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Abstract: Obtaining cell concentration measurements from a culture assay by using bioimpedance is a
very useful method that can be used to translate impedances to cell concentration values. The purpose
of this study was to find a method to obtain the cell concentration values of a given cell culture
assay in real time by using an oscillator as the measurement circuit. From a basic cell–electrode
model, enhanced models of a cell culture immersed in a saline solution (culture medium) were
derived. These models were used as part of a fitting routine to estimate the cell concentration in a cell
culture in real time by using the oscillation frequency and amplitude delivered by the measurement
circuits proposed by previous authors. Using real experimental data (the frequency and amplitude of
oscillations) that were obtained by connecting the cell culture to an oscillator as the load, the fitting
routine was simulated, and real-time data of the cell concentration were obtained. These results were
compared to concentration data that were obtained by using traditional optical methods for counting.
In addition, the error that we obtained was divided and analyzed in two parts: the first part of the
experiment (when the few cells were adapting to the culture medium) and the second part of the
experiment (when the cells exponentially grew until they completely covered the well). Low error
values were obtained during the growth phase of the cell culture (the relevant phase); therefore, the
results obtained were considered promising and show that the fitting routine is valid and that the cell
concentration can be measured in real time by using an oscillator.

Keywords: bioimpedance; cell culture; computer-aided design (CAD); electric model; fractional
order (FO); microelectrode; oscillation-based test (OBT)

1. Introduction

In recent years, a plethora of scholars have conducted research on monitoring the growth of
a cell culture (CC) assay to develop noninvasive, cheap, and robust techniques [1–9]. Biomedical
setups have included toxicology assays [10,11], cancer characterization experiments [12–14],
biochemical experiments [15], immune assays [16], stem cell differentiation protocols [17],
etc., and scholars have sought to use these setups to quantify the number of cells present
to characterize a diversity of research objectives and techniques [18–20]. The modeling of
a biological sample (BS) allows one to know its electrical behavior and several useful
parameters. In many cases, these models are not useful to obtain the required result by
themselves. For this reason, the main purposes of this experiment were to enhance the
existing models and develop an automatic procedure to obtain the concentration of a CC in
real time (RT).

The ECIS (electrical cell–substrate impedance sensing) technique is used to sense
the electrical response generated on a BS ([21–23]), the CC, when it is excited with an
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alternating current or electrical voltage source at several frequencies due to its conductivity
properties. The current–voltage relationship, or Ohm’s law, returns an impedance value
with real and imaginary parts, the so-called bioimpedance (BI). Because the current applied
to the BI must be very low, the ECIS technique requires precise and robust electronics [24].
Currents below 10 µA are employed to avoid any damage to the cells, and the applied
voltage amplitudes are below 100 mV to correctly bias the electrodes in the linear region [5].
The CC is immersed in an ionic solution, the culture medium, and the CC cells settle on the
substrate of the culture well, where the electrodes are placed. The ideal use of this technique
is injecting a signal whose amplitude and frequency are set to their optimum values, i.e.,
the values that are most sensitive to a change in the BI. From this, the BI value is obtained,
but to understand its value, a model of the electrical behavior of an electrode–cell system
immersed in an ionic solution must be used. Some scholars have focused on modeling
the BI by using solution electrical system equations [1,5] and performing finite elements
simulations [25,26] of the whole system, which comprises the CC and electrodes.

The authors of reference [5] modeled the electrochemical behavior of an electrode
immersed in an ionic solution. The electrical behavior of an electrode immersed in an ionic
solution is modeled as the resistance of the electrode (Rct) in parallel with a capacitor (Cdl),
whose total impedance is Ze (Figure 1a). The spreading resistance (Rs) is the opposition to
the current flow in the saline solution that is in contact with the electrode. When the CC
grows, it covers the electrode as a cell layer. The cell layer acts as an impedance whose
resistive effects are added to the effect of the electrode. By using this model, the real
electrical behavior of the cell–electrode (CE) system was reported in [27]. Figure 1b shows
the layout of the electrical model components of a real CC. The electrical model contains
the division of the Rct and Cdl in two parallel branches, which models the electrode area
(Ae) covered by cells (AC) and not covered by cells (AnC). In this sense, the electrode is
covered by cells (AC), which represents a measure of the CC time evolution, which is useful
to determine the cell number and density.
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Figure 1. (a) Model of electrode immersed in an ionic solution. (b) Basic cell–electrode model.

