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Abstract: The endless development in nanotechnology has introduced new vitality in device fabrica-
tion including biosensor design for biomedical applications. With outstanding features like suitable
biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity,
nanomaterials have been considered excellent and promising immobilisation candidates for the
development of high-impact biosensors after they emerged. Owing to these reasons, the present
review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabri-
cation. These include the implementation of carbon nanomaterials—graphene and its derivatives,
carbon nanotubes, carbon nanoparticles, carbon nanodots—and MXenes, likewise their synergistic
impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the
synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and
the chemistry behind their incorporation with other materials for biosensor design. The last section
covers the prospects for the development and application of the highlighted nanomaterials.

Keywords: nanomaterial; biosensor; immobilisation; graphene; carbon nanotubes; carbon nanoparticles;
carbon nanodots; MXenes

1. Introduction

The progress in the field of material chemistry and nanotechnology in recent times has
paved the way for remarkable accomplishments in development. This progress is seen in
the advent of novel materials and their hybrids, which now offer expectations as excellent
immobilisation layers for biosensor development, suitable for onsite results delivery of a
range of analytes (at a reduced amount) concurrently in the absence of specialised staff
or complex device [1]. Briefly, biosensors are diagnostic devices that transform biological
responses into electrical signals [2]. They routinely determine the number of biological
markers or certain chemical reactions by producing the signals that are primarily associated
with the analyte concentration present in the chemical reaction [2]. This routine determina-
tion is made possible through the aid of a bioreceptor, the biological sensing component
of the biosensor usually connected to the transducer. The bioreceptor detects the analyte
while the transducer transforms the recognisable response into a quantifiable signal. Be-
cause of the type of bioreceptors, biosensors can be grouped into enzymatic biosensors,
immunobiosensors and genobiosensors. Further classification of biosensors based on the
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transduction process includes electrochemical, thermometric, piezoelectric and optical
biosensors. Electrochemical biosensors, among other types of biosensors, are increasingly
common, effectively marketed, and are numerous [3]. Further subdivision of electrochemi-
cal biosensors includes potentiometric, amperometric and impedimetric biosensors [1].

Given the fact that Clark and Lyons were the first to utilise an oxygen electrode as
a glucose biosensor in 1962 [4,5], numerous conductive electrodes including gold (Au),
platinum (Pt), silver (Ag), glassy carbon, screen-printed among others have been exploited
for biosensor construction. Nevertheless, the performance of biosensors is often restricted
using bare electrodes. Therefore, utilising nanomaterials as an immobilisation layer is
critical to increase the surface area of an electrode for better biosensing performance. As
a result, electrodes modified with nanomaterials not only improve the immobilisation of
functional recognition molecules, but also reduce nonspecific binding as well as augment
the transfer of electrons in the process of catalytic reaction. In light of the outstanding
developments in material chemistry and nanotechnology, numerous nanomaterials have
been developed through different synthetic approaches [5]. The European Commission
(EU) (2017), defined nanomaterials as natural, incidental or synthetic material with particles
not less than one dimension in a nanosized scale between 1 and 100 nm, in a boundless state
or as a combined or an agglomerate as well as where 50% or more of the particles are in the
nanosized grouping [6]. The nanosized dimension provides exceptional qualities to nano-
materials such as a high surface area to volume ratio, causing diverse exceptional physical
and chemical attributes like increased catalytic impact, mechanically robust, high molecular
adsorption, and immense surface tension driven together with prolonged chemical and bi-
ological activities [7]. Carbon-based nanomaterials (like graphene, and carbon nanotubes),
MXenes, nanowires, nanosheets, nanoflowers dendrimers, quantum dots (QDs), metal and
metal oxide nanomaterials as well as their nanocomposites have been exploited as excellent
immobilisation layers for the design of novel biosensors in areas such as biomedical and
human healthcare field [1,5,8]. To mention a few, a review highlighting the recent advances
in superparamagnetic nanostructures like Fe3O4 and Fe2O3 for electrochemical and optical
biosensing for disease-specific biomarkers was reported [8]. The utilisation of graphene,
carbon nanotubes, zinc oxide and gold as top nanomaterials for inventions of biosensors for
healthcare had also been reported [1]. The immobilisation of Pt–Pd bimetallic nanoparticles,
dispersed in an ionic liquid and peroxidase on nanoclay in the development of a biosensor
had also been reported [9].

Based on the aforementioned, this review focuses mainly on the application of nano-
materials carbon nanomaterials and underutilised MXenes as excellent immobilisation
layers for biosensors design.

1.1. Carbon Nanomaterials

Carbon as a natural element has received increased attention for some time. The
consistent advancement of nanotechnology has increased the understanding of carbon
materials from macroscopic to nanoscale (10). Today, various allotropes of carbon nanoma-
terials ranging from zero-dimensional (0D) to three-dimensional (3D) have been applied in
biosensing [10], energy storage and conversion [11], nanoelectronics and high-frequency
electronics [12,13], field emission displays [14] and theranostics [15]. In general, the wide
use of carbon materials as outstanding immobilisation materials in biosensing is due to
a broad potential window and chemical inertness [10]. Among the varieties of carbon
nanomaterials, the section below discusses the application of graphenes (including its
derivatives), carbon nanotubes, carbon nanodots and carbon nanoparticles as immobilisa-
tion layers for biosensors development.

1.2. Graphene and Its Derivatives

Graphene (GR) exists as a single-atom-thick planar sheet with sp2-bonded carbon
atoms entirely arranged in a honeycomb lattice [10]. It is a two-dimensional (2D) car-
bon nanomaterial with stable and durable configuration, desirable resistance and flexibil-
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ity properties, enhanced surface area (∼2600 m2 g−1), lightweight, outstanding thermal
conductivity and excellent electron transfer ability [11,16,17]. Using chemical oxidation,
graphene can be transformed to graphene oxide (GO), which by further reaction can be
transformed into its reduced form commonly known as reduced graphene oxide (RGO).
The chemically transformed graphene materials possess several functional groups such as
carboxyl, epoxide and hydroxyl units in contrast to pure graphene, thus imparting their
easy dispersion ability in polar solvents, as well as an additional modification with biologi-
cal molecules via covalent or non-covalent bonding [16,18]. In addition, the defects caused
by the chemical transformation of graphenes endow them with diverse and advantageous
processing properties [16,19,20].

