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Abstract: A novel point-of-care surface plasmon resonance (SPR) sensor was developed for the
sensitive and real-time detection of cardiac troponin I (cTnI) using epitope-imprinted molecular
receptors. The surface coverage of a nano-molecularly imprinted polymer (nanoMIP)-functionalized
SPR sensor chip and the size of nanoMIPs (155.7 nm) were characterized using fluorescence microscopy
and dynamic light scattering techniques, respectively. Atomic force microscopy, electrochemical
impedance spectroscopy, square wave voltammetry and cyclic voltammetry techniques confirmed
the successful implementation of each step of the sensor fabrication. The SPR bio-detection assay
was initially established by targeting the cTnI peptide template, and the sensor allowed the detection
of the peptide in the concentration range of 100–1000 nM with a correlation coefficient (R2) of 0.96
and limit of detection (LOD) of 76.47 nM. The optimum assay conditions for protein recognition
were subsequently determined, and the cTnI biomarker could be detected in a wide concentration
range (0.78–50 ng mL−1) with high reproducibility (R2 = 0.91) and sensitivity (LOD: 0.52 ng mL−1).
The overall sensor results were subjected to three binding isotherm models, where nanoMIP-cTnI
interaction followed the Langmuir binding isotherm with the dissociation constant of 2.99 × 10−11 M,
indicating a very strong affinity between the cTnI biomarker and epitope-imprinted synthetic receptor.
Furthermore, the selectivity of the sensor was confirmed through studying with a control nanoMIP
that was prepared by imprinting a non-specific peptide template. Based on the cross-reactivity tests
with non-specific molecules (i.e., glucose, p53 protein, transferrin and bovine serum albumin), the
nanoMIP-SPR sensor is highly specific for the target biomarker. The developed biomimetic sensor,
relying on the direct assay strategy, holds great potential not only for the early and point-of-care
testing of acute myocardial infarction but also for other life-threatening diseases that can be diagnosed
by determining the elevated levels of certain biomarkers.
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1. Introduction

Cardiovascular disease (CVD) is a term which is related to the disorders associated
with the heart and blood vessels. It usually occurs due to the deposition of fat in the
arteries and an increased risk of blood clots [1]. Being the leading cause of increasing
fatality rates worldwide, CVDs have been viewed as one of the major problems not only
in the wealthy but also in industrialized nations for decades, and the need for rapid and
easy detection with timely diagnosis has the utmost importance [2]. The World Health
Organization (WHO) estimates that 17.9 million people worldwide die of cardiovascular
disease each year, accounting for 32% of all deaths and significant morbidity. Of these
deaths, 85% are attributable to strokes and heart attacks, which have increased by 5% over
the previous five years [3]. Patients who are at high risk of developing CVD may have
some of the symptoms that can be monitored in a medical institution, such as high blood
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pressure, elevated cholesterol levels and obesity. The chances of efficient treatment and
higher survival rates have been hindered by delayed diagnosis. Therefore, identifying
those patients who are at high risk of CVDs at the initial stage and providing them with
appropriate treatment helps to prevent significant premature deaths. This may also help in
cutting the cost by screening the hospital admission processes and focusing on the resources
for those that are specifically at risk. In this regard, biomarkers and biosensors play a vital
role to revolutionize the diagnosis of CVD [3,4].

The detection of CVDs can be achieved by determining the concentration of certain
substances known as biomarkers which are specific to the respective diseases. Hence,
diagnostic and prognostic biomarkers are required to be detected with minimally invasive
methodologies to improve the management of CVDs. These biomarkers can also help to
detect the severity of a particular cardiac disorder [5–7]. Extensive efforts are necessary to
explore and develop highly efficient, rapid, accurate, easy-to-use, sensitive and reliable
sensing devices for the detection of CVDs.

As troponin is a regulatory protein that regulates muscle contractions and is elevated
above normal levels for 4 to 10 days after symptoms eventuate, it is beneficial for detecting
individuals with late-stage acute myocardial infarction (AMI) [8]. Human troponin is made
up of three subunits: TnC, TnT and TnI. The latter is used as a gold standard marker
because of its exceptional specificity and sensitivity for the detection of AMI, as well as the
fact that it is found in heart muscles when there is a myocardial cell injury and has a higher
blood concentration [9]. The level of cTnI drastically increases in the bloodstream from the
threshold level of 0.04 ng mL−1 to 1.4 ng mL−1 within 3–12 h [10].

