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Abstract: Mitochondria are valuable subcellular organelles and play crucial roles in redox signaling
in living cells. Substantial evidence proved that mitochondria are one of the critical sources of
reactive oxygen species (ROS), and overproduction of ROS accompanies redox imbalance and cell
immunity. Among ROS, hydrogen peroxide (H2O2) is the foremost redox regulator, which reacts with
chloride ions in the presence of myeloperoxidase (MPO) to generate another biogenic redox molecule,
hypochlorous acid (HOCl). These highly reactive ROS are the primary cause of damage to DNA
(deoxyribonucleic acid), RNA (ribonucleic acid), and proteins, leading to various neuronal diseases
and cell death. Cellular damage, related cell death, and oxidative stress are also associated with
lysosomes which act as recycling units in the cytoplasm. Hence, simultaneous monitoring of multiple
organelles using simple molecular probes is an exciting area of research that is yet to be explored.
Significant evidence also suggests that oxidative stress induces the accumulation of lipid droplets
in cells. Hence, monitoring redox biomolecules in mitochondria and lipid droplets in cells may
give a new insight into cell damage, leading to cell death and related disease progressions. Herein,
we developed simple hemicyanine-based small molecular probes with a boronic acid trigger. A
fluorescent probe AB that could efficiently detect mitochondrial ROS, especially HOCl, and viscosity
simultaneously. When the AB probe released phenylboronic acid after reacting with ROS, the product
AB–OH exhibited ratiometric emissions depending on excitation. This AB–OH nicely translocates to
lysosomes and efficiently monitors the lysosomal lipid droplets. Photoluminescence and confocal
fluorescence imaging analysis suggest that AB and corresponding AB–OH molecules are potential
chemical probes for studying oxidative stress.

Keywords: fluorescent probe; ratiometric; ROS; oxidative stress; mitochondria; lysosomes; lipid
droplets; viscosity; fluorescence Imaging

1. Introduction

The eukaryotic cells have multiple subcellular organelles such as mitochondria, lyso-
somes, nuclei, and Golgi bodies which play a crucial role in diverse biological functions
in living cells. Among them, mitochondria are considered one of the essential membrane
containing cell organelles as they produce energy for the entire body through cellular
respiration [1,2]. A substantial amount of reactive oxygen species (ROS) superoxide anion
radical (O2•−) converts into hydrogen peroxide (H2O2) via the catalytic activity of super-
oxide dismutase (SOD) [3]. This H2O2, a common intermediate of ROS, transforms into
several potent cytotoxic oxidizing agents and functional biomolecules, such as hypochlor-
ous acid (HOCl), which are generated via a reaction between H2O2 and chloride ion (Cl−)
in the presence of myeloperoxidase (MPO) in the cytoplasm [4]. As HOCl is in equilibrium
with its conjugate base OCl− (hypochlorite anion) at physiological pH (7.4), it acts as a
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potent oxidative agent [5]. It also plays a crucial role in the immune system by destroying
many pathogens and effecting a few cellular processes, such as proliferation, differentiation,
and anti-inflammatory response [6]. However, for a long time, whether HOCl is generated
from mitochondria apart from cytoplasm was unclear. Later, Ma et al. proved that HOCl
is also produced in mitochondria in macrophage cells [7]. Recently, we demonstrated
OCl− generation through NOX2 pathways in cancer cells [8]. Overproduction of OCl−

leads to oxidative stress and changes the microviscosity in the cellular organelles [9,10].
Furthermore, the oxidation of mitochondrial fatty acid (FA) upregulates and increases FA
accumulation in lipid droplets during oxidative stress [11]. In general, an increased amount
of mitochondrial ROS is associated with several diseases, such as chronic kidney disease
progression, cancer, diabetes, metabolic disorders, atherosclerosis, and cardiovascular
diseases [12–14].

Small molecular fluorescent probes and corresponding super-resolution imaging are
widely considered one of the most powerful techniques for revealing facts at the molecular
level due to their simplicity, high resolution, and low cost [15]. It has become one of the most
emerging diagnostic modalities in biomedical research and clinical applications [16–18].
Although several small molecular probes are reported to detect an individual analyte,
either HOCl or lipid droplets, there are no systematic studies for dual analytes, including
OCl− and lipid droplets, during oxidative stress [19]. Therefore, there is an urgent need
to develop an efficient probe for monitoring both HOCl and lipid droplets (LDs) during
drug-induced oxidative stress conditions.