Graphene is a fascinating choice as the matrix material for other nanomaterials in
biosensor development. Functionalising graphene with diverse nanomaterials can fur-
ther reveal synergistic effects through the use of their corresponding beneficial peculiar-
ities [21]. For the record, Uzak and co-researchers described the construction of a novel
glucose biosensor comprising nanocomposites of reduced graphene oxide (rGO), plat-
inum nanoparticles (Pt NPs) and zinc-metal organic frameworks-74 (Zn-MOF-74) [22].
Generally, MOFs are crystalline porous and synthetic polymeric materials with highly
organised structures made of the organic linker and metal ions that keep the framework
undivided [23]. Structurally, the M-MOF-74 (M: Zn, Mg, Ni and Co) embodied an organic
linker, namely 2, 5-dihydroxyterephthalic acid [22,24]. Nevertheless, rGO as a famous out-
standing advanced-conducting material was fused with PtNPs and Zn-MOF-74 to produce
hybrid nanomaterial for glucose oxidase (GOx) immobilisation owing to the weak electron
conductivity of MOF-derived nanomaterials. The hybrid nanomaterials rGO/PtNPs/Zn-
MOF-74 were synthesised as reported [22] and used as immobilisation layers for GOx to
develop a novel glucose biosensor (GOx-rGO/Pt NP@Zn-MOF-74) using a glassy carbon
electrode (GCE). The glucose biosensor design involves depositing rGO/Pt NPs on Zn-
MOF-74 using of π–π interactions, while the favourable surface aided the immobilisation
of GOx via the hydrogen bonds. The synthesised rGO/Pt NPs@Zn-MOF-74 hybrid nano-
material suspension was used to modify the GCE by the drop-casting technique. Overall,
the GOx-rGO/Pt NPs@Zn-MOF-74 biosensor demonstrated a range of linear measurement
for glucose between 0.006–6 mM, with a limit of detection of 1.8 µM (S/N = 3) as well as a
sensitivity of 64.51 µA mM−1 cm−2. Further, the amperometric response of the enzyme
biosensor exhibited the usual behaviour of Michaelis–Menten kinetics with Km value calcu-
lated as 2.21 mM. This lower value of Km suggested a higher affinity of the enzyme towards
its substrate. It also substantiated the fortification of the normal structure of GOx in rGO/Pt
NPs@Zn-MOF-74 in addition to the rapid substrate diffusion. For real-time analysis, the
acquired satisfying sensitivity and range of measurement aided fast and accurate glucose
measurement in cherry juice via the developed biosensor [22]. Although the sensitivity of
this sensor is impressive the author fails to discuss the chemistry of interaction between
the nanomaterials used in the biosensor fabrication, and in our opinion the sensor is not
affordable because the Pt used in the sensor development is expensive.

Nowadays, breast cancer is known to be a global health concern [25]. It is also the
leading cause of cancer in women [26]. Existing progress in molecular biology has revealed
cancer biomarkers as a vital tool in diagnosis, prognosis and providing awareness into
the causes of cancer [27]. In general, biomarkers are among the principal critical tools
for early testing of cancer, grouping, staging, progression monitoring and assessment of
immunisation against chemotherapy. Owing to this fact, the overall use of biomarkers
in healthcare will eventually depend upon the discovery of many biomarkers with out-
standing selectivity and sensitivity, such that they can discover even minor deviations
in the amount of the markers in mixed biological fluids [27]. Based on this precedent,
researchers recently reported the exploitation of 3D-reduced graphene oxide (3D-rGO) and
polyaniline nanofibers to construct an electrochemical DNA biosensor using a GCE for
highly sensitive detection of breast cancer BRCA1 biomarker [28]. To prevent more women
from cancers arising from BRCA1 gene mutation, detection of BRCA1 gene mutation is
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of crucial importance as it usually facilitates diagnosis and intervention [29,30]. Recently,
3D-rGO has been reported to display excellent bioelectrochemical performance owing to
its enhanced surface area, special morphology and structure, a lot of electroactive sites as
well as the expedition of electron transfer [31,32]. PANI nanofibers, on the other hand, are
an effective conductive electroactive polymer with large surface area, mechanical flexibility,
adjustable conductivity, chemical uniqueness as well as simple processing, hence the suit-
ability as a potential material in the development of extremely sensitive biosensors [33–36].
Additionally, graphene and PANI have similar conjugated π electrons structures, which
gives them great superiority in the preparation of nanocomposites for the enhancement
of electrochemical performance [37–39]. Owing to these reasons, the authors combined
the excellent features of 3D-rGO and PANI nanofibers. This combination resulted in a
tremendous improvement in the electrochemical activity of 3D-rGO-PANI/GCE, hence,
a reduction in the charge transfer resistance (Rct) was observed using the electrochemical
impedance spectroscopy (EIS) technique. This observation was reported to be due to the
synergistic impact of 3D-rGO and PANI nanofibers. More so, the proposed biosensor was
reported to successfully detect BRCA1 in actual blood samples with no obvious interference
in the biosensor selectivity [28]. In our opinion, the author should have used an environ-
mentally friendly reducing agent like ascorbic acid to reduce GO to graphene rather than
using toxic hydrazine monohydrate as the reducing agent.

The recent emergence of the photoelectrochemical (PEC) biosensor technique as an
actively evolving technique for investigating different biological measures with a greater
level of sensitivity is well documented [40]. PEC measurements, unlike electrochemistry,
combine the merits of photochemistry and electrochemistry [41,42]. The fundamental
of PEC biosensors is anchored on the photocatalytic oxidation or reduction in biological
molecules to allow the movement of photogenerated electrons between the analyte as well
as a semiconductor electrode under light emission to augment the PEC response. The
advantage derived from the PEC technique led to a report on the development of a PEC
immunosensing system involving phthalocyanine-sensitized graphene-cadmium sulphide
(Pc-G-CdS) nanocomposites for prostate specific antigen (PSA) detection using ITO (Indium
tin oxide) electrode [43]. CdS NPs were deposited on rGO which had been functionalised
via non-covalent bonding, using sodium 1-pyrene sulfonate by taking the advantage of
the π–π stacking communication between them. The light harvester—cobalt 2, 9, 16,
23-tetraaminophthalocyanine (CoTAPc)—was prepared on the G-CdS nanocomposites
through electrostatic communication using self-assembly approach. According to the
authors, the nanocomposites of CoTAPc-G-CdS displayed significantly higher and more
stable photocurrent intensity in contrast to the nanocomposites of G-CdS, thus making the
PEC biosensor system promising in the absence of a synchronised amplifier. Furthermore,
a rise in the steric hindrance owing to immunocomplex formation was observed. This was
evident in the photocurrent reduction over a PSA concentration range of 1 pg mL−1 to
5 µg mL−1. The observed detection limit was 0.63 pg mL−1. We recommend that the choice
of materials used for photoelectrochemical biosensors must be photoactive, affordable and
possess a large surface area.

