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Abstract: The electrochemical polymerization of suitable monomers is a powerful way to create
voltammetric sensors with improved responses to a target analyte. Nonconductive polymers based on
phenolic acids were successfully combined with carbon nanomaterials to obtain sufficient conductivity
and high surface area of the electrode. Glassy carbon electrodes (GCE) modified with multi-walled
carbon nanotubes (MWCNTs) and electropolymerized ferulic acid (FA) were developed for the
sensitive quantification of hesperidin. The optimized conditions of FA electropolymerization in basic
medium (15 cycles from−0.2 to 1.0 V at 100 mV s−1 in 250 µmol L−1 monomer solution in 0.1 mol L−1

NaOH) were found using the voltammetric response of hesperidin. The polymer-modified electrode
exhibited a high electroactive surface area (1.14 ± 0.05 cm2 vs. 0.75 ± 0.03 and 0.089 ± 0.003 cm2

for MWCNTs/GCE and bare GCE, respectively) and decreased in the charge transfer resistance
(21.4 ± 0.9 kΩ vs. 72 ± 3 kΩ for bare GCE). Under optimized conditions, hesperidin linear dynamic
ranges of 0.025–1.0 and 1.0–10 µmol L−1 with a detection limit of 7.0 nmol L−1 were achieved, which
were the best ones among those reported to date. The developed electrode was tested on orange juice
and compared with chromatography.

Keywords: voltammetric sensors; chemically modified electrodes; carbon nanomaterials;
electropolymerization; phenolic acids; flavanones; hesperidin

1. Introduction

The electrochemical polymerization of suitable monomers is a powerful way to create
voltammetric sensors with improved responses to a target analyte [1–4]. Major atten-
tion has been focused on conductive polymers such as polyaniline [1,5], polypyrrole [3],
polythi-ophene [1,6], aminobenzoic acids [7,8], and their derivatives. On the other hand,
nonconductive polymers, which are based on electropolymerized phenols [9], aminophe-
nols [10,11], and natural phenolics [12], have been successfully used in biosenors and
chemical sensors.

Among a wide range of natural phenolics, hydroxycinnamic acids are of interest as
monomers. Their electropolymerization can follow various schemes depending on the
monomer structure and the conditions of the electrochemical process [12]. Therefore, a
great variety of polymers with unique properties can be obtained and used for the creation
of electrochemical sensors and biosensors.

Contrary to conductive polymers, poly(hydroxycinnamic acids) show low capacitive
currents that significantly improve the shape of target analytes’ voltammograms and the
accuracy of their determination. Furthermore, electropolymerization takes less time, as it is
self-limited. Due to the small thickness of such coatings, the target analytes and their oxida-
tion/reduction products can easily diffuse to/from the modified electrode surface, thereby
decreasing their response times and improving the selectivity of analyte determination.
Nevertheless, there is a lack of investigations of hydroxycinnamic acid electropolymer-
ization compared to other natural phenolics. The potentiodynamic electropolymerization
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of ferulic acid (FA) and the immobilization of glucose oxidase onto a carbon paste elec-
trode have been carried out in a single step to create a glucose biosensor [13]. Several
electrochemical sensors based on electropolymerized caffeic acid have been described
for the simultaneous voltammetric determination of ascorbic acid, epinephrine, and uric
acid [14]; ascorbic acid and dopamine [15]; copper and lead [16]; as well as the individual
quantification of L-3,4-dihydroxyphenylalanine (L-DOPA) [17], metanephrine [18], reduced
nicotinamide adenine dinucleotide (NADH) [19], acetaminophen [20], and chlorampheni-
col [21]. Poly(p-coumaric acid)-modified graphite electrodes allow for the simultaneous
determination of cadmium and lead [22]. Electrodeposition of the polymer is performed
on the glassy carbon electrode (GCE) using a potentiodynamic mode.

Further development in the field has been focused on the improvement of polymer-
modified electrode characteristics. The insulating nature of polymers significantly affects
electrode conductivity. Therefore, layer-by-layer combinations of such coverages with the
carbon nanomaterials as a platform for polymer electrodeposition has been applied to
provide sufficient conductivity and high surface area to the electrode [12]. Furthermore,
such an approach makes it possible to obtain more uniform coverage and a higher load on
the electrode surface [23].

A few data (Table 1) reported for the sensors with poly(hydroxycinnamic acids) lay-
ers combined with carbon nanomaterials confirm the effectiveness of this approach for
electrode surface modification.

Table 1. Figure of merits of electrochemical sensors based on a combination of poly(hydroxycinnamic
acids) and carbon nanomaterials.

Monomer Transducer Method Analyte Linear Dynamic
Range (µmol L−1)

Limit of Detection
(µmol L−1) Ref.

Caffeic acid

Carbon black/SPE 1 A 2 NADH — 3.7 [24]

Electrochemically
reduced graphene

oxide/GCE
A Free chlorine 20–20,000 0.03 [25]

Carbon
nanotubes/GCE CV 3 Glutathione 50–50,000 0.5 [26]

p-Coumaric
acid

Multi-walled carbon
nanotubes/GCE DPV 4 L-Cysteine 7.5–50; 50–1000 1.1 [27]

Ferulic acid
Multi-walled carbon

nanotubes/GCE A

Dopamine 5.00–120 2.21

[28]Epinephrine 73.0–1406 22.28

NADH 59.1–1560 17.73
1 Screen-printed electrode. 2 Amperometry. 3 Cyclic voltammetry. 4 Differential pulse voltammetry.

FA electropolymerization is less studied compared to other hydroxycinnamic acids.
Furthermore, the process has been performed in acidic mediums, and electroactive coverage
has been obtained due to the formation of quasi-reversible redox pairs of oxidized/reduced
quinones [28]. Similar to caffeic acid [26], electropolymerization involves the double bond
and electrode acting on the principles of electrocatalysis [29]. As is known [12,27], the
electropolymerization of phenolic compounds is better carries out in a basic medium due
to easier detachment of the electron from the anion existing under these conditions.