Because real-time cell growth is the main parameter to be measured, the electrical
model must include a parameter that acts as a cell-growth indicator. This parameter is the
fill factor (ff ), which is the percentage of the electrode area covered by cells in %1; i.e., if
Ac = Ae, the ff value is 1 (confluence phase), but if Ac = 0, the ff value is 0 (before seeding
the cells at t = 0). Thus, Rct1, Cdl1, Rct2, and Cdl2 (the electrode model parameters covered
and not covered by the cells, respectively) are defined by the following expressions:

Rct1 = Rct
1− f f Cdl1 = Cdl · (1− f f )

Rct2 = Rct
f f Cdl2 = Cdl · f f

(1)

The transfer function (TF), which models the CE impedance, is obtained by solving
the circuit in Figure 1b. Equation (2) shows the BI TF, ZCE (s), which is parameterized.
It is described by using a parametrized second-order system, where ω0z and Q are its
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natural frequency and quality factor, respectively. The constants k0, k1, and k2 are defined
in Equation (2):

ZCE(s) =
k2·s2+k1·

ω0z
Q ·s+k0·ω2

0z

s2+
ω0z

Q ·s+ω2
0z

k2 = Rs k1 = Rs +
Rgap ·Rct1

2·Rgap+Rct1+Rct2
k0 = Rs +

Rct1·(Rgap+Rct2)
Rgap+Rct1+Rct2

ω0z =

√
Rgap+Rct1+Rct2

Rgap ·(Cdl ·Rct)
2 Q = ω0z ·

Rgap ·Cdl ·Rct
2·Rgap+Rct1+Rct2

(2)

This basic model, the single-electrode well (SEW) model, considers the fact that under
the cell, the electrodes are a big, unique electrode. We propose two more models (which
are enhancements of the SEW model) of the electrode in Figure 2, which consider the real
electrode composed by 10 microelectrodes and 1 large reference electrode: the real-electrode
well (REW) and fractional-order well (FO REW) model. Enhanced electrodes with optimum
sensitivities can be researched, as shown by the authors of [28].
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Figure 2. 8W10E PET applied biophysics electrodes. Eight separated wells with ten circular biocom-
patible gold microelectrodes with 250 µm diameter and a large reference electrode with an area larger
than each circular microelectrode by approximately 400 squared micrometers.

This experiment is based on the experiments and measurements conducted by the
authors of previous papers [27]. For these experiments, the measuring circuit was an
oscillator. From the oscillation frequency and amplitude, which varies with ff, the cell
concentration in real time (RT) can be obtained by using the Barkhausen stability criterion
(BSC), which is the mathematical condition that the closed-loop feedback system must
fulfill before obtaining sustained oscillations.

The objective of the presented experiment is to evaluate the impact of the proposed
electric models on the cell cultures and electrodes in the assay and their time evolution in
such a way that allows us to predict the cell number and density from the start time of the
experiment until its confluence phase. We will then describe the electric models that we
employed and the computer algorithms that we developed to create real-time predictions
of the cell-culture status.

2. Material and Methods

The combination of model fitting, the use of an oscillation-based test (OBT) as a
sensor, and the minimization of the cost function (CF) resulted in the ff values and the cell
concentration in RT, i.e., during the real growth experiment of a CC assay, being predicted
as the main targets. First, we designed a routine (based on previous work [29]) in which a
real experiment is simulated and the ff value and the cell concentration is predicted at each
moment. This routine will be tested by using the REW and FO REW electrical models on
the data with three cell lines obtained from the experiment.

The first cell line was formed by Chinese hamster ovarian fibroblasts. This cell line
was identified as AA8 (purchased from the American type culture collection), and this
sample was immersed in McCoy’s medium supplemented with 10% (v/v) fetal calf serum,
2 mM L-glutamine, 50 µg/mL streptomycin, and 50 U/mL penicillin.
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The second and third biological samples that were tested were two mouse neuroblas-
toma cell lines. The N2a cell line stably expressed a wild-type human amyloid precursor
protein, N2a-APP. Both N2A and N2A_APP were provided by Dr. Javier Vitorica from IBiS
(Instituto de Biomedicina de Sevilla) Sevilla (Spain). The cells were cultured in a medium
consisting of 50% DMEM high glucose (Biowest, Nuaille, France) and 50% Opti-MEM
(Gibco, Alcobendas, Spain) supplemented with 10% (v/v) fetal bovine serum (FBS) (Gibco),
2 mM L-glutamine, 50 µg/mL streptomycin, and 50 U/mL penicillin (Sigma-Aldrich,
Madrid, Spain). N2a-APP was also supplemented with 0.4% geneticin (Gibco).