cTnI detection utilizing biosensor technology has been the subject of numerous studies
in the past and continues to grow. For instance, Mason et al. developed a sensitive
and real-time fiber-optic-based SPR sensor for cTnI that could successfully detect the
biomarker down to 3 ng mL−1 within 10 min [11]. Fan et al. developed a novel label-free
photoelectrochemical (PEC) sensor allowing the detection of cTnI in the concentration
range of 0.001–50 ng mL−1 with a limit of detection (LOD) of 0.3 pg mL−1, good stability
and reproducibility [12]. In other work, Wu et al. have reported on an ultrasensitive
immunoassay for cTnI quantification based on magnetic field-assisted SPR, revealing an
LOD of 1.3 ng nL−1 [13]. Mansuriya and Altintas have developed an enzyme-free nano-
immunosensor for cTnI detection using gold nanoparticles and graphene quantum dots
as enzyme mimics and signal amplification agents, where the disposable electrochemical
sensor could achieve the determination of the biomarker in a wide concentration range
(10–1000 pg mL−1) with an LOD of 0.5 pg mL−1 in 50% diluted human serum [14].

All of the aforementioned works used antibody-based receptors, which are bearing
fragile and costly biosensing platforms. Moreover, the sensor development process and/or
the instrumentation in these works are laborious. Thanks to the continuous develop-
ments in the molecular imprinting field, some elegant sensor approaches using MIP-based
synthetic receptors have recently been introduced for the detection of cardiac biomark-
ers. Baldoneschi et al. reported on cTnI detection using a poly-norepinephrine based
optical MIP sensor, which was prepared by drop casting of the polymer films on SPR
chip sensors. The study uses two alternative peptide sequences (aar C-terminal 197–210:
ALSGMEGRKKKFES and N-terminal 28–40: 28AYATEPHAKKKSK) as templates in the
epitope imprinting process. The sensor offers high affinity (KD = 4.4 nM) and selectivity yet
requires bulky instrumentation (Biacore, GE Healthcare) and a sandwich assay by utilizing
a detector antibody to achieve enough sensitivity [15].

McClements et al. recently developed a thermal assay for the detection of cTnI using
epitope-mediated nanoMIPs on screen-printed electrodes. The disposable sensor was
coupled with three different nanoMIP immobilization approaches (i.e., drop casting, dip
coating and a covalent approach relying on electrografting with an organic coupling re-
action), where the covalent functionalization of nanoMIPs onto the surface provided the
most reproducible sensing results. Through monitoring changes in heat transfer at the
solid−liquid interface, the authors could measure concentrations as low as 10 pg L−1 in
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buffer. This novel technique might be suitable for commercialization purposes; however,
it currently requires a much longer assay time (45 min PBS injection to obtain a baseline
followed by 12 min injection of sample and another 30 min to stabilize the system for the
next injection) [16] than that of the current work. In another work, the same research group
coupled their thermal detection approach with nanoMIP-based multiplex sensor platform
for the quantification of other cardiac biomarkers (heart-fatty acid binding protein and
ST2) and demonstrated that the system could selectively detect both cardiac biomarkers
within the physiologically relevant range with LODs of 4.18 and 8.79 ng mL−1, respec-
tively. Nevertheless, the use of a whole protein imprinting approach in this work makes it
high-cost [17].

MIPs were also introduced to the femtomole detection of cTnI peptides using matrix-
assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) [18]. The syn-
thetic receptors provided a moderate selectivity with imprinting factors ranging from 3 to 5
with dissociation constants of 58–817 nM. However, the complicated assay procedure, as
well as the laborious instrumentation, are not suitable for providing a portable sensing
approach that can be used in point-of-care testing.

In the present work, nanoMIPs were used as synthetic receptors to reduce the overall
cost and provide a label-free and direct assay strategy with a portable and user-friendly
device for the highly sensitive detection of cTnI. The receptors were manufactured using a
partial imprinting approach [19–21], relying on the molecular imprinting of a cTnI-derived
small peptide (aar 40–49: ISASRKLQLK) immobilized on a solid phase prior to polymeriza-
tion [22–29]. The resulting nanoMIPs were characterized using dynamic light scattering
(DLS) and fluorescence microscopy techniques. The sensor assays were successfully estab-
lished by initially targeting cTnI-derived peptides, followed by protein detection studies in
wide concentration ranges. All steps of sensor fabrication were characterized by employing
cyclic voltammetry (CV), square wave voltammetry (SWV), electrochemical impedance
spectroscopy (EIS) and atomic force microscopy (AFM) techniques. The sensitivity, affinity,
selectivity and specificity of the sensor were successfully confirmed towards developing the
first nanoMIP-SPR sensor for cTnI detection using epitope-imprinted synthetic receptors
and a label-free bioassay.