The grafting of water-soluble polymers containing reactive functional units to graphene
or GO nanosheets was reported [44,45]. Arangue et al. explored this technique to de-
sign an electrochemical biosensor composed of a water-soluble reduced graphene oxide-
carboxymethylcellulose hybrid nanomaterial for the design of a biosensor for catechol
detection [46]. As a prototype, the authors employed the derived hybrid nanomaterial as a
nanostructured framework for tyrosinase immobilisation on a glassy carbon electrode for
biosensing of catechol. The employed hybrid nanomaterial was prepared via a reductive
alkylation process involving two consecutive synthetic steps: (i) primary fortification of GO
with amino units by grafting with (3-aminopropyl) triethoxysilane (APTES) moieties; and
(ii) covalent link of periodate-activated CMC to GO. Thereafter, the graphene-based hybrid
nanomaterial was employed as a layered material for GCE as well as frameworks for the
carbodiimide-mediated covalent immobilisation of the enzyme tyrosinase. According to
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the authors, the morphological study of Tyr/rGO-CMC/GCE prompted the evaluation of
the enzyme electrode for the fabrication of an amperometric biosensor for the detection
of catechol. Remarkably, the tyrosinase biosensor displayed an outstanding analytical
characteristic including a wide linear range of response between 20 nM and 56 µM, high
sensitivity of 270 mA M−1 in addition to an extremely low detection limit of 0.2 nM for the
amperometric determination of catechol. The successful outcome of the results obtained
from this finding led the authors to conclude that the covalent link of anionic polysaccha-
rides could be a successful means of developing water-soluble graphene-based hybrid
nanomaterials for biosensors design.

1.3. Carbon Nanotubes

After the first discovery of carbon nanotubes (CNTs) in 1991 by the Japanese scientist
Iijima, CNTs have gained tremendous popularity as an immobilisation layer for biosensor
design [7,47]. This prominence is because CNTs are electrically conductive with high tensile
strength, a significant rate of Young’s modulus and outstanding catalytic features to several
biological analytes in addition to their utilisation as a redox facilitator [48]. Structurally,
CNTs are hollow cylindrical tubes composed of wrapped graphite sheets with a diameter
ranging from nanometers to micrometers, made up of only sp2-hybridised carbon atoms.
CNTs are classified into single-walled carbon nanotubes (SWCNTs) and multiwalled carbon
nanotubes (MWCNTs). SWCNTs comprise a single layer of graphite sheet while MWCNTs
comprise more than two layers of graphite sheet [12,47,49] (Figure 1 shows the schematic
representation of SWCNTs and MWCNTs). Various synthetic approaches for CNTs include
arc discharge, laser ablation and chemical vapour deposition (CVD) approach. While arc
discharge and laser ablation procedures usually involve higher temperatures (>1700 °C)
for their synthesis, CVD, which has now replaced the latter procedures, is usually carried
out at temperatures < 800 °C [49] (Figure 2 shows the summary of the categorisation of
synthetic methods used for CNTs). Current studies revealed that CNTs hold outstanding
electrochemical features owing to the existence of reactive units on their surface that can aid
the electrons transfer of biomolecules. More so, improved electrocatalytic action of CNTs is
associated with the existence of edge-plane-like locations situated toward the end as well
as in the five-membered defects of CNTs. Overall, the voltammetric response of various
biological molecules at CNT-modified electrodes usually presents higher peak currents
as well as lower over-voltage. These outstanding features gave CNTs their tremendous
popularity as an immobilisation layer for biosensor fabrication [7].
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Furthermore, functionalisation of the physical and chemical features of nanoparticles is
imperative to customise their use in electrochemical biosensors. This is often carried out by
attaching some molecules on their surface. As a practical illustration, CNTs are insoluble in
aqueous solutions; however, when they undergo oxidation in acidic mixtures the carboxylic
units attached to the surface as well as the side walls of the nanotubes make them soluble
in aqueous solutions. Hence, functionalisation has proven to be an effective means of
altering the physical and chemical features of CNTs [50–52]. Notably, functionalisation of
CNTs in surfactants containing solutions or with chemicals normally leads to a decrease in
their bundle formation [53]. Covalent and non-covalent attachment are means by which
CNTs can be functionalised with various chemical units and this makes them biologically
compatible for conjugation with biomolecules, thus becoming promising immobilisation
candidates for biosensor design [1,52]. Kumar et al. also added that amine and carboxyl
functional units normally increase the electron transfer rate. In practice, they mentioned
that water-based polymers built functionalisation of CNTs or surface functionalisation with
ionic or hydrophilic units of CNTs usually aids CNT solubilisation in a water-based system.
Based on their report, this was a substantial consideration for CNTs to act as a support
medium for capturing biomolecules [1]. For example, an amperometric DNA biosensor
based on GCE was reported for pathogens diagnosis [54]. The DNA biosensor was designed
to primarily detect the exact IS6110 DNA sequence of Mycobacterium tuberculosis (MTB).
Concisely, the authors employed AuNPs fused with functionalised fullerene (C60) to first
create an appropriate biosensing platform to expedite transfer of electron and enhance
the capture probe (CP). Thereafter, flower-like carbon nanotube-polyaniline (CNTs-PANI)
nanohybrid were used to decorate the AuNPs to create a different tracker for the production
and augmentation alert strategy, aided by an enzyme. Overall, the estimated limit of
detection was 0.33 fM (S/N = 3) over a detection range of 1 fM–10 nM for the targeted
DNA of MTB. The DNA biosensor was reported to demonstrate high specificity, sensitivity,
and reproducibility for MTB detection in medical specimens. Although more medical
specimens are needed to further demonstrate the practicability and competence of the
proposed method in clinical use, it is a potent tool for early diagnosis of tuberculosis disease.
In our opinion, the author was supposed to carry out a proof-of-concept experiment to
identify the spectator nanomaterial and to confirm the role each modifier played in the
biosensor development.



Biosensors 2023, 13, 192 7 of 24

Additionally, CNTs functionalisation increases direct electron transfer between the
active sites of the bio-element and the electrode. Hence, redox polymers, hapten molecules,
and thiol derivatives in addition to N-ethyl-N-(3-dimethylaminopropyl carbodiimide-N-
hydroxyl succinimide (EDS-NHS) are predominantly used to functionalise MWCNTs [1].
For the record, the impact of CNT aids on the direct electron transfer (DET) as well as
electrocatalytic activities of immobilised glucose oxidase (GOx) was studied by Yuxiang
Liu and co-researchers [55]. GOx/CNT film was prepared by drop-casting a known
amount of CNT suspensions and GOx solution was immobilised on (GCE) surface. Nafion
was employed as a stabilizing solution to prevent the modifiers from leaking on the
electrode surface during electrochemical analysis. Notably, a set of two distinct and
basically reversible redox peaks were detected. According to the authors, this observation
was an indication of a very good DET amidst the redox centres of GOx and GCEs in the
absence of the electron transfer facilitators or metal NPs to connect with the flavin adenine
dinucleotide (FAD) active centres of the GOx. Furthermore, the immobilised GOx by the
CNTs preserved its electrocatalytic action against glucose. Notably, the authors emphasised
that the DET and electrocatalytic action of GOx was heavily reliant on the amount of CNTs
inner tubes. They further added that the impact of CNTs on the GOx electrocatalytic action
coupled with the DET is probably because of the electron-tunneling impact over the outer
wall and inner tubes of triple-walled CNTs.