All the cell lines were maintained at 37 ◦C in a humidified atmosphere with 5% CO2,
and they were routinely subcultured. Different initial numbers of cells (Nini) were seeded
for our experiments: 2500, 5000, and 10,000 cells. The AA8 experiments started with a
Nini of 2500 cells in wells 1 and 3, 5000 cells in wells 4 and 5, and 10,000 cells in wells
7 and 8. Moreover, the N2a and N2aAPP experiments began with a Nini of 2500 cells in
wells 2 and 6, 5000 cells in wells 3 and 7, and 10,000 cells in wells 4 and 8. The plates
contained eight separated wells with ten circular biocompatible gold microelectrodes with
a 250 µm diameter each, which were designed for general-purpose cell culture applications.
The electrodes employed in the cell culture assays (8W10E PET), whose electric model
was employed for this experiment, were delivered by Applied Biophysics [30]. These
electrodes are fabricated for ECIS equipment and are sold by this company. They are
specifically designed for cell cultures and are employed in many assays that are referenced
in the bibliography. The electrode size is defined by removing the top isolating mask. The
selected size (250 µm diameter) is related to the common size of cells (1–100 µm diameter).
The sensing area of the electrode is concentrated at the central part of the cultureware,
and it obtains the maximum cell sensitivity (to avoid border effects). This layout has
been enhanced by the same company, which delivers an IDE configuration (8W10E+ PET)
that allows the sensing area of each well to be optimized. An optimized design can be
obtained for each cell line, but this is not the purpose of this experiment. The electric
models described here can be used for electrical simulation by considering the electrode
area as the main parameter to define the final design. The ECIS technique relies on the
attachment of the cells to the substrate, which is the electrodes for our experiment. So,
a larger electrode area means a higher system sensitivity. This electrode area must be
large enough to correctly sample the number of cells. From the datasheet of electrodes,
500–1000 cells can be sensed. This number must be the mean value considering the most
common cell-size value, and the cell density must be homogeneous at every cultureware.

2.1. Bioimpedance Modeling
2.1.1. Real-Electrode Well Model (11 Electrodes)

The REW model contains the real electrode structure, ten microelectrodes, and one
big reference electrode (Figure 2). Figure 3 shows a block diagram of the REW model
between voltage VCE and the ground. Ten microelectrodes are present, e1 to e10, as well as
the reference electrode er. Each electrode is modeled after the electrode in Figure 1. The
only difference is the value of the reference electrode parameters because this depends
on the electrode area. To reduce the complexity of the model, the relationship between
the microelectrode model parameters and the reference electrode model can be used (Rgap
is considered to have the same value for microelectrodes and reference electrodes). The
relationship between Rct and Rctr (the reference electrode Rct parameter), between Cdl and
Cdlr (the reference electrode Cdl parameter), and between Rs and Rsr (the reference electrode
Rs parameter) can be derived from [5] as

Rctr
Rct

=
R′ct
Are

Ae
R′ct
→ Rctr = Rct

Ae
Are

[Ω]

Cdlr
Cdl

=
C′dl ·Aer
C′dl ·Ae

→ Cdlr = Cdl
Are
Ae

[F]

Rsr
Rs

= ρ·
√

π

4·
√

Are

4·
√

Ae
ρ·
√

π
→ Rsr = Rs

√
Ae
Are

[Ω]

(3)
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Figure 3. Real-electrode well (REW) model of the well. It has ten microelectrodes (e1 to e10) and one
big reference electrode (er).

where Are is the reference electrode area and ρ is the electrolyte resistivity of the saline
solution. Because the Ae/Are factor is repeated, ke can be defined as ke = Ae/Are. Therefore,
the parameters of the electric model of the reference electrode are

Rctr = Rct · ke Cdlr =
Cdl
ke

Rsr = Rs ·
√

ke (4)

By using the relationship between the parameters of the microelectrodes and reference
electrodes model, Zwell (s) can be defined as the TF of the REW model. Zwell (s) is composed
of a gain, one pole, and one zero. The TF is very complex, but it can be simplified when
ff→0 (the electrode does not have any cells) and ff→1 (the electrode is full of cells or
is in the confluence phase), and one can obtain the pole, zero, and gain expressions for
both cases:

p f f→0 = −1
Cdl Rct

z f f→0 = − Rct ·(1+10·ke)+Rs ·(1+10·
√

ke)