Another aspect of further developments on this topic is the enlargement of the an-
alytes studied. Contrary to the electrodes based on poly(hydroxybenzoic acids) [30–33],
sensors with electropolymerized hydroxycinnamic acids have never been used for the
determination of natural phenolic compounds.

Hesperidin (Figure S1) is a natural flavonoid of citrus fruits, which is widely used
in medicine for blood vessel disorders treatment such as hemorrhoids, varicose veins,
and impaired circulation [34]. Hesperidin is an electroactive compound because of the
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presence of phenolic fragments in its structure. However, few studies on the electrochemical
determination of hesperidin have been presented to date, and the analytical characteristics
are not impressive.

The current work deals with the development of novel voltammetric sensors based on
layer-by-layer combinations of multi-walled carbon nanotubes (MWCNTs) and poly(FA)
that was obtained electrochemically in the basic medium. The conditions of voltammetric
sensor fabrication were found using hesperidin as a target analyte. The electrode was
characterized by scanning electron microscopy and electrochemical methods. The elec-
trooxidation parameters of hesperidin were calculated. A highly sensitive and selective
voltammetric sensor for hesperidin was developed and tested on orange juice.

2. Materials and Methods
2.1. Reagents

Hesperidin (94% purity) was purchased from Sigma (Steinheim, Germany). Its
0.40 mmol L−1 stock solution was prepared in methanol (c.p. grade). FA (99%) from
Aldrich (Steinheim, Germany) was used as a monomer for the electrode surface modifica-
tion. Its 10 mmol L−1 stock solution was prepared in methanol. MWCNTs (o.d. 40–60 nm,
i.d. 5–10 nm and l = 0.5–500 µm) from Aldrich (Steinheim, Germany) were used as a
platform for further electrodeposition of polyFA. Ascorbic (99%), gallic (99%), caffeic (98%)
acids, naringin (95%), and quercetin (95%) from Sigma (Steinheim, Germany), chlorogenic
acid (95%) from Aldrich (Steinheim, Germany), and rutin trihydrate (97%) from Alfa Aesar
(Heysham, UK) were used in the interference study. Their 10 mmol L−1 stock solutions were
prepared in methanol. An exact dilution was used to obtain less concentrated solutions.

HPLC-grade acetonitrile was obtained from Panreac (Barcelona, Spain). Water for
chromatographic measurements was deionized in a Milli-Q purification system (Millipore
Corporation, Bedford, MA, USA).

Other reagents were of c.p. grade and were used without additional treatment. Dis-
tilled water was used for the preparation of supporting electrolytes in voltammetry.

2.2. Equipment

Potentiostats/galvanostats Autolab PGSTAT 12 and Autolab PGSTAT 302N with the
FRA 32M module (Eco Chemie B.V., Utrecht, The Netherlands) supplied with the NOVA
1.10.1.9 software (Eco Chemie B.V., Utrecht, The Netherlands) and glass electrochemical
cells were used in the electrochemical measurements. The three-electrode system consisted
of the working electrode (GCE of 3 mm diameter (BASi® Inc., West Lafayette, IN, USA) or
a modified electrode (MWCNTs/GCE or polyFA/MWCNTs/GCE)), an Ag/AgCl reference
electrode, and a platinum wire as the auxiliary electrode.

An “Expert-001” pH meter (Econix-Expert Ltd., Moscow, Russia) with a glassy elec-
trode was used for supporting electrolyte pH measurements.

An ultrasonic bath (WiseClean WUC-A03H (DAIHAN Scientific Co., Ltd., Wonju-si,
Republic of Korea) was used for the MWCNTs’ suspension and sample preparation.

An Agilent 1100 Series HPLC equipped with diode-array detector and autosam-
pler (Agilent Technologies, Waldbronn, Germany) was used. A Luna 100 18 column
(25 cm × 4.6 mm, 2.5 µm) from Phenomenex (Torrance, CA, USA) was used for the separation.

A MerlinTM high-resolution field emission scanning electron microscope (Carl Zeiss,
Oberkochen, Germany) was operated at a 5 kV accelerating voltage and a 300 pA
emission current.

2.3. Experimental Conditions
2.3.1. Electrochemical Measurements

Bare GCEs were mechanically polished on alumina slurry with particle size of 0.05 µm
and thoroughly washed with acetone and distilled water. The platinum electrode was
cleaned in nitric acid (1:1) for 3 min and then thoroughly washed with distilled water.
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For GCE modification, 0.5 mg mL−1 homogeneous suspension of MWCNTs was
prepared in 1% sodium dodecyl sulfate (Panreac, Barcelona, Spain) by sonication for 30 min
in an ultrasonic bath. Then, 5 µL of a MWCNT suspension was drop casted on the electrode
surface and evaporated to dryness for 15 min.

Potentiodynamic electropolymerization of FA on the MWCNTs/GCE was performed
under various conditions using voltammetric characteristics of hesperidin as indicating
parameters. Five cycles of supporting electrolyte were recorded prior to FA addition in the
electrochemical cell and its electropolymerization.

The electrode surface was renewed after each measurement by mechanical removal of
both MWCNT and poly(ferulic acid) layers.

Voltammetric measurements of hesperidin were performed in 0.1 mol L−1 phosphate
buffer of various pH. Prior to measurement with analyte, five curves of the supporting
electrolyte were recorded. Then, an aliquot portion of hesperidin solution was added to the
electrochemical cell (the total volume of solution in the cell was 4.0 mL) and voltammograms
were recorded in the range of 0.3–1.3 V for cyclic voltammetry and 0.2–1.2 V for differential
pulse mode. Potential scan rate and pulse parameters were varied. Baseline-correction
in NOVA 1.10.1.9 software (Eco Chemie B.V., Utrecht, The Netherlands) was used for
differential pulse voltammetry.