A ratiometric fluorescent probe can overcome a few drawbacks compared to turn on/off
by self-calibration, and can emerge as an attractive tool in the bio-imaging field [20–33].
However, designing a ratiometric probe and simultaneously targeting two analytes is
always challenging [34]. Herein, we developed an efficient mitochondrial targeting
hypochlorite-specific small molecular fluorescent probe, AB, which can also monitor
mitochondrial viscosity. Confocal fluorescence imaging suggests that the hemicyanine
based AB probe is nicely localized in mitochondria but translocated into lysosomal lipid
droplets when the mitochondrial membrane is disrupted during oxidative stress. The
phenylboronic triggering motif in AB rapidly converts it into AB–OH in the presence
of hypochlorite. Due to substantial intramolecular charge transfer (ICT) in the basic
environment, AB–OH exhibited ratiometric emission change and localized to lipid droplets.
It showed a good sensitivity towards lipid droplets, the hallmark of cellular stress during
oxidative stress.

2. Materials and Methods
2.1. General Information

Unless otherwise stated, all the compounds were used as such as they were purchased
from commercial vendors without any additional purification. All the substances used
in the reactions were bought from Sigma-Aldrich, Alfa Aesar, T.C.I. India, Spectrochem,
and Rankem chemicals. Materials used for the spectroscopic and biological analysis are
of highest quality available in the brand. Deuterated NMR solvents were purchased from
Eurisotope. Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal bovine serum (FBS),
and 100× Antimycotic antibiotics were purchased from Thermo Fisher. Silica gel G-60 F254
aluminum TLC was used to monitor reaction completion, and short- and long-wavelength
UV lamp chamber was used to visualize the TLC Silica gel with a mesh size of 100–200
was used for column chromatography. Distilled MilliQ water was used wherever water
was needed.

2.2. General Instrumentation

NMR spectra of the synthesized molecules were recorded in the Bruker Avance
400 NMR spectrometer, Germany, using deuterated solvents. All the mass spectra were
recorded in Agilent 6540, Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA,
USA) connected with Agilent 1290 UPLC using DI water and acetonitrile along with 0.1%
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TFA as mobile phase with a gradient solvent system. The analytes 4% sodium hypochlorite
solution was purchased from Qualigens (cat no. 7681-52-9) and 50% Hydrogen Peroxide
solution from Fisher Scientific (cat no. 7722-84-1). Using an Agilent Cary 8454 UV-Vis diode
array spectrophotometer, all the absorption spectra were measured, whereas the emission
spectra were measured in HORIBA Fluorolog-3 spectrofluorometer (Model: FL3-2-IHR).
The scan slits for excitation and emission were adjusted to 2 nm. A Waters Alliance System
(Milford, MA, USA) equipped with an e2695 separation module, and a 2998 photodiode-
array detector was used for the HPLC experiments. The cells were incubated in a Thermo
Fisher CO2 incubator, and imaging was performed with Nikon confocal microscope.

2.3. Synthesis of AB

0.343 mmol of 2,3-dimethylbenzo[d]thiazol-3-ium (B) and 0.343 mol of (4-((4-
formylphenoxy)methyl)phenyl)boronic acid (C) was mixed in dried ethanol in the presence
of a catalytic amount of piperidine. The mixture was allowed to stir for 6 h, and the precipi-
tate was filtered and washed with cold diethyl ether to render a 78% yield. The product
formed was characterized using HRMS and NMR Spectroscopy. (Detailed schemes for the
synthesis and the characterizations are provided in the supplementary material).

2.4. Cell Culture Experiments

Adenocarcinoma human cell line A549 was purchased from NCCS Pune. All the
cell culturing was performed in DMEM with 10% FBS and 1% Antimycotic under an
atmosphere of 5% CO2 at 37 ◦C. The biocompatibility of the probe was determined using
the standard MTT [(3-(4,5-Dimethylthiazol-2-yl)-2-5-Diphenyl tetrazolium Bromide] assay.

Cell imaging experiments were performed in 35mm confocal dishes with A549 cells.
Cells were seeded one day before the experiment and treated with AB (10 µM, 30 min),
in addition with and without the treatment, of different stress-inducing agents such as
zymosan, PMA (Phorbol 12-myristate 13-acetate), MPO (Myeloperoxidase), and different
drugs such as doxorubicin and paclitaxel. Images were taken in a confocal microscope.