Cdl RctRs ·(1+10·
√

ke)

p f f→1 = −1
Cdl Rct

z f f→1 = − Rct ·(1+10·ke)+Rs ·(1+10·
√

ke)+11·Rgap

Cdl Rct ·(Rs ·(1+10·
√

ke)+11·Rgap)

k f f→0
well = Rct ·

(
1

10 + ke

)
+ Rs ·

(
1

10 +
√

ke

)
k f f→0

well = Rct ·
(

1
10 + ke

)
+ Rs ·

(
1

10 +
√

ke

)
+ 11 · Rgap

10

(5)

By using the equations of poles and zeros, the Rct and Cdl values when ff→0 and ff→1
are derived (because pff→0 = pff→1, only pff→1 is used in the following expressions to reduce
complexity and simplify the model fitting):

R f f→0
ct = − Rs ·(1+10·

√
ke)·(p f f→0−z f f→0)

p f f→0·(1+10·ke)

C f f→0
dl = − 1+10·ke

Rs ·(1+10·
√

ke)·(p f f→0−z f f→0)

R f f→1
ct = − (Rs ·(1+10·

√
ke)+11·Rgap)·(p f f→0−z f f→0)

p f f→0·(1+10·ke)

C f f→1
dl = − 1+10·ke

(Rs ·(1+10·
√

ke)+11·Rgap)·(p f f→0−z f f→0)

(6)

To increase the fitting, the Rs parameter is considered to change with ff, as described
in [27]. Then, Rs is split into two terms, Rsi and ∆Rs, and Rs(k) = Rsi + f f n(k)·∆Rs. The
expression means that when ff→0, Rs takes the value of Rsi, and the ff value on each
moment k increases the Rs value.
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2.1.2. Fractional Order Model

Fractional order (FO) models are based on the premise that the order of a differential
operator can be a noninteger. The differential operator can be defined as the FO constant
phase element (CPE), which is used to characterize electrodes for bioimpedance measure-
ments of animal tissue. In combination with reference [31], the CPE can substitute the
Cdl term in the REW model to obtain the FO model. The capacitors of the CE model are
replaced by the CPE and are described with FO operators:

XCdl1 =
1

sα1 Cdl1
XCdl2 =

1
sα2 Cdl2

(7)

where α1 and α2 are the FO orders of the reactance XCdl1 and XCdl2 , respectively. Then, as
in the previous section, the TF for the cases ff→0 and ff→1 can be obtained:

Z f f→0
well (λ1) = k f f→0

well
p f f→0
z f f→0

λ1+z f f→0
λ1+p f f→0

Z f f→1
well (λ2) = k f f→1

well
p f f→1
z f f→1

λ2+z f f→1
λ2+p f f→1

where λn = sαn 0 <αn< 2

(8)

Note that when ff→0, α2 has no influence on the system behavior, and when ff→1,
α1 has influence on the system behavior. Because changes in the α1 and α2 modify the
magnitude slope and the frequency response phase, ∆Rs ([27]) becomes redundant and
can be removed from the FO model. Due to the high complexity of the model (the cross
products of α1 and α2), the model is implemented in a different way than outlined in the
previous section. The REW model is completely implemented to obtain its parameters,
whereas the FO models are implemented in a transitional mode. Thus, considering that the
pole is constant for any ff value, a transition from z f f→0 to z f f→1 and from k f f→0

well to k f f→1
well

is implemented by using ff to change Z f f→0
well (λ1) to Z f f→1

well (λ2). Then, the implemented
model is

Zwell(λ1,λ2) = kwell
p
z

λ + z
λ + p

(9)

where p = p f f→0 = p f f→1 and

z = (1− f f ) · z f f→0 + f f · z f f→1

kwell = (1− f f ) · k f f→0
well + f f · k f f→1

well
λ = (1− f f ) · λ1 + f f · λ2

(10)

2.2. Cost Function

During the RT estimation, the previously described models utilize the oscillation
frequency and amplitude values ( fCE and aCE) and return the ff and cell concentration
values. In the next section, the process of using the model to predict ff in real time is
explained, but a parameter (including ff ) needs to be obtained from the BSC in some way.
The BSC is the mathematical condition that the closed-loop feedback system must fulfill
to obtain the sustained oscillations. An oscillator must meet some conditions to obtain
self-sustained oscillation, which should include a linear part, G(s = jω) in the Laplace
domain, and a nonlinear part, N(aosc, fosc), where G is the transfer function of the linear
part of the circuit, s is the Laplace operator, j is an imaginary unit, ωosc is the oscillation
frequency on rad/s whereby its value ωosc = 2πfosc, and N is the linearized model of the
nonlinear part of the circuit (an electronic comparator for the present experiment). Note
that fosc and aosc are not the same variables as fCE and aCE, but fosc and aosc can be easily
estimated by using some internal gains of the oscillator circuit. As the objective of this
experiment is not to explain the oscillator circuit in detail, the calculation of the oscillating
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variables will not be explained in detail because its computation is trivial. Then, according
to the BSC, the condition that the circuit must meet is