2. Materials and Methods
2.1. Materials and Reagents

First, 11-mercaptoundecanoic acid (MUDA), N′-tetramethylethylenediamine (TEMED),
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), glutaraldehyde (GA), phosphate-
buffered saline (PBS), sodium acetate, ethanol, acetone, N-isopropylacrylamide (NIPAm),
N,N′ methylenebisacrylamide (BIS), acrylic acid (AAc), N-(3-aminopropyl) methacry-
lamide hydrochloride (APM), N-hydroxysuccinimide (NHS), 3-aminopropyltriethoxysilane
3- (APTES), ethanolamine, methacryloxy ethylthiocarbamoyl rhodamine B, N-tert-buty
lacrylamine (TBAm), ammonium persulphate (APS), Tween 20 (polyoxyethylenesorbitan
monolaurate), sodium borohydride and anhydrous toluene were purchased from Sigma
Aldrich (Steinheim, Germany). In order to obtain double-distilled water, a Millipore Direct-
Q 3 UV (Millipore, Taufkirchen, Germany) was used. The glass beads (∅100 µm) were
bought from Carl Roth (Karlsruhe, Germany). Carl Roth also provided the syringe filters
(0.45 and 0.22 m Rotilabo PTFE) (Karlsruhe, Germany). Without additional purification, ana-
lytical or HPLC grade chemicals and solvents were employed throughout. A 0.22 m syringe
filter was used to filter a PBS/Tween (phosphate buffered saline +0.05% Tween) buffer.

2.2. Apparatus and Equipment

Using DLS (Zetasizer pro, Malvern, UK), the size of nanoMIPs was determined.
Fluorescence microscopy photos were taken by employing the Keyence BZ-X800 (Osaka,
Japan) series to show the uniform distribution and successful immobilization of nanoMIPs
on the sensor surface. A PalmSens4 compact electrochemical interface with a three-electrode
system (PalmSens4 workstation, Beltec, Germany) was employed for the electrochemical
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characterization of the sensor preparation. The alterations in the sensor surface from the
bare gold chip to the immobilized nanoMIP and protein capture were also verified using
the AFM NanoWizard II (JPK Instruments AG., Berlin, Germany). The gold-coated sensor
chips (12.4 × 7 × 0.7 mm) for SPR tests were purchased from Plasmetrix (Montreal, QC,
Canada). Bio-detection assays were performed using a portable SPR device (CORGI IIF,
Plasmetrix). The apparatus included two flow channels to accommodate target and control
assays. A peristaltic pump (Ismatec Reglo ICC, Digital pump, 2-channel, Cole-Parmer,
Wertheim, Germany) and microtubing setup were also added to inject the samples in
a continuous fluid flow. The channel was divided on the chip’s surface using a silicon
gasket. Further details about the device can be found on the website of the provider
(https://plasmetrix.com/products/ (15 January 2023)).

2.3. Reagent Preparation

Two PBS tablets were dissolved in 400 mL of double-distilled water at room tempera-
ture to create a 0.01 M PBS buffer solution (pH 7.4). It was kept at 4 ◦C when not in use
and employed for the solid-phase synthesis of nanoMIPs. A 0.05% v/v solution of Tween20
(Sigma Aldrich, Berlin, Germany) was dissolved in the PBS solution to obtain PBS/Tween
(PBS/T) buffer to be used in biosensor assays throughout the study. This buffer was filtered
through a 0.22 m syringe filter, degassed at ambient temperature in a vacuum and then
kept at 4 ◦C until it was needed.

Aqueous redox marker solution comprising K3[Fe(CN)6] and KCl was prepared to
be used in all electrochemical measurements for sensor surface characterization. The
redox marker solution (10 mM K3[Fe(CN)]6 with 0.1 M KCl) was freshly prepared for
each experiment. To prevent photodegradation, the solution was completely blended and
covered with aluminum foil after preparation.