3. Design Principle

To develop the targeted fluorescent probe, we conjugated a suitable trigger for reactive
oxygen species (ROS) with a simple hemicyanine type of fluorophore. An aryl boronic
acid has been used for developing several fluorescent probes for reactive oxygen species,
especially hydrogen peroxide (H2O2) [35–37]. The basic concept was that the boronic acid
ester will exhibit a photoinduced electron transfer (PET) mechanism and thus would be
non-fluorescent after oxidation, and with the PET is switched off we get a fluorescent signal.
A few reports also demonstrated that ONOO− (peroxynitrite) [38,39] and HOCl [40,41]
oxidized boronic acid derivatives to phenol, resulting in a turn-on fluorescence response.
However, depending on fluorophores and triggers attached to boronic acid or boronic ester
(boronic acid pinacol ester), the selectivity differs towards each specific reactive oxygen
species. Herein, we also choose simple boronic acid, which has good water solubility and
photostability and can be an active intermediate for targeting reactive oxygen species.

Furthermore, flexible hemicyanine fluorescent probes can respond to viscosity and
associated lipid droplets during oxidative stress. Thus, a simple n-methylthiazolium
acceptor was conjugated with phenylboronic acid via a Knoevenagel condensation reaction
to yield our desired hemicyanine-based probe AB. The AB probe exhibited a ratiometric
fluorescent response through an ICT process (Figure 1) while reacting with ROS, especially
hypochlorite. Herein, we reported the development of probe AB and its application for
dual analytes that include a hypochlorite in mitochondria and lipid droplets in lysosomes
during oxidative stress with straightforward synthetic methodology.
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HOCl (Figure S2,3). The maximum absorbance at 400 nm gradually decreased and the 
new peak at 490 nm steadily increased with time (Figure S2). In the case of HOCl, the 
reaction kinetics were much faster than with H2O2, as the product peak reached a maxi-
mum within 15 min (Figure S3). A similar reaction kinetic experiment was conducted us-
ing maximum emission at 560 nm, and the reactivity towards HOCl was almost four times 
faster than H2O2 (Figure S6). 

Next, the ratiometric emission change was analyzed towards variable concentrations 
of both the analytes (H2O2 and HOCl) ranging from 0−200 µM. The emission peak at ~500 
nm was gradually decreased, and simultaneously a new peak at ~560 slowly appeared 
with increased concentration while exciting at 400 nm. When the same molecule was ex-
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Figure 1. Design principle and sensing mechanism of AB. The probe AB is initially weak fluorescent
(light green) in aqueous media due to the PET (photoinduced electron transfer) process but shows
strong fluorescence in high viscous media (green color). ABOH exhibits stronger emission (repre-
sented as green) due to PET off mechanism. In mitochondrial pH (~8.0) and hence ABOH exhibits a
longer wavelength (represented as yellow) due to ICT (intramolecular charge transfer) process.

4. Photophysical Properties

Chang’s [42] and James’s groups [43] reported that boronic acid derivative is specific
to H2O2. Shu et al. synthesized boronic acid derivatives, which showed specificity towards
ONOO− with low LOD (16 nM) [44]. However, this probe almost remained silent towards
HOCl and reacted slowly with H2O2. Thus, we first screened our probe with probable
reactive oxygen species, including H2O2, HOCl, OH·, and ONOO− (Figure S1). Interest-
ingly, we found the phenylboronic acid derivative of thiazolium was more specific towards
hypochlorite than hydrogen peroxide (H2O2) and ONOO−.

Firstly, we carefully checked the sensing ability of the AB probe for HOCl in alkaline
pH (pH = 8), as the reaction is much more feasible in alkaline conditions (Figure 2). Since
H2O2 is an intermediate for generating HOCl, we studied the photophysics concerning
H2O2. We did a reaction kinetics with H2O2, as shown in Figure S2. All three oxygen
reactive species (hypochlorous acid, hydrogen peroxide, and peroxynitrite) can cleave the
arylboronic acid trigger, which acts as a receptor for photoinduced electron transfer in the
buffer. The phenylboronic acid cleaved and formed a phenol derivative that exhibited
intramolecular charge transfer (ICT) depending on pH and other microenvironments [45].
For a systematic study, a time-dependent kinetics reaction was recorded by monitoring
at 400 nm the maximum absorbance in UV spectra for 80 min after adding 100 µM H2O2
and HOCl (Figures S2 and S3). The maximum absorbance at 400 nm gradually decreased
and the new peak at 490 nm steadily increased with time (Figure S2). In the case of HOCl,
the reaction kinetics were much faster than with H2O2, as the product peak reached a
maximum within 15 min (Figure S3). A similar reaction kinetic experiment was conducted
using maximum emission at 560 nm, and the reactivity towards HOCl was almost four
times faster than H2O2 (Figure S6).