Bayram and Akyilmaz reported the development of a stable microbial biosensor based
on Bacillus specie for the sensitive determination of paracetamol [56]. Notably, paracetamol
(acetaminophen) is a commonly known analgesic and antipyretic that is used for treating
pains. Its constant use is the reason why researchers studied the mechanism of its toxic-
ity. The developed biosensor is composed of a gold electrode modified by carboxylated
MWCNTs, polyaniline (PANI) with glutaraldehyde acting as a crosslinking agent. An am-
perometric technique was employed in the determination of paracetamol in drug samples
at an applied potential of 0.5 V. The authors reported that the developed microbial system
provided a significant cost-effective improvement for the detection of paracetamol with
rapid and simple analytical method. Further, the π–π stacking communications between
MWCNTs and PANI offered good stability and conductivity for the biosensor responses
with an observed detection limit of 2.9 µM [56,57].

Furthermore, CNTs have been employed as supporting materials for both the dis-
persion and stabilisation of numerous organic and inorganic nanomaterials due to their
extreme robustness coupled with massive reactive surfaces. The functionalisation of CNTs
has steadily moved from organic to inorganic materials owing to the advancement of
the chemistry of CNTs. Hence, CNTs are merged with diverse inorganic compounds like
metal oxides, carbides, nitrides, chalcogenides as well as ceramics. Among the listed,
metal oxides are considered the most commonly studied classes [7]. The integration of
CNTs with metal NPs like Pt [58–60], Mo [61], Sn [62], Fe [63,64], and Cu [65] have been
reported for several bioanalytical assays. For instance, Di Tocco and fellow researchers
employed an electrochemical biosensor comprising immobilised lipase on chitosan-coated
magnetic nanoparticles (CNP-L) on a multiwalled carbon nanotubes/pectin (MWCNT/Pe),
modified with copper oxide nanoparticles (CuONP) using a GCE [66]. The biosensor
was designed (Figure 3) to electrochemically detect total triglycerides (TGs)—commonly
called natural fats—in serum samples. The detection of total glycerides is very important
because it’s high levels, combined with cholesterol, are prominent causes of hyperten-
sion, coronary artery diseases and atherosclerosis [67]. The modification of the proposed
biosensor at different stages—MWCNT/Pe/GCE, CuONP on MWCNT/Pe/GCE and CNP-
L/CuONP/MWCNT/Pe/GCE—was carried out as reported [66,68]. Amperometry detec-
tion of TGs displayed a detection limit of 3.2 × 10−3–3.6 × 10−3 gL−1, quantification limits
in the range 9.6 × 10−3–1.1 × 10−2 gL−1 in addition to a sensitivity of 1.64 × 10−6 AL g−1.
The developed biosensor demonstrated an outstanding performance with 20 days of sta-
bility, good reproducibility, and repeatability. The developed analytical technique was
also used for the investigation of TGs in standard human serum specimens. We recom-
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mend that when more than one modifier is used, the chemistry of interaction between the
nanomaterials must be investigated and the modification route must be optimised.
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1.4. Carbon Nanoparticles

Zero dimensional carbon nanoparticles (CNPs) [69], a popular carbon analogue—
carbon nanotubes, graphene, and carbon dots [70]—possess special features such as bio-
compatibility, conductivity, non-toxicity and chemical inertness [71]. Hence, they are
commonly utilised in biosensors as well as other nanotechnology platforms. CNPs hold
similar sp2 electronic structure to graphene and CNDTs [69]. The ease of synthesis as well
as cost-effectiveness are the merits of CNPs over other forms of carbon nanomaterials.
For instance, the preparation of CNPs from candle soot is well documented [70,71]. For
example, in our previous studies we combine the analytical merits of AuNPs and CNPs
in the fabrication of an immunosensor for the detection of a cancer biomarker known as
Alpha-fetoprotein (AFP) [70]. Concisely, the preparation of the immunosensor was carried
out by immobilising anti-AFP probe (antibody) on a CNP/AuNPs nanocomposite-modified
electrode for about 40 min at 35 °C accompanied by blockage against non-specific binding
using bovine serum albumin (BSA). Overall, the combined impact of both nanomaterials
resulted in a broad linear range of 0.005–1000 ng mL−1, detection limits by means of square
wave voltammetry (SWV) of 0.0019 ng mL−1 and an EIS result of 0.00175 ng mL−1. In this
study, a proof-of-concept study was carried out to identify the role each modifier played in
biosensor development. It was observed that the CNP gave an improved current response
from the gold nanoparticles, as revealed in the cyclic voltammetry and electrochemical
impedance spectroscopy (EIS). Square wave voltammetry (SWV) and (EIS) were used to
validate the detection limit obtained for AFP.

A similar platform (CNPs-AuNPs) was employed to prepare aptasensors for arsenic
(III) detection [72]. CNPs were employed as a signal booster, while AuNPs were utilised as
an immobilisation layer for linking the aptamer to the electrode employing Au–S bond. The
developed aptamer biosensor was not susceptible to any interference from Cd, Cu and Hg.
It was reported that the developed biosensor was a substitute for alleviating interferences
in arsenic detection. This aptasensor was constructed to resolve the popular interference
effect of copper during arsenic sensing.
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CNPs have been reported to display a good affinity with the target of interest when
coupled with nucleic acid probes [73]. This is because CNPs usually demonstrate reversible
as well as binding affinities over single-stranded nucleic acid probes, thus enabling CNPs to
be used in nucleic acid-based sensing platforms [74]. Based on this foregoing, an intriguing
study demonstrating a fluorescent biosensor based on CNPs and nucleic acid probes
was reported. In this study, the authors employed the operating principle of the cyclic
enzymatic amplification method (CEAM) for miRNA detection [75]. The study utilised
nucleic acid probes for target discovery and signal augmentation, facilitated by DNase I.
According to this study, an innovative blend of CNPs and nucleic acid probes is envisaged
to unlock fresh ground in the advancement of smart analytical approaches that possess
ample opportunities for clinical tests, environmental monitoring, and food security. The
operating principle of the cyclic enzymatic amplification is shown in Figure 4.
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Figure 4. The operating principle of cyclic enzymatic amplification method (CEAM) for miRNA study.
Primarily, FAM-tagged single-stranded DNA (FAM-ssDNA) coupled to the carbon nanoparticle
surface (route a) give rise to a substantially quenched fluorescence signal. Formation of RNA/DNA
hybrid (route b) upon introducing the target miRNA. The resultant attachment of DNase I (route c)
identifies its suitable substrate: RNA/DNA hybrid (route d). Consequently, FAM-ssDNA is digested
into a tiny portion and a strong fluorescence signal is produced (route e). Further, miRNA remains
undisturbed and returns to its former status (route f), which is set up to initiate other reaction cycles;
hybridisation, digestion, signaling and release. The recycling application of the target molecule
provides an opportunity to successfully augment the detection sensitivity. Adapted from Ref. [75]
with authorisation from Elsevier.