Chronoamperometric evaluation of bare GCE electroactive surface area was performed
in 0.1 mol L−1 KCl using 1.0 mM ferrocyanide ions as a standard. Constant potential of
0.45 V and electrolysis time of 75 s were used.

A 1.0 mmol L−1 mixture of ferro-/ferricyanide ions in 0.1 mol L−1 KCl was used as
a redox probe in the electrochemical impedance spectroscopy. The impedance spectra
were recorded in the frequency range of 10 kHz–0.04 Hz with an applied sine potential
amplitude of 5 mV at a polarization potential of 0.21 V, which was calculated as a half-sum
of the redox peaks of ferro-/ferricyanide ions mixture in cyclic voltammetry.

2.3.2. Orange Juice Analysis by Voltammetry

Fresh and commercially available orange juice was used in the study. Fresh juice was
prepared by cutting the fruit in half and carefully hand-squeezing. Both types of juices were
diluted with methanol in a 1:1 ratio (6.0 mL of juice was used) and sonicated for 15 min in
an ultrasonic bath [35]. Then, the solution obtained was filtered through nylon membrane
filters of 0.45 µm pore size (Agilent Technologies, Inc., Santa Clara, CA, USA).

A total of 10 µL of the treated juice were inserted into the electrochemical cell con-
taining 0.1 mol L−1 phosphate buffer with pH 5.5, and differential pulse voltammograms
were recorded from 0.2 to 0.9 V at the pulse amplitude of 0.10 V, pulse time of 0.025 s, and
potential scan rate of 20 mV s−1. Oxidation currents of hesperidin were calculated using
the baseline correction in NOVA 1.10.1.9 software.

2.3.3. Chromatographic Determination of Hesperidin in Orange Juices

The chromatographic quantification of hesperidin was performed as described in [35].
Briefly, the treated juice (Section 2.3.2.) was studied using a linear gradient elution with
water and acetonitrile. The following gradient elution program was used (Table 2) at the
flow rate of 1 mL min−1.

The column temperature was kept at 25 ◦C. The sample injection volume was 20 µL.
Hesperidin retention time was 17.04 min. Quantification was performed at 340 nm using a
calibration graph.

2.4. Statistical Analysis

Electrochemical measurements were performed in five replications, and chromato-
graphic measurements were performed in three replications. The average value of the
parameters and the corresponding coverage interval at α = 0.05 were used for data presen-
tation. Relative standard deviation (RSD) was used for random error characterization. F-
and t-tests were applied for the validation of the method developed.
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OriginPro 8.1 software (OriginLab, Northampton, MA, USA) was used for regression
and statistical analysis.

Table 2. Gradient elution program for hesperidin determination.

Time (min)
Mobile Phase Composition (% v/v)

Water Acetonitrile

0 85 15

15 75 25

25 60 40

30 50 50

35 0 100

40 0 100

3. Results and Discussion
3.1. Electrodeposition of PolyFA on the MWCNTs/GCE

FA oxidation on the MWCNTs/GCE was studied in neutral and basic media (Figure 1).
An oxidation peak at 0.52 V was observed on the first scan in the phosphate buffer with
a pH of 7.0, which gradually shifted to a positive potential and decreased in currents
on the following cycles (Figure 1a). The reversible quinone/hydroquinone redox pair at
0.16/0.23 V formed on the cathodic branch of the first cycle and following the anodic scan
of the second cycle. Its redox currents increased with the increase in the number of cycles,
thus confirming the formation of electroactive coverage similar to that obtained in the
acidic medium [28].
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Figure 1. Cyclic voltammograms of ferulic acid (FA) on glassy carbon electrode modified with
multi-walled carbon nanotubes (MWCNTs/GCE): (a) 100 µmol L−1 FA in phosphate buffer pH 7.0;
(b) 250 µmol L−1 FA in 0.1 mol L−1 NaOH. υ = 100 mV s−1.

A totally different behavior of FA at the same electrode was observed in the basic
medium. An irreversible oxidation peak at 0.31 V was observed (Figure 1b), which de-
creased as the number of cycles increased. Such behavior indicates that another type of
electrochemical reaction occurred. The process involves one electron detachment from the
phenolate ion existing in the basic medium (the pKa of the FA phenolic group was 8.92 [36])
with the formation of a phenoxyl radical (Scheme 1), which undergoes further reactions of
dimerization and polymerization similar to p-coumaric acid [12]. These data confirmed the
formation of the insulating coverage and agree well with the data reported for hydroxyben-
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zoic [30–33] and other hydroxycinnamic acids [22,27]. The polymeric coverage obtained
does not show electrochemical activity to allowing the use of its own response of the target
compound for analytical purposes.
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Scheme 1. FA electropolymerization in a basic medium.

Target analyte responses on the polymer-modified electrode depend on the conditions
of electropolymerization [12]. Therefore, the optimization of the electropolymerization
conditions was performed using the voltammetric characteristics of hesperidin obtained
in differential pulse mode in a phosphate buffer with a pH of 7.0. The effect of monomer
concentration and number of cycles, as well as electrochemical window and potential scan
rate, reflecting the electrolysis time effect, are shown (Figure 2). Hesperidin oxidation
potential was almost the same, independent of the electropolymerization conditions men-
tioned above. The oxidation currents changed statistically significantly, and were used to
optimize the FA electropolymerization conditions.
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Figure 2. Effect of the FA electropolymerization conditions on the 10 µmol L−1 hesperidin oxidation
currents on polyFA-modified electrode. (a) Effect of monomer concentration and number of scans.
(b) Effect of electrochemical window and potential scan rate.
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As one can see from Figure 1a, an increase in the monomer concentration and number
of cycles provided an improvement of the hesperidin response. The highest oxidation cur-
rents were obtained on the polymeric coverage obtained from the 250 µmol L−1 monomer
using 15 cycles. Further increases in the monomer concentration and number of cycles did
not provide a significant increase of the hesperidin oxidation currents, due to the higher
thickness of the polymeric coverage.