2.4. Preparation of Epitope-Immobilized Microbeads for NanoMIP Synthesis

Glass beads (60 g) were activated by boiling in NaOH (2 M, 40 mL) for 15 min. The
beads were then washed with double distilled water until they reached a pH of 7.4 before
being fully dried with nitrogen. The beads were then salinized by incubating them for
24 h at room temperature in an inert atmosphere in a solution of 2% v/v APTES diluted in
24 mL of anhydrous toluene. Afterwards, the beads were rinsed several times in acetone
(500 mL) and methanol (60 mL) to eliminate any remaining APTES solution before dry-
ing. To create aldehyde-functionalized glass beads, a 5% v/v solution of glutaraldehyde
dissolved in PBS (24 mL) was incubated for 2 h at room temperature (Scheme 1).

Further, the beads were washed with double-distilled water (480 mL) under vacuum
using the Buchner funnel and flask. The epitope template (7 mg) was then dissolved in
PBS (40 mL) and added to the glass beads in a beaker, followed by overnight incubation at
4 ◦C. The unbound peptide molecules were eliminated the next day by multiple washings
with double-distilled water (10 × 25 mL). The glass beads were incubated in NaBH4
solution in PBS (24 mL) for 30 min at room temperature in order to minimize Schiff bases.
The glass beads were incubated with an ethanolamine solution (1 mM, 50 mL, diluted
in PBS) for 15 min to block the peptide-free surface, avoiding non-specific associations
during polymerization, after being dried and rinsed with double-distilled water after
30 min. The glass beads were then dried under a vacuum and kept in the refrigerator for
nanoMIP synthesis.

https://plasmetrix.com/products/
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Scheme 1. Schematic representation of epitope-template immobilization on glass beads as solid
support (left) and three-step solid-phase synthesis (right).

2.5. Synthesis of NanoMIPs

The general principle of the solid phase synthesis method has been illustrated in
Scheme 1. The procedure used to synthesize the cTnI-specific MIP receptors was derived
from Altintas et al. [30]. The following monomers were added to 95 mL of double-distilled
water in a quick manner: 39 mg of N-isopropyl acrylamide, 2 mg of N, N′-methylene
bisacrylamide, and 58 mg of N-(3-aminopropyl)methacrylamide hydrochloride, each dis-
solved in 1 mL of double-distilled water. All of these monomers were added, and the
mixture was agitated for 30 min. After stirring for 30 min, 33 mg of N-tert-butyl acrylamide,
3 mg of methacryloxyethyl and 3 mg of thiocarbamoyl rhodamine B were added. The
mixture was then sonicated for 20 min. The initiator, ammonium persulfate, was added
to the polymerization mixture at a dose of 48 mg. To eliminate atmospheric oxygen, the
mixture was sonicated for 20 min and then purged with dry nitrogen gas for 20 min.

The polymerization was initiated by adding 24 µL of TEMED (activator) to the mixture,
and it took place for 2 h at room temperature in a nitrogen environment. The polymerized
mixture and the glass beads were transferred to a 60 mL solid phase extraction (SPE)
cartridge after 2 h of polymerization, and the bottom entrance was sealed with a 20 µm
polyethene frit to prevent leaking. By using three portions of a cold wash of double-distilled
water (15 ◦C, 20 mL), low-affinity particles, unbounded monomers and fragments were
eliminated. To obtain the high-affinity MIP nanoparticles, a hot elution was then performed
with double distilled water (65 ◦C, 20 mL). This hot elution process was repeated 7 times,
and a total volume of 140 mL nanoMIP solution was collected. The resulting solution was
freeze-dried with liquid nitrogen, and the lyophilized nanoMIPs were dissolved in double
distilled water to obtain a 1 mg mL−1 nanoMIP solution and stored at 4 ◦C until use.
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2.6. DLS Size Analysis of NanoMIPs

The investigation of the size distribution of nanoMIPs was carried out utilizing DLS.
The light scattering method is based on the monochromatic light scattering that occurs
when it strikes a particle. This scattering is then detected by a suitable detector, which
enables the determination of a variety of characteristics, such as the radius of gyration
molecular weight, diffusion coefficient, etc. The nanoMIPs were dissolved in the buffer
to provide a standard solution of 1 mg mL−1. Additionally, the solution was sonicated at
20 ◦C for 40 min before being filtered through a 0.22 µm syringe filter. The DLS samples
were once more sonicated for 40 min in identical conditions, and then they were transferred
using a syringe to the DLS vial. The Malvern zetasizer pro DLS was used to measure
the size distribution after the vial was gently inserted into it. All measurements were
performed at a steady temperature (25 ◦C).