Next, the ratiometric emission change was analyzed towards variable concentrations
of both the analytes (H2O2 and HOCl) ranging from 0−200 µM. The emission peak at
~500 nm was gradually decreased, and simultaneously a new peak at ~560 slowly appeared
with increased concentration while exciting at 400 nm. When the same molecule was excited
at 490 nm, a gradual increment at 560 nm with increased H2O2 and HOCl concentrations
was observed. Hence, AB can be considered an efficient fluorescent probe for HOCl
(Figures 2 and S4) and remains partial towards H2O2.
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Figure 2. Emission spectra of AB in the presence of different concentrations of HOCl (0–200 µM).
(a) λex = 400 nm and (c) λex = 490 nm and their corresponding scatter plots (b,d). Probe concentration:
10 µM. The HOCl concentrations used were 100nm, 300 nm, 500 nm, 700 nm, 1–10 µM (10 points),
10–100 µM (10 points), and 200 µM.

Oxidative stress in living cells is associated with the overproduction of reactive oxygen
species, including HOCl and H2O2. When AB reacts with these reactive species (HOCl or
H2O2), it releases a quinone methide to form AB–OH. This phenomenon was confirmed
using HPLC (Figure S7). AB–OH exhibited ratiometric emission properties due to the
intramolecular charge transfer (ICT) from the donor phenoxide to the n-methylthiazolium
acceptor in different pH. Thus, we first checked the absorbance and emission spectra of
AB–OH in different pH. The absorbance at 400 nm was gradually reduced with increasing
pH from 4 to 10. However, a new absorbance peak at 490 nm was gradually increased
with pH from 4 to 10. The maximum emission at 510 nm was gradually decreased with
increasing pH from 4 to10 upon excitation at 400 nm. However, the emission maxima at
560 nm increased when the pH was increased from 4 to 10 upon excitation at 490 nm. As
the ratio of emission intensity at 500 and 560 nm changes, this probe can be considered a
potential ratiometric probe toward pH alteration, which is associated with elevated ROS
concentrations (Figure S5). We also performed a selectivity study after the addition of
different analytes and found it to be reactive with all four ROS, but the best reactivity was
observed in the case of HOCl, and thus we did all the further studies considering AB as an
HOCl probe (Figure S8).

This AB/AB–OH fluorescent probe may respond to viscosity due to rotatable bonds.
The fluorescence intensity at 500 nm significantly increased with an increase in viscosity
when excited at around 400 nm (Figure S5). Hence, AB can be considered an efficient probe
for hypochlorite and viscosity, and the corresponding AB–OH could be a viscosity sensor.

5. Biological Studies

Its biocompatibility is the first and foremost criterion for a fluorescent probe to be
efficiently used for cellular imaging. To test this, we subjected our probe AB to A549 cells
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for 24 h and found it was almost nontoxic (Figure S9) by MTT assay compared to the 10 µM
positive control doxorubicin. A co-localization study confirmed that the probe was nicely
localized in mitochondria with a high Pearson’s coefficient (0.9102). There was a partial
overlap with the endoplasmic reticulum (ER) but almost no overlap with lipid droplets or
lysosomes (Figure 3). The high specificity to mitochondria suggested that the cationic AB
probe has a great affinity to accumulate in the negative mitochondrial matrix.
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Figure 3. Confocal fluorescence images for co-localization of AB (10 µM) in A549 cells. Images were
taken after co-staining with Mito Tracker Deep red, ER Tracker Red, Nile red, and Lyso Tracker Deep
red. The squares marked “A”, “B”, “C”, and “D” signify the zoomed-in picture. Corresponding
line and scatter plots, wherein “r” and “R” represent Pearson’s correlation and Mander’s overlap
coefficients, respectively. Images were captured using a 100× oil emersion lens with 2× zoom. Image
scale bar = 10 µm.