Variation in the electrolysis parameters showed that the higher oxidation currents
of hesperidin were registered on the polymeric layers obtained at the potential scan rate
of 100 mV s−1, which were independent of the electrochemical window. Among them,
the best response of the hesperidin was observed for the electrochemical window from
−0.2 to 1.0 V. These data confirm the effect of the electrolysis time on the properties of the
polymeric coverage with respect to its thickness.

Thus, electrodes with the polyFA layer obtained by 15 cycles from −0.2 to 1.0 V with a
scan rate of 100 mV s−1 in 250 µmol L−1 monomer solution were used in further studies.

3.2. Characterization of Bare and Modified GCE Using Scanning Electron Microscopy,
Voltammetry, and Electrochemical Impedance Spectroscopy

Scanning electron microscopy was applied for the electrodes’ morphology character-
ization (Figure 3). The data obtained clearly indicate the even distribution of MWCNTs
(Figure 3b) and polymer (Figure 3c) on the electrode surface. The PolyFA consisted of
spherical particles of 90–120 nm diameter that covered the MWCNTs net. These data are in
agreement with the morphology of poly(ellagic acid)/MWCNTs-modified electrodes [33].
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Figure 3. Electrode surface morphology based on scanning electron microscopy: (a) bare GCE;
(b) MWCNTs/GCE; (c) PolyFA/MWCNTs/GCE. Magnification 20 K×.

The cyclic voltammetry of ferrocyanide ions in 0.1 mol L−1 KCl was used for the
evaluation of the electroactive surface area (Figure 4). Comparison of the cyclic voltammo-
grams for bare GCE, MWCNTs/GCE, and polyFA/MWCNTs/GCE clearly indicated an
improvement in the electrochemical system reversibility, as well as a statistically significant
increase of the redox currents. This trend is in line with the data reported for poly(p-
coumaric acid)- [27], poly(gallic acid)- [30], and poly(ellagic acid)- [33] based electrodes.
The calculation of the electroactive surface area using the Randles–Ševčík equation showed
a significant increase with the addition of each modifying layer (0.089 ± 0.003 cm2 for bare
GCE, 0.75± 0.03 cm2 for MWCNTs/GCE, and 1.14± 0.05 cm2 for polyFA/MWCNTs/GCE)
that agreed with SEM results.

Electrochemical impedance spectroscopy in the presence of a redox probe (1.0 mmol L−1

mixture of ferro-/ferricyanide ions in 0.1 mol L−1 KCl) at 0.21 V was applied for the
estimation of the electrodes’ electron transfer properties. The corresponding data are
presented as Nyquist plots in Figure 5.
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Figure 5. Nyquist plot for GCE, MWCNTs/GCE, and polyFA/MWCNTs/GCE recorded in the
presence of 1.0 mmol L−1 mixture of ferro-/ferricyanide ions in 0.1 mol L−1 KCl at 0.21 V in the
frequency range of 10 kHz–0.04 Hz with an applied sine potential amplitude of 5 mV. Insert is the
Randles’ equivalent circuits used for impedance spectra fitting.

The semicircle diameter observed in the Nyquist plots at high frequencies was signif-
icantly different for the modified electrodes. This behavior means lower charge transfer
resistance for the modified electrodes. The comparison of spectra for MWCNTs/GCE
and polyFA/MWCNTs/GCE showed an increase in the charge transfer resistance for
polymer-modified electrode that was caused by the insulating properties of the polyFA
layer. A similar effect was obtained for other polymeric coverages based on hydroxyben-
zoic [30,32,33] and p-coumaric [27] acids. The quantitative parameters of impedance spectra
were obtained by fitting with the Randles’ equivalent circuits consisting of the electrolyte
resistance (Rs), the charge transfer resistance (Rct), the constant phase element (Q), and the
Warburg impedance (W) [37]. Taking into account the shape of the Nyquist plot for the
GCE, no Warburg impedance was used in the equivalent circuit. Quantitative data of the
impedance are presented in Table 3.
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Table 3. Electrochemical impedance parameters fitted using Randles’ equivalent circuits (n = 5;
p = 0.95).

Electrode Rs (Ω) Rct (kΩ) Q (µΩ−1) n W (µΩ−1) χ2

Bare GCE 245 ± 5 72 ± 3 3.7 ± 0.2 0.789 — 0.029

MWCNTs/GCE 199 ± 3 12.1 ± 0.9 3.6 ± 0.1 0.775 230 ± 5 0.015

polyFA/MWCNTs/GCE 92 ± 1 21.4 ± 0.9 6.1 ± 0.3 0.751 183 ± 4 0.018

The PolyFA-modified electrode showed a 3.4-fold decrease in the charge transfer
resistance vs. the bare GCE, which indicated an increase in the electron transfer rate. The
non-conducting properties of polymeric coverage lead to a 1.8-fold higher charge transfer
resistance compared to the MWCNTs/GCE, which agrees with data for polymers based
on other phenolic acids [27,30,32,33]. The heterogeneous rate constant (ket) for the redox
probe on the electrodes was calculated from the data obtained using Equation (1) [38]

ket = RT/F2n2RctAc, (1)

where R is the universal gas constant (8.314 J mol−1 K−1), T is the temperature (298 K),
F is the Faraday constant (96485 C mol−1), n is the number of electrons, Rct is the charge
transfer resistance (Ω), A is the electrode surface area (cm2), and c is the redox probe
concentration in the impedance measurements (mol cm−3). The ket values of 5.23 × 10−5,
3.11 × 10−4, and 1.75 × 10−4 cm s−1 were obtained for the bare GCE, MWCNTs/GCE, and
polyFA/MWCNTs/GCE, respectively.