1.5. Carbon Nanodots

Carbon nanodots (CNDTs) belong to quasi-spherical counterparts of carbon material
with a size distribution below 10 nm. It is an amorphous nanocrystalline core which is sp2

hybridised in addition to an oxidised carbon surface comprising different functional units
like hydroxyl, aldehyde and carboxyl units [76–78]. CNDTs remain an important part of
the class of carbon nanomaterials owing to their exciting features like cost-effectiveness,
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outstanding biocompatibility, low toxicity, high aqueous solubility, photophysical features,
strong chemical inertness, in addition to ease of synthesis [77–80]. For instance, the syn-
thesis of CNDTs from naked oats has been reported [76,78]. Other methods of synthesis
of CNDTs from different sources include arch-discharge, laser ablation, electrochemical,
thermal routes, microwave-assisted, hydrothermal and aqueous-based techniques [81]. The
exciting features possessed by CNDTs are the reason behind their use in several areas includ-
ing sensing and biosensing [78,82–84], catalysis [85], drug delivery [86], bio-imaging [87],
fuel cells [88] and dye-sensitisers [89]. However, there are still few reports available in the
literature on the exploitation of CNDTs as an immobilisation layer for biosensor design.
Furthermore, the synergistic impact of CNDTs when combined with other materials cannot
be underestimated. To mention a few, a nano-mediator (polypropylene imine dendrimer
(PPI) and CNDTs) was employed as a remarkable electron wire for the development of
a biosensor for carcinoembryonic antigen (CEA) cancer biomarker on an underutilised
exfoliated graphite electrode [78]. The idea of a synergic blend between PPI dendrimers as
well as CNDTs was employed for CEA quantification. Additionally, the immobilisation of
antibodies was aided by employing the host-guest supramolecular and biocompatibility
features of dendrimers. The fabricated immunosensor gave rise to a low limit of detection of
0.00145 ng/mL over a linear range of 0.005–300 ng/mL. The developed immunosensor was
finally applied for CEA determination in human serum specimens as proof of the potential-
ity of the immunosensor for real specimen analysis. The advantage of this sensor was that
PPI was electrodeposited on the GCE electrode after CNP was drop-dried on the platform;
this strategy helps to prevent the CNPs from leaking inside the electroanalytical solution.

The application of poly (amidoamine) dendrimer (PAAD) functionalised CNDTs
for extremely sensitive determination of alpha-fetoprotein (AFP) was reported [90]. Poly
(amidoamine) dendrimer with rich amino units in their molecular backbones was employed
as transporters for the immobilisation of additional carbon nanodots by employing covalent
bond force [91]. Before immunoassay detection, a reduced graphene oxide (rGO) @fullerene
(C60) modified electrode was first prepared and employed as a sensing medium to offer a
wide surface area for covalent binding of capture antibody (Ab1) using a GCE. This step
was followed by the self-assembling of detection antibodies (Ab2) via covalent binding on
the PAADs@CNDTs composites, as sensitive electrochemiluminescent (ECL) bioprobes on
the sensing interface for AFP detection using a simple sandwich immunoassay strategy.
The strategy employed for AFP detection was based on the fact that as the ECL intensity
of the fabricated immunosensor increases, the target antigen concentration also increases
owing to the favourable electrochemical and ECL catalysis toward luminol [92]. This
strategy gave rise to a low detection limit of 0.33 fg mL−1 over a broad active response
of 1 fg mL−1–80 ng mL−1. The authors concluded that the PAADs functionalised CNDTs
presented an optimistic method in clinical disease study [90].

Another study demonstrating the immobilisation of horseradish peroxidase (HRP) on
carbon nanodots/CoFe-layered double hydroxide (LDH) composites for the electrochem-
ical detection of hydrogen peroxide was reported [93]. Carbon nanodots (C-Dots) were
prepared as previously reported [94], while the preparation of C-dots/LDHs involve mix-
ing C-Dots and CoFe-LDHs; after which, HRP was introduced to the mixture suspension
of C-Dots/LDHs coupled with the addition of a known amount of Nafion to the resulting
mixture for the stability of the modified electrode. The resulting mixture was finally drop
cast on the previously treated GCE surface and dried up for 6 h at room temperature to ob-
tain the HRP/C-Dots/LDHs/GCE. The electrochemical behaviour of HRP/C-Dots/LDHs
GCE using cyclic voltammetry showed that C-Dots could enhance reaction involving the
transfer of electron of HRP, despite HRP capacity to realise direct electrochemistry once
immobilised by CoFe-LDHs (Figure 5). Overall, the electrocatalytic performance studies
via cyclic voltammetry and chronoamperometry (summary in Table 1) revealed that the
introduction of HRP boosted the responsiveness of HRP/C-Dots/LDHs/GCE, and as such
was found to be better than C-Dots/LDHs/GCE owing to the merit of the material mixture
in the design of electrochemical biosensors. Further, the outstanding analytical performance
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of HRP/C-Dots/LDHs/GCE toward H2O2 detection (Figure 6a,b) was attributed to the
combined effect of HRP, C-Dots and CoFe-LDHs.
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Dots/LDHs/GCE and (e) HRP/C-Dots/LDHs/GCE electrodes in 0.1 M PBS (pH = 7.0) at a scan rate
of 50 mVs−1. Adapted from Ref. [93] with authorisation from Elsevier.

Table 1. Comparing the analytical performances of HRP/C-Dots/LDHs/GCE with other biosensors.

Electrode Material Linear Range
(µM)

LOD
(µM)

Sensitivity
(mA mM−1 cm−1) Reference

C-Dots/GCE 1.0–3.5 0.55 0.055 [93]

LDHs/GCE 1.0–6.0 0.68 0.061 [93]

C-Dots/LDHs/GCE 0.5–7.5 0.46 0.12 [93]

HRP/C-Dots/LDHs/GCE 0.1–23.1 0.04 0.47 [93]

HRP-Ag@C/ITO 0.5–140 0.2 - [95]

HRP/RTIL/GNPs-TNTs/Nafion 5.0–1000 2.1 - [96]

Nafion/HRP/Zr-IP6/GCE 0.667–6.0 0.53 - [97]

Gold-nanoparticle-adsorbed poly (thionine) film 5–150 1.5 - [98]

Recently, N-rich carbon nanodots have been used by Tamara and his colleagues to
develop a superb electochemiluminescence immunosensor for the detection of SARS-CoV-2
spike S1 protein [99]. The CNDTs provided the functional groups that were covalently
attached to the SARS-COv-2 spike S1 antibody and improved the electrochemiluminescent
signal in the Ruthenium redox probe. Over a broad concentration range of 2.5 to 240 pg/mL
with a detection limit of 1.2 pg/mL, the immunosensor was highly selective towards the
analyte. It is interesting to note that the immunosensor was utilised to detect the analyte in
wastewater from rivers and cities.