2.7. NanoMIPs Immobilization on MUDA-Coated SPR Sensor Chips

The nanoMIP solution was prepared using PBS/T buffer to achieve 1 mg mL−1 or
750 mg mL−1 solution, which was homogenized and subjected to a 30 min sonication
process to remove any agglomerates. After filtering the MIP solution via a 0.45 µm syringe
filter, it was placed in a freezer at 4 ◦C until it was needed. All of the solutions (PBS/T buffer
and ethanolamine) were prepared and kept at room temperature prior to the beginning
of SPR assays. The gold chip was gently placed over the SPR prism of the CORGI IIF
SPR System after it had been cleaned using ethanol. With the aid of a peristaltic pump,
the flow rate was maintained at 4 µL min−1 throughout the assays. After that, PBS/T
buffer was used to prime the surface across both SPR flow channels until a stable baseline
was obtained.

In order to activate the carboxyl groups on the sensor chip surface formed by MUDA,
a 1:1 volume ratio mixture of EDC (0.4 M) and NHS (0.1 M) was dissolved in double-
distilled water and injected for 4 min (Scheme 2). A 0.1 M sodium acetate buffer solution
was then flushed for 2 min after the EDC/NHS coupling in order to stabilize the NHS
ester. After the MIP nanoparticles (750 µg mL−1) were covalently immobilized for 8 min,
ethanolamine (0.1 M) was injected for 4 min to block the MIP-free areas on the surface and
avoid non-specific binding during detection studies. Following the addition of nanoMIPs
and ethanolamine, PBS/T was flushed for 2 min.
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2.8. Bioassays for Peptide and Protein Detection

Cumulative binding experiments were carried out for the detection of cTnI-derived
peptides using the SPR sensor. For this, epitope template dissolved in PBS (pH 7.4) was in-
jected to the nanoMIP immobilized sensor surface at increasing concentrations (1–1000 nM).
The SPR response unit (RU) error for channel I was calculated using the standard deviation
of the PBS control signal on channel II. To wash away the unbound peptide molecules after
each sample injection for 10 min, the surface was rinsed by injecting PBS/T for 2 min.

For protein detection assays, different concentrations of cTnI (10, 100 and 1000 ng mL−1)
were initially tested by studying with three injection times (5, 10 and 15 min) to determine
the optimum duration for efficient capture of the protein biomarker by nanoMIPs. Similar to
the peptide detection assays, cTnI samples were prepared in a wide concentration range and
then injected to the sensor surface for 10 min based on the optimized conditions. Between
samples injections, the weakly bound or unbound protein molecules were washed away
with PBS/T injection for 2 min.

3. Results and Discussion

Molecularly imprinted polymers have been extensively studied in a variety of domains
as recognition elements owing to their desirable features [31–35]. However, there still exist
major challenges in imprinting large molecules, such as proteins, due to their substantial
size as well as conformational changes during the polymerization process, which leads to a
plethoric heterogeneity in the formation and size of resulting cavities, as well as binding
sites inside the cavities [36]. The very high cost of proteins also makes it difficult to consider
them as a template as a whole for the molecular imprinting process. Hence, there has been
a growing and constant interest in epitope imprinting, which appeases the aforementioned
limitations to a great extent and provides high-performance biosensing platforms for
protein detection [20,37]. Herein, for the first time, we brought the superior features of
epitope imprinting, solid-phase synthesis, and a portable SPR together to establish an
innovative and user-friendly sensing system for the detection of cTnI.

3.1. NanoMIP Characterization

The yield of the lyophilized nanoMIPs was determined as 6.5 mg using a microbalance.
DLS operates under the premise of determining the hydrodynamic size of the particle by
detecting the Brownian motion of the particles in the solution. The homogeneity, quality
and size of the produced nanoMIPs were identified using DLS (Figure 1), where the
hydrodynamic radius and polydispersity index (PDI) of the particles in solution were
found to be 155.7 nm and 0.1543, respectively. The very low PDI value indicates highly
monodisperse and homogenous polymer particles in the solution.
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3.2. NanoMIP Immobilization and Target Detection Assays

An SPR sensor (CORGI IIF, Plasmetrix) was employed to determine the sensitivity,
affinity, selectivity and specificity of the epitope-mediated nanoMIPs towards the target
molecules. The portable sensing platform allows the changes taking place on the chip
surface in real-time to be measured. Prior to docking the sensor chip to the device, a
self-assembled monolayer (SAM) was formed on its surface with the overnight incubation
of MUDA (2 mM), followed by rinsing with ethanol and double-distilled water and gentle
drying with a nitrogen stream. After priming the sensor with PBS/T buffer to obtain a
baseline, the reactive succinimide esters were introduced to the MUDA-coated surface
by activating the carboxyl groups using EDC-NHS coupling chemistry. The nanoMIPs
were covalently immobilized onto the surface with the aid of NHS-ester groups. To real-
ize the most convenient receptor immobilization conditions, two different concentrations
of nanoMIPs (0.75 and 1 mg mL−1) were tested with two different incubation formats
(i.e., 4 + 4 min incubation and 8 min incubation). The preliminary studies have sug-
gested 0.75 mg mL−1 concentration and 8 min incubation time as the optimum for effi-
cient and consistent binding results. Thus, all the further assays were carried out using
these conditions.