Although AB responded to three reactive oxygen species, the most sensitivity towards
hypochlorite encourages us to study intracellular ROS, especially hypochlorite, in living
cells. We studied the efficiency of the AB probe in detecting endogenous mitochondrial
HOCl in live cells. For this, we pretreated the cells with different known endogenous
HOCl inducers such as PMA (500 nM, 1 h), Zymosan (10 µg/mL, 1 h), MPO, MPO/H2O2,
MPO/H2O2/Cl−, and then with AB for 30 min. Compared to the control, there was an
apparent enhancement of fluorescence intensity for all the cases as the amount of HOCl was
increased (Figures 4 and 5). In contrast, cells treated with inhibitors such as 4-aminobenzoic
acid hydrazine (4-ABAH), taurine, and DPI exhibited very low fluorescence in the FITC
channel compared to the non-treated cells (Figures 4 and 5). Therefore, all the above results
confirm the AB probe’s proficiency in detecting endogenous HOCl generated via MPO
and Zymosan.

Previously reported boronic acid-based fluorescent probes did not systematically
study how the product, phenolic acid derivative (after reaction with ROS) behaves in cells
during oxidative stress. Herein, we carefully studied the fate of the fluorescent probe
after its response towards ROS using high-resolution confocal fluorescence microscopic
images. The AB–OH, a product of AB during oxidative stress, was localized in the same
or other intracellular organelles. As shown in Figure 6, AB–OH was nicely localized in
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lysosomes instead of mitochondria. These results indicate that the AB probe is initially
localized in mitochondria but translocated to lysosomes when HOCl induced cleavage of
phenylboronic acid. The mitochondria are depolarized during oxidative stress, resulting in
a lowering of MMP (mitochondrial membrane potential). Thus, the probe leaks out from
mitochondria and is localized to lysosomes.

As spectroscopic analysis of AB–OH exhibited an excellent response to viscosity, AB–
OH can be a potential biomarker for lipid droplets that can monitor the oxidative process.
A co-localization experiment suggested that AB–OH nicely localized in lysosomal lipid
droplets with a Pearson coefficient (0.6773). However, it remains silent to non-lysosomal
lipid droplets. As shown in Figure 7, AB–OH nicely colocalized with lysosomal LDs,
confirmed by the merged images with commercial trackers Lyso Tracker Deep Red and
Nile Red, along with the AB–OH probe in the FITC channel, respectively.
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Further, to confirm the mitochondrial viscosity response of AB, cells were pretreated
with nystatin, which is known to cause swelling of mitochondria, resulting in increased
mitochondrial viscosity [46–51]. There was an enhancement in fluorescence intensity in
the DAPI and FITC channels compared to the control (Figure 8). Finally, to test the drug-
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induced oxidative stress in cancerous cells, the cells were pretreated with well-known
anticancer drugs such as doxorubicin, cisplatin, and paclitaxel for 1 h AB was incubated
for 30 min before confocal microscopic imaging. A significant enhancement in fluorescence
intensity was observed in the FITC channel compared to the untreated cells, and the change
in morphology confirmed that the cells were under oxidative stress (Figure 8). This led to
mitochondrial damage, consequently, changes in MMP and the formation of lipid droplets.
Hence, a simple AB probe can efficiently sense mitochondrial ROS, especially HOCl and
lysosomal viscosity in cells under oxidative stress conditions.
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6. Conclusions

Reactive oxygen species (ROS) play crucial roles in redox signaling in living cells.
However, overproduction of these reactive species may damage nucleic acids and oxidize
proteins. These adverse effects may lead to cell death, neuronal diseases, cancer, and
diabetes. Hence, we studied ROS, especially HOCl, in cancer cells during oxidative stress
caused by viral infections and drug treatment. This may alter cellular microenvironments,
including cellular viscosity and corresponding lipid droplets. Hence, we systematically
studied the detection of hypochlorite in mitochondria during oxidative stress and the post-
effect using a simple molecular probe that exhibited ratiometric properties. We successfully
synthesized a derivative of hemicyanine dye with boronic acid as the trigger and receptor
of photoinduced electron transfer. This AB showed good sensitivity towards hypochlorite
compared to peroxynitrite (ONOO–) and the most common and highly abundant hydrogen
peroxide (H2O2). It also responded towards viscosity with turn-on property. These excellent
photophysical properties offer a new scope for studying confocal fluorescence imaging
in living cells to monitor HOCl and viscosity during oxidative stress. AB showed a good
co-localization in mitochondrial and responded towards HOCl ratiometrically during
oxidative stress. We have experimentally verified and proved the significance of our
designed probe during a change in mitochondrial viscosity. Confocal image analysis
indicated that AB–OH, a product of AB, translocates to lysosomes and monitors the
lysosomal lipid droplets during oxidative stress. Hence, this simple fluorescent probe can be
a potential biomarker to study redox imbalance and lipid droplets during oxidative stress.
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