Biosensors 2023, 13, 192 12 of 24Biosensors 2023, 13, x FOR PEER REVIEW 12 of 26 
 

 
Figure 6. (A) Amperometric response of the HRP/C-Dots/LDHs/GCE to diverse concentrations of 
H2O2 from 0.1 －23 µM in 0.1 M pH 7.0 PBS. The potential employed was －0.35 V. (B) The equiva-
lent calibration curve of I－C acquired by chronoamperometry. Adapted from Ref. [93] with author-
isation from Elsevier. 

Table 1. Comparing the analytical performances of HRP/C-Dots/LDHs/GCE with other biosensors. 

Electrode Material Linear Range 
(µM) 

LOD 
(µM) 

Sensitivity 
(mA mM−1 cm−1) Reference 

C-Dots/GCE 1.0–3.5 0.55 0.055 [93] 
LDHs/GCE 1.0–6.0 0.68 0.061 [93] 

C-Dots/LDHs/GCE 0.5–7.5 0.46 0.12 [93] 
HRP/C-Dots/LDHs/GCE 0.1–23.1 0.04 0.47 [93] 

HRP-Ag@C/ITO 0.5–140 0.2 - [95] 
HRP/RTIL/GNPs-TNTs/Nafion 5.0–1000 2.1 - [96] 

Nafion/HRP/Zr-IP6/GCE 0.667–6.0 0.53 - [97] 
Gold-nanoparticle-adsorbed poly (thionine) film 5–150 1.5  - [98] 

Recently, N-rich carbon nanodots have been used by Tamara and his colleagues to 
develop a superb electochemiluminescence immunosensor for the detection of SARS-
CoV-2 spike S1 protein [99]. The CNDTs provided the functional groups that were cova-
lently attached to the SARS-COv-2 spike S1 antibody and improved the electrochemilu-
minescent signal in the Ruthenium redox probe. Over a broad concentration range of 2.5 
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calibration curve of I-C acquired by chronoamperometry. Adapted from Ref. [93] with authorisation
from Elsevier.

MXenes were first discovered and developed by the nanomaterials group, led by Prof.
Yuri Gogotsi, collaboratively with Prof. Barsoum’s group, in 2011 at Drexel University,
Philadelphia, USA. MXenes represent another family of two-dimensional (2D) transition
metal carbides, carbonitrides and nitrides, relevant for numerous applications like elec-
tronics, energy storage and catalysis [100]. These layered materials are called ‘MXenes’
because they are synthesised by selectively etching A from the parent compounds, MAX
phases. Out of the numerous etching approaches devised to synthesise MXenes, one of
them is implemented by immersion of a MAX phase in hydrofluoric acid at room tem-
perature. The suffix ‘ene’ in MXenes highlights their resemblance to graphene. MAX
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phases represent a group of over 60 members of layered ternary carbides and nitrides
with a common formula Mn+1AXn, where n = 1, 2, or 3, M is an early transition metal
(like Sc, Ti, V, Cr, Nb), A represents an A-group element (mostly groups 13 and 14—Al,
Si and Sn) and X is C and/or N [95,97]. MAX phase denotes a closely packed number
of layered structures from alternating layers of M and A with a strong metallic-covalent
M–X bond and weak M–A bond (Figure 7). MAX phases have good electrical and thermal
conducting features, resistant to chemical shocks in addition to low thermal expansion coef-
ficient [95,98]. Notably, MXenes have wide applications in energy storage, electromagnetic
shielding/absorption, water purification, polymer nanocomposite fillers, electronic devices
and optical conductive coatings [96]. The study of MXenes in electronic and optoelectronic
applications, which is subsequently termed MXetronics is well documented [99–101]. Al-
though there are numerous applications of MXenes in electronics, it is still less exploited
for biological applications.
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This section aims to highlight some of the existing few reports on MXene-based
biosensors. The exploitation of MXenes in biosensing platforms has been recognised
owing to their high metallic conductivity, biocompatibility, wide surface area, good ion-
transmission features and ease of functionalisation [97,102,103]. Other exceptional merits
of MXene materials, in contrast to other 2D nanomaterials, include a wide surface area
with rich surface functional units like -O, -OH and -F, hence they are easily controlled to
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absorb biomaterials as well as modify the conducting properties, thereby enabling them
to be used in sensing and biosensing [96,104–107]. Furthermore, the semi-conducting
metallic features coupled with a suitable bandgap make MXenes to demonstrate low power
loss in an off-state in contrast to graphene, and this helps to realise improved detection
sensitivity [108]. MXenes began to gain recognition in biosensing applications after its
exploration by Xu and co-workers in 2015 [108]. In this report, the authors employed a
Ti3C2-MXene to fabricate an MXene-FET biosensor device for the detection of dopamine
including investigating its neural activity. The MXene-FET biosensor device was able to
practically detect dopamine at the lowest possible concentration of 100 × 10−9 M. According
to the authors, this result was found to be lower than many already published works on
graphene-based biosensors [109–111].

For cancer biomarker detection, antibodies have been exploited to covalently bind
to the amino units chemically initiated to the surface of a single/multilayer MXene
(Ti3C2). This is due to the presence of densely populated functional units on the ultra-
thin 2D nanosheet of single/few layered Ti3C2-MXene, which mainly provides enhanced
biomolecule loading and rapid access to the analyte [96,112]. Kumar et al. [112] designed a
label-free biosensor with reference to ultrathin 2D Ti3C2-MXene nanosheets for CEA detec-
tion. The Ti3C2-MXene nanosheets for the biosensor design were prepared by minimally
intensive layer delamination (MILD) technique [113], followed by an even functionali-
sation with 3-Aminopropyltriethoxysilane (APTES) for the covalent immobilisation of
anti-CEA (Figure 8A). Cyclic voltammetry investigation of the redox probes impact on
the electrochemical behaviour of the functionalised Ti3C2-MXene layers revealed hexaam-
mineruthenium ([Ru(NH3)6]3+) as the preferred redox probe for biosensing. The choice
of this redox probe was influenced by a sharp decline in oxidation current density of
the ferrocyanide [Fe(CN)6]−3/−4 redox probe after the first cycle of the experiment. This
was reported to be as a result of oxidation of Ti3C2-MXene layers at higher potentials
(−0.1 V to 0.8 V), which led to the production of TiO2 over the MXene sheets [107]. Con-
trary to that observation, [Ru(NH3)6]3+ redox probe was oxidised and reduced at lower
potential windows (Figure 8B). Additionally, covalent immobilisation of the bioreceptor
resulted in greater uniformity, distribution and a densely populated bonded biomarker.
Overall, the biofunctionalised MXene-based device displayed an observed detection limit
of 0.000018 ng mL−1 over a very broad range of 0.0001–2000 ng mL−1 and sensitivity of
∼37.9 µA ng−1 mL cm−2 per decade for CEA [112].