The successful immobilization of nanoMIPs was confirmed using the fluorescence
microscopy technique by imaging the sensor surface before and after nanoMIP immobi-
lization (Figure 2). Thanks to the incorporation of rhodamine into the polymerization
mixture during nanoMIP synthesis, the fluorescence microscope could show the uniform
distribution of synthetic receptors as spherical and uniformly distributed red particles on
the sensor surface (Figure 2b).
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Figure 2. Fluorescent microscopy images of sensing surface (a) after MUDA coating and (b) nanoMIP
immobilization.

After successfully confirming the immobilization of nanoMIPs, the cumulative re-
binding assays with cTnI-derived peptides was performed in the concentration range
of 100–1000 nM (Figure 3a). Herein, channel 1 was used for the target rebinding assay,
whereas channel 2 was utilized for the control assay. Figure 3b illustrates the concentration-
dependent peptide binding assay in the entire range with an R2 value of 0.96. The changes
in the sensor signal showed linearity from 300 to 900 nM with an R2 value of 0.97 (inset).
To determine the binding affinity between the peptide and the synthetic receptors, kinetic
data analysis was performed by subjecting the overall peptide detection data into binding
isotherm models, where the binding interactions followed the Langmuir model with an
R2 value of 0.97, suggesting one-to-one binding between molecular receptors and peptide
molecules (Figure 3c).

As the next step, cTnI protein detection was studied using the epitope-mediated
nanoMIP-SPR sensor. For this, the optimum injection time for capturing the protein
target was first investigated by testing three different concentrations of cTnI (10, 100 and
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1000 ng mL−1) with three different injection durations (5, 10 and 15 min) (Figure 4). These
preliminary studies confirmed that the sensor is able to quantify the target biomarker at
all three concentrations with injection times of 10 and 15 min, whereas a 5 min injection
was found to be insufficient for molecular interactions between the receptor and cTnI
biomarker (Figure 4).
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Figure 3. (a) The SPR sensorgram of peptide rebinding within a concentration range of 100–1000 nM.
(b) The concentration-dependent peptide binding with a correlation coefficient of R2 (0.97) for the
linear range of 300–900 ng mL−1. (c) The binding-isotherm of peptide rebinding for a concentration
range of 100–1000 nM.
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Figure 4. Real-time protein binding assay for the optimization of concentration (10, 100 and
1000 ng mL−1) and incubation time (a) 5 min, (b) 10 min and (c) 15 min. (d) Overall performance of
the sensor with the different concentrations and incubation times.
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According to the results of preliminary tests, the protein detection was further stud-
ied with a 10 min injection time in the concentration range of 0.78–50 ng mL−1 using
a direct assay strategy (Figure 5a). The analyte samples prepared in PBS/T were in-
jected onto the sensor surface from the least concentrated to the highest. The overall
results of the concentration-dependent protein detection are provided in Figure 5b with
the linear concentration range of 1.56–12.5 ng mL−1 with a correlation coefficient of 0.91
(Figure 5b, inset).
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Figure 5. (a) Real-time SPR sensorgram of cumulative cTnI detection. (b) Concentration-dependent
protein binding with a correlation coefficient of 0.94 and R2 value of 0.91 for the linear range of
1.56–12.5 ng mL−1. (c) Binding isotherm fittings for the interaction between the nanoMIPs and
cTnI. (d) Binding isotherm fitting parameters obtained from Langmuir, Freundlich and Langmuir–
Freundlich models.