The constant phase element was approximately 1.6-fold higher than that for bare
GCE and MWCNTs/GCE, which was probably caused by the porous structure of the
electrode surface and indirectly confirmed by the n value. A significant decrease in the
solution resistance for polyFA/MWCNTs/GCE is explained by the porosity of the electrode
surface. The permeability of the electrode surface to the electrolyte solution increases with
increasing porosity [37].

Thus, the polyFA-modified electrode showed favorable properties for application
in electroanalysis.

3.3. Voltammetric Characteristics of Hesperidin on Bare and Modified GCE

Hesperidin is electroactive on the bare GCE in a phosphate buffer with a pH of 7.0.
Well-resolved oxidation peaks at 0.57 and 0.93 V were observed on the differential pulse
voltammograms (Figure 6). The oxidation currents of 0.055 ± 0.002 and 0.046 ± 0.002 for
the first and second steps, respectively, were registered for a 10 µmol L−1 concentration,
thereby indicating an insufficient sensitivity of the electrode response. Furthermore, the first
peak had a stretched shape that affected the determination of hesperidin in real samples.

Similar to other flavanones [33,39,40], the electrode surface modification with MWC-
NTs provided a shift in the hesperidin oxidation potential to lower values on 64 and 47 mV
for the first and second steps, respectively. Oxidation currents were significantly increased
(0.18± 0.01 and 0.22± 0.01 µA for the first and second peak, respectively) due to the higher
electroactive surface area of the modified electrode. The first oxidation peak was less than
the second one, thus making it less sensitive for quantification purposes.

The PolyFA-based electrode also showed two well-pronounced oxidation peaks at 0.51
and 0.91 V. Insignificant anodic shifts of the oxidation potentials compared to the MWC-
NTs/GCE were observed that agreed with the electrochemical impedance spectroscopy
data for the electrodes. The oxidation currents of both peaks were increased to 0.50 ± 0.02
and 0.42 ± 0.01 µA vs. those on the MWCNTs/GCE. This effect is caused by the higher
electroactive surface area of polyFA/MWCNTs/GCE. Furthermore, the first oxidation peak
was higher than the second one.
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The voltammetric characteristics of hesperidin on the polyFA/MWCNTs/GCE allow
its application for quantification purposes. To make a choice of the voltammetric mode and
the conditions of determination, the electrooxidation of hesperidin was studied.
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3.4. Hesperidin Electrooxidation Parameters

The cyclic voltammetry of hesperidin in a phosphate buffer was studied. The effect of
phosphate buffer pH in the range of 4.8−8.0 on the voltammetric response of hesperidin
was evaluated. Hesperidin electrooxidation proceeded irreversibly in the whole pH range
tested, since no reduction steps on the cathodic branches were observed. Both oxidation
potentials became less positive with the increase in pH (Figure 7a), thereby confirming
proton transfer during electrooxidation.
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The oxidation currents of both peaks were increased in the pH range from 4.8 to 5.5
and then started to decrease with the pH increase. This effect can be associated with the
oxidation of hesperidin by air oxygen in neutral and basic media, which is typical for
flavonoids [41,42]. The highest oxidation currents were observed at pH 5.5. which was
used in a further study.

Variation in the potential scan rate in the range of 5–200 mV s−1 was performed to
elucidate the electrooxidation reaction of hesperidin (Figure 8). The oxidation currents of
the first oxidation peak were linearly increased with the square root of the potential scan
rate (Equation (2))

Ip1 [µA] = (−0.07 ± 0.01) + (0.080 ± 0.001)υ
1
2 [mV s−1] R2 = 0.9981. (2)
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The slope of the Napierian logarithmic plot (Equation (3)) was 0.58.

lnIp1 [µA] = (1.00 ± 0.03) + (0.58 ± 0.01)lnυ [V s−1] R2 = 0.9979. (3)

These data made it possible to conclude that the electrooxidation of hesperidin on the
polyFA-modified electrodes was a diffusion-driven process. In this case, the electrooxi-
dation parameters (anodic transfer coefficient (αa), the number of electrons (n), diffusion
coefficient (D), and the standard heterogeneous electron transfer rate constant (k0)) were
calculated using a Tafel plot, the Randles–Ševčík equation [43], and the equation for k0 for
the irreversible diffusion-controlled process [44]. The results are summarized in Table 4.

Table 4. Electrooxidation parameters of hesperidin on the glassy carbon electrode modified with
multi-walled carbon nanotubes and poly(ferulic acid) (polyFA/MWCNTs/GCE).

Parameter Equation Value

αa Tafel slope = αaF/2.303RT 0.39

n ∆E1/2 = 47.7/αan 2.0

D (cm2 s−1) Ip1 = π
1
2 χ(bt)nFAcD

1
2 ( αanα F

RT )
1
2 υ

1
2 (4.1 ± 0.3) × 10−5

k0 (cm s−1) k0 = 2.415e−
0.02F

RT D
1
2 (Ep − Ep/2)

− 1
2 υ

1
2 2.4 × 10−3
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The oxidation potential on the first step was anodically shifted with an increase in the
scan rate, which also indicated the irreversibility of the electrode reaction of hesperidin.
Thus, the irreversible two-electron electrooxidation of the hesperidin occurred on the
polyFA/MWCNTs/GCE with proton participation. According to Scheme 2, electrooxida-
tion involves ring B in the structure of hesperidin. A similar process has been reported
on the MWCNTs-based electrode [45], the GCE modified with reduced graphene oxide
and gold nanoparticles [46], and the GCE modified with functionalized single-walled
carbon nanotubes and polyaluminon [47]. The second step on the voltammograms of the
hesperidin probably corresponds to the oxidation of the hydroxyl group in ring A [47,48].
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3.5. Sensing of Hesperidin Using PolyFA-Modified Electrode

The PolyFA/MWCNTs/GCE was used for the sensing of hesperidin under conditions
of differential pulse voltammetry.

