling algorithms used in
this study all have hyperparameters that need to be set artificially, so heuristic parameter
search methods, such as genetic algorithms and Particle Swarm Optimization, could be
tried in future studies to perform global optimization in a larger search range to find the
best prediction of the model. The portable fluorometer constructed in this study for the
detection of AGEs provides a convenient method of immediate detection and has long-term
monitoring potential for diabetic patients and pre-diabetic populations.
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