A kinetic data analysis was performed to investigate the dissociation constant (KD)
and determine the binding affinity between the cTnI and nanoMIP receptors. For this,
the protein detection data in Figure 5b were subjected to Langmuir, Freundlich, and
Langmuir–Freundlich isotherms to realize the binding behaviour of the receptor–analyte
pair (Figure 5c). The KD was found to be 2.99 × 10−11 M with the Langmuir model as the
best fitting isotherm with an R2 value of 0.99 in the concentration range of 0.78–50 ng mL−1,
which indicates a very high affinity of MIP receptors against their target protein (Figure 5d)
and suggests one-to-one binding between the receptor and analyte [32,38]. On the other
hand, the Langmuir–Freundlich and Freundlich models resulted in lower R2 values of
0.91 and 0.89, respectively. This further confirms that the imprinted cavities consist of
homogenous binding sites.

The developed portable SPR sensor performed better than the reported SPR systems for
the detection of the cardiac troponin biomarkers in terms of affinity, sensitivity, specificity
and handling simplicity (Table 1). For instance, several research works have been reported
on the detection of cardiac biomarkers, which require heavy equipment to handle and
special training to operate, in contrast to the portable and user-friendly SPR apparatus
employed in this study. Of note, existing SPR sensors for cardiac troponin detection have
been predominantly relying on antibody-based receptors and often requiring sandwich
assays for obtaining desirable sensitivity (Table 1). These factors do not only increase the
assay complexity but also the overall cost of the sensing platform.



Biosensors 2023, 13, 229 11 of 17

Table 1. The list of various SPR biosensors used for the detection of cardiac biomarkers reported in
the literature and the current work.

Sensor
Type Biomarker Receptor

Type
Assay
Type

Concentration
Range

(ng mL−1)

LOD
(ng

mL−1)
KD (M) Ref

Portable
SPR cTnI NanoMIPs Direct 0.78–50 0.52 2.99× 10−11 This

work

Biacore
SPR cTnT Antibody Sand-

wich 5–400 5 3.28 × 10−9 [39]

Fiber
optic
SPR

cTnI Antibody Direct 2500–4000 1.4 - [11]

Auto lab
spirit cTnT Antibody Direct 0.03–6.5 0.01 - [40]

Navi 200
SPR cTnT Antibody Direct 50–100 100 - [41]

SPF cTnI Antibody Direct 3.9–100 0.98 - [42]

SPR cTnI Antibody Sand-
wich 0.5–20 0.25 - [43]

SPR cTnT Antibody Sand-
wich 5–300 3.6 - [44]

SPF: Surface plasmon-enhanced fluorescence.

3.3. Electrochemical Characterization of NanoMIP Sensor

The sensor fabrication steps were investigated in detail by employing electrochemical
methods, including CV, SWV and EIS [45]. The sensor chip surface was characterized
before and after MUDA coating, as well as after nanoMIP immobilization. As expected,
the highest current signals in the CV and SWV measurements were demonstrated by the
bare electrode (Figure 6), as the electrons in the redox marker solution were able to pass
through the phase boundary with relative ease. For both CV and SWV, the current values
significantly decreased after the formation of SAM compared to the bare electrode due to
the hindered electron exchange at the electrode surface, indicating that the MUDA coating
was successfully formed. Building a layer of nanoMIP impedes the flow of electrons,
resulting in an almost complete signal suppression for both voltammetry curves [45]. SWV
peaks demonstrate a peak suppression from 26,221.3 µA for bare to 134.24 and 24.7 µA for
MUDA-coated and nanoMIP immobilized surfaces, respectively (Figure 6a).
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Figure 6. (a) Square-wave and (b) cyclic voltammograms confirm the immobilization of the nanoMIPs
after SAM formation on the gold surface. All measurements were recorded using 10 mM K3(Fe(CN)6)
in 0.1 M KCL at room temperature. All the represented voltammograms are the result of the average
of three measurements.
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EIS measurements were also performed to further confirm all the fabrication steps
prior to target rebinding studies. Figure 7 depicts the Nyquist plots for bare, MUDA-
coated and nanoMIP immobilized surfaces. The inset (Figure 7a) represents the Randles
equivalent circuit congruent to the EIS data consisting of the resistivity of the solution
(Rs), charge transfer resistance (RCT) and constant phase element (CPE) [46]. The value of
RCT (Figure 7b) increases with each fabrication step, symbolizing the successful deposition
of MUDA and nanoMIP immobilization as the value of RCT is inversely proportional to
the current flowing through the surface. RCT values correlate with the diameter of the
semi-circle so, as the RCT value increases, the diameter of the semi-circle increases. That is
why the semi-circle part of the bare is insignificant as the RCT value is very low due to the
easy flow of charge through the bare surface.
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Figure 7. (a) Nyquist plots of the data obtained for bare gold electrode, MUDA and nanoMIP
immobilization with inset equivalent circuit. (b) Zoomed Nyquist plots with inset table of resistivity
of the solution (Rs) and charge transfer resistance (RCT) of the circuit.