The large surface area of MXenes has been reported to provide an outstanding conduct-
ing aid to accept additional AuNPs and recognition sites. As a result, the development of an
extremely sensitive electrogenerated chemilumiscence (ECL) biosensor via in situ formation
of AuNPs decorated Ti3C2 MXenes hybrid with modified aptamer (AuNPs-MXenes-Apt)
for exosomes detection was described [114]. In this study, the authors employed exosomes
recognised CD63 aptamer, modified on sodium alginate (SA) and poly (acrylamide) (PAM)
modified electrode to efficiently capture the exosomes on the SA-PAM electrode interface.
Firstly, the in situ formation of AuNPs-MXenes-Apt hybrid aided the active identification of
exosomes. Secondly, it provided a bare catalytic surface with significant electrocatalytic ac-
tivity of AuNPs. The synergistic catalytic influence of the AuNPs-MXenes-Apt on the ECL
reaction to luminol resulted in exosomes detection limit of 30 particles µL−1 over a range of
102–105 particles µL−1. The authors claimed that the observed LOD derived from HeLa cell
line in this study is 1000 times way less than the established ELISA technique. Figure 9A,B
show the scheme for the fabrication of an ECL biosensor for detecting exosomes. The GCE
surface modified the SA-PAM layer, which provided the carboxyl group for CD63 Apt
immobilization, resulting in more CD63 Apt molecules modified on the electrode. Based
on the high specificity of Apt and CD63 protein on the surface of exosomes, the electrode
was incubated in the MXenes-Apt solution after exosomes were captured.
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Researchers have also found that the bioactivity of lively protein in a biosensor typ-
ically drops upon direct contact with the electrode surface. Therefore, some materials
are carefully chosen to immobilise lively proteins and preserve their action. In this re-
gard, MXenes have been found useful as protein immobilisation platform because they
help to protect the lively proteins and aid the immediate transfer of electron between the
enzyme and the electrode, resulting in the possibility of devising mediator-free biosen-
sors [115]. On this note, Ti3C2Tx was selected for immobilisation of hemoglobin (Hb) on
a Nafion/Hb/Ti3C2Tx/GCE biosensor for nitrites detection. Owing to the reasonably
good conductivity of Ti3C2Tx, the Nafion/Hb/Ti3C2Tx/GCE biosensor demonstrated a
high-impact operation with a magnified detection range of 0.5–11800 µM and impressive
LOD of 0.12 µM [104].
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A TiO2-modified Ti3C2Tx nanocomposite, prepared using hydrothermal synthesis,
was utilised as an immobilisation medium for hemoglobin (Hb) in the fabrication of
a Nafion/Hb/Ti3C2Tx-TiO2/GCE biosensor for H2O2 detection [105]. The SEM image
showed that the microstructure of the nanocomposite of Ti3C2Tx nano-layers (Figure 10a)
was composed of an organ-like arrangement with a closed and opened edge, coupled
with the many white TiO2 nanoparticles loaded on the Ti3C2Tx layers. The organ-like
arrangement was found to be beneficial for enzyme immobilisation on the inner sur-
faces of Ti3C2Tx. Furthermore, the outstanding biocompatibility and chemical stability
of TiO2 provided a protective micro-environment for the enzymes. Figure 10b depicts
the graphics of the TiO2-Ti3C2Tx nanocomposite capturing hemoglobin. The enzyme was
immobilised on the internal sides of the organ-like designed Ti3C2Tx nano-layers adjacent
to TiO2, thus ensuring the strength and activity of the enzyme much longer. Overall, the
Nafion/Hb/Ti3C2Tx-TiO2/GCE displayed a faster response time below 3 s in addition to a
broader linear range of 0.1–380 µM in contrast to Nafion/Hb/Ti3C2Tx/GCE where Ti3C2Tx
was utilised as the immobilisation medium [105,106].

The summary of the application of carbon-based nanocomposite is highlighted in Table 2.

Table 2. Reveals the summary of various carbon nanomaterials used in the development of biosensors
for various analytes.

Electrodes Linear Range (ng/mL) Detection Limit (ng/mL) Analyte Reference

rGO/Pt@Zn-Mof-74 0.6–600 0.18 Glucose [22]
rGO@PANI 0.1–1000 0.00301 BRCA1 [28]

CoTAPC-rGO@CdsNPs 0.001–5 0.00063 PSA [43]
CMC@rGO 20–500 0.2 Catechol [46]

CNTs@PANI 1–10 0.33 MTB [54]
GoX-CNT 0.25–499 0.003677 Glucose [55]

cMWCNTs@PANI 5–100 0.02900 Paracetamol [56]
AuNPs@CNPs 0.005–100 0.0019 AFP [70]
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Table 2. Cont.

Electrodes Linear Range (ng/mL) Detection Limit (ng/mL) Analyte Reference

AuNPs@CNPs 0.5–100 0.0092 As(III) [72]
CNPs 0.5–100 0.032 microRNA [75]

PPI@CNDTs 0.005–300 0.00145 CEA [78]
Polyamidoamine@CNDTs 1–80 0.33 AFP [90]

Nafion@CNDTs 10–320 0.001 AFP [92]
HRP@CNDTs@CoFe 1–23.1 0.04 H2O2 [93]

f -Ti3C2-MXene 0.1–200 0.00379 CEA [112]
f -Ti3C2-MXene@AuNPs 0.001–1000 0.00333 Exosomes [114]
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Another class of carbon nanomaterial is graphitic carbon nitrides (GCN); they are a
remarkable class of conjugated polymer semiconductors and have fascinated the attention
of scientists owing to their unique analytical merits including biocompatibility, avalanche
nitrogen lone-pairs, surface defects, extended π-electron density and presence of intrinsic
peroxidase activity, which is enhanced when attached to biomolecules [115–117]. These in-
teresting features have endorsed the application of GCN in the development of biosensors.
For instance, Walaa and his colleagues developed a brilliant porous GCN in collaboration
with gold nanoparticles for the detection of cardiac Troponin I [118]. The author affirmed
that the modification of the electrode surface with GCN had a significant impact on the in-
terfacial electron transport, aptamer immobilization, and active surface area, and improved
the performance of the biosensor. Interestingly, the fabricated aptasensor was integrated
into a miniaturized potentiostat and wirelessly connected to a smartphone, which affirms
its potential for point-of-care diagnostics application. Similarly, mesoporous-C3N4 was
encapsulated with AuNPs (mpg-C3N4@AuNPs) and used for the development of surface-
enhanced Raman spectroscopy substrate for the detection of 6-thioguanine (6-TG) [119].
Interestingly, the agglomeration of gold nanoparticles was successfully prevented because
the gold nanoparticle grew inside the nanopores and on the surface of the mesoporous-
C3N4. The author submitted that the hybrid of mpg-C3N4@AuNPs was beneficial to SERS
enhancement because of the intrinsic properties of both modifiers coupled with the π–π
affinity between GCN and the analyte. The platform was able to detect a wide linear range
of the analyte from 0.6 µM to 0.48 µM with a detection limit of 0.24 µM.