3.5.1. Effect of Pulse Parameters on Hesperidin Response

Pulse parameters significantly affected the oxidation potential and currents of the
hesperidin. Changes in the voltammetric characteristics were studied in 1.0 µmol L−1 of
hesperidin. The first step oxidation potential was slowly decreased with the increase in
pulse amplitude and time (Figure 9a). Oxidation peak currents grew with the increase in
pulse amplitude and achieved a maximum at 0.100 V (Figure 9b). The increase in pulse time
led to the decrease in hesperidin oxidation currents. Thus, a pulse amplitude of 0.100 V
and a pulse time of 0.025 s provided the best response of the hesperidin and were used for
its quantification.

3.5.2. Differential Pulse Voltammetric Quantification of Hesperidin

Hesperidin gave two oxidation peaks at 0.54 and 0.96 V on the differential pulse
voltammograms (Figure 10). The first peak currents proportionally increased with the
growth of the analyte concentration in the electrochemical cell in the ranges of 0.025–1.0
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and 1.0–10 µmol L−1 (Figure 10a,b, respectively). The corresponding calibration graphs are
presented by Equations (4) and (5), respectively

Ip1 [µA] = (0.012 ± 0.001) + (42.8 ± 0.3) × 104chesperidin [mol L−1] R2 = 0.9997, (4)

Ip1 [µA] = (0.250 ± 0.007) + (19.5 ± 0.1) × 104chesperidin [mol L−1] R2 = 0.9999. (5)
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Figure 10. Differential pulse voltammograms with baseline correction for hesperidin on
polyFA/MWCNTs/GCE in phosphate buffer pH 5.5: (a) 0.025–1.0 µmol L−1 of hesperidin;
(b) 1.0–10 µmol L−1 of hesperidin. ∆Epulse = 0.100 V, tpulse = 0.025 s, υ = 20 mV s−1.

The high sensitivity of the hesperidin response was confirmed by the slopes of cal-
ibration graphs. The detection and quantification limits were calculated as 3SDa/b and
10SDa/b, where SDa is the standard deviation of the calibration graph intercept, and b is the
calibration graph slope. The detection and quantification limits of 7.0 and 23.4 nmol L−1 of
hesperidin, respectively, were obtained. The analytical characteristics of the direct deter-
mination of the hesperidin on polyFA/MWCNTs/GCE are the best ones among reported
to date for various electrodes, including chemically modified ones (Table 5). Furthermore,
the absence of the preconcentration step in the developed method significantly reduced
the measurement time and excluded the possible co-adsorption of other constituents in the
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case of real samples analysis. Another advantage of polyFA/MWCNTs/GCE is the ease
and rapidity of fabrication.

Table 5. Analytical characteristics of the electrochemical determination of hesperidin.

Electrode Method Detection Limit
(µmol L−1)

Linear Range
(µmol L−1) Ref.

PGE 1 AdSDPV 2 0.019 0.050–1.00 [49]

Electroactivated PGE DPV 3 0.2 0.5–10 [50]

Boron-doped diamond electrode AdSSWV 4 1.2 4.09–115 [51]

MWCNTs/GCE LSV 5 — 0–20 [40]

MWCNTs/SPE 6 AdSSWV 0.0073 0–30 [45]

3D nanoporous Pt/SPE LSV 6.61 10–400 [52]

SnO2 nanoparticles in cetylpyridium bromide/GCE AdDPV 7 0.077 0.10–10; 10–75 [53]

Mesoporous SiO2 modified CPE 8 AdDPV 0.25 0.5–25 [54]

Brilliant-green/Nano-graphene-platelet/CPE DPV 0.050 0.10–7.0; 7.0–100 [55]

Au nanoparticles/electro-reduced graphene
oxide/GCE A 9 0.0082 0.050–8.0 [46]

Polyaluminon/f-SWCNTs 10/GCE DPV 0.029 0.10–2.5; 2.5–25 [47]

Poly(o-aminothiophenol)/Au nanoparticles/Ultrafine
activated carbon/GCE DPV 0.045 0.085–30 [56]

PolyFA/MWCNTs/GCE DPV 0.007 0.025–1.0; 1.0–10 This work
1 Pencil graphite electrode. 2 Adsorptive stripping differential pulse voltammetry. 3 Differential pulse voltammetry.
4 Adsorptive stripping square-wave voltammetry. 5 Linear sweep voltammetry. 6 Screen-printed electrode.
7 Adsorptive differential pulse voltammetry. 8 Carbon paste electrode. 9 Amperometry. 10 Polyaminobenzene
sulfonic acid functionalized single-walled carbon nanotubes.

The developed method accuracy was checked using the added–found method (Table 6).
Five concentrations of hesperidin that were covered by both linear ranges were used, and
recovery values of 99–100% were obtained that confirmed the high accuracy of the method.
The relative standard deviation was 0.78–2.8%, and this indicates the absence of random
errors in the hesperidin determination.

Table 6. Hesperidin quantification in model systems using polyFA/MWCNTs/GCE in phosphate
buffer pH 5.5 (n = 5; p = 0.95).

Added (µmol L−1) Found (µmol L−1) RSD (%) R (%)

0.025 0.0250 ± 0.0009 2.8 100 ± 3.5

0.25 0.248 ± 0.005 1.5 99 ± 2

1.0 1.00 ± 0.02 1.5 100 ± 2

5.0 4.98 ± 0.05 0.78 99.7 ± 0.9

10 10.0 ± 0.1 1.1 100 ± 1

3.5.3. Selectivity of Hesperidin Determination

The selectivity of the electrode response to hesperidin is one of the key points to be
considered, since real samples usually contain a wide range of constituents, including
natural phenolics of various classes. An amount of 1.0 µmol L−1 of hesperidin was used in
the selectivity test. Typical potential interferences and structurally related phenolics were
studied. The tolerance limits of the interfering species are presented in Table 7.
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Table 7. Tolerance limits of interference for the determination of 1.0 µmol L−1 hesperidin on the
polyFA/MWCNTs/GCE in phosphate buffer pH 5.5 (n = 5; p = 0.95).