3.4. AFM Characterization of NanoMIP Sensor

The surface morphologies of the SPR sensor chip after each fabrication step were char-
acterized using AFM. The surface topographies, the root-mean-square (RMS) roughness,
phase images and 3D height images were investigated for bare surface, MUDA coated and
nanoMIP immobilized surfaces, as well as after protein rebinding on the gold sensor chip
in a 10 × 10 µm area. A nanoMIP solution was prepared to drop cast on the silicon wafers
for the AFM measurements.

Figure 8 depicts the AFM results of the fabrication steps for the nanoMIP sensor. The
bare surface of the clean SPR chip had an RMS roughness value of 0.67 ± 0.04 nm with a
uniform and smooth profile (Figure 8a). The RMS value had increased to 0.75 ± 0.08 nm
and the 2D height to 4.21 nm after MUDA coating (Figure 8b). The surface got slightly
rougher but still maintained its uniformity, confirming the successful formation of the
MUDA layer.

Further, the RMS value drastically increased upon nanoMIP immobilization to
2.37 ± 0.2 nm, indicating the successful immobilization of the molecular receptors. More-
over, after the protein rebinding, the surface got rougher (RMS = 2.67 ± 0.3 nm) and the 2D
height increased by ~3.5 nm. Along with the RMS values, significant changes can be seen
in the 2D images after every sensor fabrication step.
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3.5. Selectivity Studies

By comparing the affinity with a control MIP, the selectivity of the MIP sensor towards
cTnI was examined. To achieve this, cumulative protein rebinding tests were run using
target and control nanoMIPs in the concentration range of 0.78–50 ng mL−1. A non-
imprinted polymer (NIP) cannot be synthesized as solid phase synthesis requires templated
solid support for polymerization. Therefore, a control nanoMIP was synthesized using
the same procedure and a non-specific template (viral protein epitope). For the whole
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concentration range, the cTnI-specific nanoMIP exhibited a strong affinity toward cTnI. The
average ratio between the responses of target and control MIPs in the concentration range
of 0.78 to 50 ng mL−1 was determined to be 12.13, demonstrating very high selectivity of
the target MIP toward cTnI (Figure 9).
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3.6. Specificity Studies

The majority of non-specific molecules, including antibodies, proteins, hormones,
enzymes and mineral ions, are found in clinical samples. These naturally occurring
biomolecules could potentially interact with the MIP cavities and interfere with the signal
in an unwanted way. As a result, a sensor’s specificity is essential for the precise detection
of the target biomarker. Hence, the binding of cTnI-specific nanoMIPs was also tested with
non-specific molecules, such as glucose, BSA, transferrin and p53, at a constant concentra-
tion of 100 ng mL−1 in order to determine the specificity of the binding between the cTnI
protein and its particular nanoMIPs (Figure 10). The non-specific binding of the reference
molecules was identified as 8.034% (p-53), 9.153% (transferrin), 3.656% (glucose) and 9.85%
(BSA), demonstrating a high specificity against cTnI.
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4. Conclusions

In this work, a biomimetic sensor was developed for the detection of cTnI protein using
a portable angular SPR and epitope-imprinted synthetic receptors. The novel SPR technique
offers unique advantages such as being rapid, cost-efficient, real-time, user-friendly and
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label-free. Moreover, it also does not require complex assay strategies, such as sandwich
or competitive assays, for obtaining high sensitivity. The portable nanoMIP-SPR sensor
has shown good reproducibility and sensitivity for cTnI quantification in the concentration
range of 0.78–50 ng mL−1 with a calculated LOD of 0.52 ng mL−1. The dissociation
constant was found to be 2.99 × 10−11 M using a Langmuir fitting model, revealing an
excellent affinity of nanoMIPs towards the cTnI biomarker. The sensor fabrication steps
were successfully confirmed using AFM as well as electrochemical methods (i.e., SWV, CV
and EIS). The selectivity studies with control nanoMIPs proved that the target nanoMIPs
exhibit 12-fold higher binding affinity toward cTnI protein. Moreover, the sensor specificity
was also determined by studying with reference molecules, where the non-specific binding
of interferants was found to be in the range of 3–10%. Hence, the developed biomimetic
SPR sensor has great potential to be further enhanced for point-of-care testing and the early
diagnosis of AMI.
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