A one-pot synthesis of novel ternary nanocomposite of ceria, polypyrrole (Ppy), and
graphitic carbon nitride (CeO2/Ppy@g-C3N4) was used for the development of a non-
enzymatic biosensor for the detection of quinol in water [120]. The electrochemically active
surface area of the modified electrode was 2.3 increment in comparison with the bare
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electrode, and the platform was able to detect a broad concentration range of quinol from
0.01 to 260 µM and the detection limit of 1.5 nM was obtained. It was highlighted that Ppy
was used because it is highly conductive, stable, and its synthesis protocols involve simple
preparation steps. However, the author was unable to compare the individual conductivity
of the material used for the sensor development because of the one-pot synthesis used in
the preparation of the nanocomposite (CeO2/Ppy@g-C3 N4).

Yujuan and his team developed a sensor for the detection of acetaminophen (AP)
by GCN and EDOT (3,4-ethylene dioxythiophene) [121]. The GCN@EDOT was elec-
trochemically co-deposited on the GCE by oxidizing and polymerisation of EDOT. The
co-electrodeposition was done by cycling a potential from 0.2 to 1.2 V for ten cycles at a
scan rate of 100 mV/s using cyclic voltammetry. The author noted that the co-detection of
GCN and EDOT was due to π–π interaction, and the platform was used in the detection of
AP in human serum. The platform was reported to be reproducible, stable, and selective.
In our opinion, the stability of the sensor is a result of the electrodeposition route used in
the sensor fabrication.

Nanocellusose (NC) is another type of polymer that has fascinated the interest of
researchers; it is made from cellulose using mechanical or chemical techniques. Grinding
and high-pressure homogenization are used in the mechanical preparation of nanocellulose
to create cellulose nanofibrils with 500–2000 nm length and 5–50 nm diameter [122–124].
While the chemical process encompasses delignification, alkali treatment, mechanical
breakdown, and acid hydrolysis, the result is rod-like cellulose nanocrystals with diam-
eters and lengths of 3–50 nm and 100–500 nm, respectively [122–124]. NC has a great
surface area, good cytocompatibility, low toxicity, biodegradable, biocompatible, and low
density [125,126]. These analytical merits have drawn attention to the use of NC in biosen-
sor development. For example, NC was used in collaboration with single-wall carbon
nanohorns to detect adenine and guanine bases in RNA and DNA. The platform was said
to have strong catalytic activity and antifouling properties, and it detected guanine to a
limit of 1.4 ×10−6 M [127].

An electrochemical biosensor was developed from peptide nuclide acid (PNA)@reduced
graphene oxide (NH2-rGO/2,2,6,6-tetramethylpiperidin-1-yl)oxyl nanocrystalline cellulose
(TEMPO-NCC) and used for the detection of Mycobacterium tuberculosis (M. Tuberculo-
sis) [128]. The nanohybrid films (rGO-TEMPO-NCC) were drop-coated on a screen-printed
carbon electrode (SPCE). The author affirmed that the sensor was able to differentiate be-
tween complementary, non-complementary and one-base mismatch DNA sequences using
methylene blue (MB) as the electrochemical indicator. The fabricated biosensor detected
the analyte with a linear calibration curve in a concentration range of 1 × 10−8–1 × 10−13

and a detection limit of 3.14 × 10−14 M was reported.
Solin and co-workers employed EDC/NHS coupling chemistry with nanocellulose to

create efficient anchor layers for the immobilization of anti-immune complex antibodies on
paper-based immunoassay for the detection of tetrahydrocannabinol [129]. The authors
used the OH-group-rich surface, high surface-to-volume ratio, and high hygroscopicity of
tempo-oxidized cellulose nanofibrils (TOCNF) to enhance effective surface functionalisation
and promote water permeation inside the nanocellulose network structure, providing a
hydrophilic spacer for sensing antibodies. The conjugation of the probe onto the electrode
surface was carried out by incorporating the thiol group at the N-terminal of the PNA.

2. Conclusions, Recommendation and Future Perspective

In conclusion, this review has clearly identified and demonstrated the special capa-
bilities of carbon nanomaterials and new member of 2D materials, MXenes, in biosensor
development. Hence, they are considered superb and promising immobilisation can-
didates for the development of high-impact biosensors. Carbon nanomaterials possess
many remarkable features, some of which include broad potential window, chemical
inertness, cost effectiveness, enhanced surface area, electrical and thermal conductivity,
superior biocompatibility and photophysical attributes. MXenes, at the same time, have
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high metallic conductivity, biocompatibility, good ion-transmission characteristics, ease
of functionalisation, and wide surface area with rich surface functional units. The topic
also apparently found out that modification of the functional units of nanomaterials and
integrating them with other materials with excellent characteristics usually boost device
performance, sensitivity, selectivity, shelf-life, and detection limits.

We firmly recommend that researchers should adopt environmentally friendly synthe-
sis techniques and investigate the chemistry of interaction between the nanocomposites
utilised in the development of biosensors. Additionally, at least two electrochemical tech-
niques must be utilised for characterising the modifiers utilised and detecting various
analytes. Furthermore, the electrodeposition approach should be used to immobilise the
modifiers on the conducting substrates; however, if this is not done, we advise using nafion
as a stabilising agent for the modifiers.

For future research, we recommend primarily that more innovative and effective
surface modifications are needed for both carbon nanomaterials and MXenes to be able
to satisfy the requirements of various biomedical applications. Robust but designated
modification methods are envisaged to accomplish a more robust and proper detection.
Based on the above considerations, there is a pressing need for an in-depth study on carbon
and MXenes-based materials in addition to their composites. It is also of great importance
to take note properly that only inter-disciplinary collaborative responsibility can result into
cutting-edge research. Such a perspective is very much needed in the world of science in
all corners of the globe; hence, the innovative discovery and in-depth understanding of the
developed nanomaterials will disclose greater significant uses. The key objective will aim
at final clinical and commercial use of carbon and MXene-based biosensing devices.
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