Interfering Specimen Tolerance Limit (µmol L−1) Hesperidin Recovery (%)

K+, Mg2+, Ca2+, and Al3+ 1000 100 ± 1

NO3
−, Cl−, and SO4

2− 1000 100 ± 1

Glucose 100 99.9 ± 0.2

Sucrose 100 100 ± 1

Rhamnose 100 100 ± 1

Ascorbic acid 100 100 ± 2

Naringin 100 100.2 ± 0.3

Caffeic acid 100 99.8 ± 0.2

Chlorogenic acid 100 100 ± 2

Gallic acid 10 99.5 ± 0.5

Quercetin and rutin 5.0 100 ± 2

Inorganic cations (K+, Mg2+, Ca2+, and Al3+) and anions (NO3
−, Cl−, and SO4

2−) were
electrochemically inactive in the potential range studied and did not affect the hesperidin
response, even at 1000-fold excesses. Saccharides also did not oxidize under the conditions
of the experiment and did not show an interference effect. Ascorbic acid is the most typical
interference in citrus fruits. It did not show an oxidation signal in the potential range of
0.3–1.2 on the polyFA/MWCNTs/GCE. Ascorbic acid in addition to hesperidin did not
interfere with the oxidation peaks of the hesperidin (Figure S2a).

The potential interference effects of other natural phenolics of various classes was
studied. Naringin, being the second major flavanone of several citrus fruits, was oxidized at
0.75 V on the polyFA/MWCNTs/GCE (Figure S2b). A peak potential difference of 210 mV
for hesperidin and naringin allowed for the determination of hesperidin in the presence
of naringin, as Figure S2b shows. Caffeic and chlorogenic acids were oxidized at 0.18 V
and did not affect the oxidation peak of hesperidin, (Figure S2c,d respectively). Gallic
acid gave two oxidation peaks at 0.25 and 0.61 V. The second oxidation peak partially
overlapped with the oxidation peak of hesperidin. However, the oxidation peak of gallic
acid fully disappeared at a concentration of 10 µmol L−1 and less. Therefore, hesperidin
determination became possible in this case (Figure S2e). Flavonols (quercetin and rutin)
are also electroactive on polyFA/MWCNTs/GCE. Rutin was oxidized at 0.34 and 0.96 V.
The peak potential separation with hesperidin was 200 mV and was sufficient for the
registration of well-resolved peaks of both compounds (Figure S2f). Quercetin showed
a quite similar effect. Its oxidation potentials were 0.25 and 0.93 V. No overlap with the
hesperidin oxidation peak was observed at a quercetin concentration of 5 µmol L−1.

Thus, polyFA/MWCNTs/GCE shows a highly selective response to hesperidin and
can be applied in the analysis of citrus fruits and products.

3.5.4. Operation Characteristics of polyFA/MWCNTs/GCE

The electrode surface was mechanically renewed after each measurement (see
Section 2.3.1) due to a significant decrease in the hesperidin oxidation currents after the
second scan. Such behavior indicates electrode surface fouling and partial blockage of the
electroactive centers. Thus, the developed electrode suggests single use only. A repeatability
test for the electrode characterization was not applicable in this case.

The reproducibility of the method was considered using the relative standard devia-
tions obtained for the accuracy test (Table 6). The values did not exceed 2.8% and showed a
perfect reproducibility of the results.

The robustness of the electrode response to hesperidin was verified. The use of
another GCE of the same producer, reference and auxiliary electrodes, a newly prepared
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suspension of MWCNTs, components of phosphate buffer, and NaOH used as a supporting
electrolyte for the FA electropolymerization led to insignificant changes in the response of
0.10 µmol L−1 of hesperidin. The relative standard deviation of the oxidation currents was
in the range of 1.0–1.5%, thereby confirming a high robustness of the developed electrode.

3.6. Practical Application of the Sensor in Orange Juices Analysis

Oranges are the main source of hesperidin in the human diet. Therefore, a developed
sensor was applied in the analysis of fresh and commercial orange juices.

The pretreated juice samples (Section 2.3.2) showed a well-defined oxidation peak of
hesperidin at 0.54 V on the differential pulse voltammograms on the polyFA/MWCNTs/
GCE (Figure S3). The standard addition method confirmed that this oxidation peak be-
longed to hesperidin (Figure S3) for both fresh and commercial juices. The second oxidation
peak at 0.74 V corresponded to naringin oxidation and agreed well with the voltammetric
profile reported for orange juices [47]. A hesperidin recovery of 99.7–100.4% (Table S1) indi-
cated the absence of matrix effects in orange juices analysis and the practical applicability
of the polyFA/MWCNTs/GCE.

The quantification of hesperidin in orange juices was performed using a calibration
curve and presented in Table 8. Voltammetric data were compared to those obtained
with high-performance liquid chromatography with UV-detection. Good agreement of the
results confirms the accuracy of the electrochemical approach. The absence of systematic
errors in the quantification of the hesperidin was proven by the t-test values. F-test results
indicated the insignificant difference in the results obtained by two methods, i.e., a similar
precision of voltammetry and chromatography.

Table 8. Quantification of hesperidin in orange juices (n = 5; p = 0.95).

Juice Type Sample
Hesperidin Contents (mg L−1)

t-Test 1 F-Test 2
Voltammetry RSD (%) Chromatography RSD (%)

Fresh 1 172 ± 4 1.6 170 ± 6 1.4 0.970 1.34

Commercial

2 112 ± 2 1.3 113 ± 4 1.6 0.912 1.56

3 211 ± 4 1.2 212 ± 6 1.1 0.358 1.29

4 251 ± 4 1.1 252 ± 8 1.3 0.218 1.50
1 tcrit = 2.45 at α = 0.05 and f = 6. 2 Fcrit = 19.25 at α = 0.05 and f 1 = 4 and f 2 = 2.

4. Conclusions

A highly sensitive and selective voltammetric sensor was developed for hesperidin
quantification. The layer-by-layer combinations of MWCNTs and polyFA were shown to be
an effective electrochemical platform for hesperidin detection. The electropolymerization
of FA in a basic medium was performed for the first time and exhibited other roots of the
electrode reaction compared to the neutral and acidic mediums. In particular, a phenolic
fragment was oxidized via phenoxyl radical formation and further polymerization.

PolyFA/MWCNTs/GCE is characterized by a higher electroactive surface area and
sufficient electron transfer rate to be considered as a perspective in organic electroanalysis.
The analytical characteristics of thehesperidin are the best reported to date for electrochemi-
cal sensors. The selectivity of the hesperidin response in the presence of the most abundant
natural phenolics allows for the application of the electrode in routine practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13050500/s1, Figure S1: Hesperidin structure; Figure S2:
Differential pulse voltammograms with baseline correction for the mixtures of hesperidin with
potential interferences on polyFA/MWCNTs/GCE in phosphate buffer pH 5.5: (a) 1.0 µmol L−1 of
hesperidin and 100 µmol L−1 of ascorbic acid; (b) 1.0 µmol L−1 of hesperidin and 100 µmol L−1

of naringin; (c) 1.0 µmol L−1 of hesperidin and 100 µmol L−1 of caffeic acid; (d) 1.0 µmol L−1 of

https://www.mdpi.com/article/10.3390/bios13050500/s1
https://www.mdpi.com/article/10.3390/bios13050500/s1
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hesperidin and 100 µmol L−1 of chlorogenic acid; (e) 1.0 µmol L−1 of hesperidin and 10 µmol L−1 of
gallic acid; (f) 1.0 µmol L−1 of hesperidin and 5 µmol L−1 of rutin. ∆Epulse = 0.100 V, tpulse = 0.025 s,
υ = 20 mV s−1; Figure S3: Typical differential pulse voltammograms with baseline correction for
orange juice on polyFA/MWCNTs/GCE in phosphate buffer pH 5.5: (a) 10 µL of commercial juice
with various additions of hesperidin; (b) 10 µL of fresh orange juice with various additions of
hesperidin. ∆Epulse = 0.100 V, tpulse = 0.025 s, υ = 20 mV s−1; Table S1: Recovery of hesperidin in
orange juice (n = 5; p = 0.95).
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51. Yiğit, A.; Yardım, Y.; Şentürk, Z. Square-wave adsorptive stripping voltammetric determination of hesperidin using a boron-doped
diamond electrode. J. Anal. Chem. 2020, 75, 653–661. [CrossRef]

52. Beluomini, M.A.; Stradiotto, N.R.; Zanoni, M.V.B. Simultaneous detection of hesperidin and narirutin in residual water using
nanoporous platinum electrosynthesized by alloying-dealloying mechanism. J. Electroanal. Chem. 2022, 904, 115866. [CrossRef]

53. Ziyatdinova, G.; Yakupova, E.; Davletshin, R. Voltammetric determination of hesperidin on the electrode modified with SnO2
nanoparticles and surfactants. Electroanalysis 2021, 33, 2417–2427. [CrossRef]

54. Sun, D.; Wang, F.; Wu, K.; Chen, J.; Zhou, Y. Electrochemical determination of hesperidin using mesoporous SiO2 modified
electrode. Microchim. Acta 2009, 167, 35. [CrossRef]

55. Manasa, G.; Mascarenhas, R.J.; Bhakta, A.K.; Mekhalif, Z. Nano-graphene-platelet/Brilliant-green composite coated carbon paste
electrode interface for electrocatalytic oxidation of flavanone hesperidin. Microchem. J. 2021, 160, 105768. [CrossRef]

56. Sun, B.; Hou, X.; Li, D.; Gou, Y.; Hu, F.; Li, W.; Shi, X. Electrochemical sensing and high selective detection of hesperidin with
molecularly imprinted polymer based on ultrafine activated carbon. J. Electrochem. Soc. 2019, 166, B1644–B1652. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/elan.1140091116
https://doi.org/10.1016/j.electacta.2008.10.056
https://doi.org/10.1039/C7AN01706E
https://www.ncbi.nlm.nih.gov/pubmed/29184961
https://doi.org/10.1080/00032719.2020.1732402
https://doi.org/10.1016/j.foodchem.2010.12.127
https://doi.org/10.3390/chemosensors9110323
https://doi.org/10.1002/elan.202060511
https://doi.org/10.1134/S1061934820050184
https://doi.org/10.1016/j.jelechem.2021.115866
https://doi.org/10.1002/elan.202100405
https://doi.org/10.1007/s00604-009-0200-0
https://doi.org/10.1016/j.microc.2020.105768
https://doi.org/10.1149/2.1141915jes

	Introduction 
	Materials and Methods 
	Reagents 
	Equipment 
	Experimental Conditions 
	Electrochemical Measurements 
	Orange Juice Analysis by Voltammetry 
	Chromatographic Determination of Hesperidin in Orange Juices 

	Statistical Analysis 

	Results and Discussion 
	Electrodeposition of PolyFA on the MWCNTs/GCE 
	Characterization of Bare and Modified GCE Using Scanning Electron Microscopy, Voltammetry, and Electrochemical Impedance Spectroscopy 
	Voltammetric Characteristics of Hesperidin on Bare and Modified GCE 
	Hesperidin Electrooxidation Parameters 
	Sensing of Hesperidin Using PolyFA-Modified Electrode 
	Effect of Pulse Parameters on Hesperidin Response 
	Differential Pulse Voltammetric Quantification of Hesperidin 
	Selectivity of Hesperidin Determination 
	Operation Characteristics of polyFA/MWCNTs/GCE 

	Practical Application of the Sensor in Orange Juices Analysis 

	Conclusions 
	References