f (aosc, fosc) ≡ 1 + G(s = jωosc) · N(aosc, fosc) = 0 (11)

where f (aosc, fosc) is a complex function that depends on fosc and aosc. This function can be
rewritten as

f (aosc, fosc) = h1(aosc, fosc) + j · h2(aosc, fosc) (12)

where h1 and h2 are the real and imaginary parts of f (aosc, fosc). The main goal of using BSC
is obtaining the oscillation parameters. Then, because the oscillation condition function
must be equal to 0, in phasorial form, the condition is

f (aosc, fosc) ≡ h∠ϕ = 0∠0◦

h =
√

h2
1 + h2

2 = 0

ϕ = tan−1
(

h2
h1

)
= 0◦

(13)

where h and ϕ are the module and angle of f (aosc, fosc), respectively, and must be equal to
0 and 0◦, respectively, to meet this condition. Equations of the real and imaginary part
of the BSC now exist, which must be satisfied to obtain self-sustained oscillations. Using
these equations, two parameters of the system could be obtained if all other parameters
are known, but in this case, for the ff estimation process, obtaining these parameters is not
possible. Therefore, the cost function is minimized to ensure that the BSC is satisfied so
that the values of more than two of the model parameters can be obtained for each moment
in combination with the fitting routine (which is outlined in the next section). The best way
to meet the condition is to use the complex number h(aosc, fosc) module. Then, the CF can be
defined as

h(aosc, fosc) ≡
√

h1(aosc, fosc)
2 + h2(aosc, fosc)

2 (14)

The fact that h1(aosc, fosc) and h2(aosc, fosc) are squared assures that they cannot compen-
sate each other.

2.3. Fitting Routine

The key problem with knowing ff at each time during a real experiment is that the
oscillation frequency and amplitude ( fCE and aCE) values are not available when the well
is totally covered by cells ( f f → 1). That is, you can estimate the parameters of the models
at the beginning of the experiment when any cells are in the well ( f f → 0), but certain
parameters have no influence on the behavior of the system at this point. These parameters
are Rgap, z f f→1, ∆Rs (for the REW model), and α2 (for the FO REW model). The designed
routine is as follows:

1. Estimate initial fCE and aCE values: Figure 4 shows the block diagram of step 1,
where the initial routine is presented in graphic form. During the first hours or days of
the experiment, the mean of the last 5 fCE and aCE values is calculated ( fCE and aCE).
As the sampling time (time between measurements) is 1 h, the average of the last 4 h
is taken together with the values that were just obtained. After each measurement,
after calculating the mean, a check is performed to verify whether the values obtained
are greater than the mean of the new measurement plus a margin (km = 1.005). If this
condition is met, as shown in (15), the lowest fCE and aCE are stored as the minimum
values. Figure 4 also defines the initial Rgap value and the value of the constant km.
Note that the index j is the time index and goes from 1 to jmax. When calculating fCE
and aCE, j is incremented from 1 until (15) is satisfied. jmax is the maximum j value, and
its value is defined by the number of measurements taken during the real experiment.
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(
fCE(j) > fCE(j− 1) · km

)
&
(

aCE(j) > aCE(j− 1) · km

)
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Figure 4. Step 1: block diagram of step 1 of RT simulation, whose target is to find the mean around
the fCE and aCE minimums.

2. Computation of the initial parameters of the electrical models: Using the minimum
fCE and aCE estimated in the previous step, the initial parameters of the electrical
models are fitted. The prediction is performed by using the CF minimization method.
For the REW model, the parameters p(ff→1) (whereby p(ff→0) ≈ p(ff→1)), Rsi, and z(ff→0)

are calculated, and the Rct
(ff→0) and Cdl

(ff→0) values can be derived from the parame-
ters by using the two top equations of (6). For the FO REW model, the parameters
p(ff→1) (whereby p(ff→0) ≈ p(ff→1)), Rs, z(ff→0), and α1 are calculated, and the Rct

(ff→0)

and Cdl
(ff→0) values can be derived from the parameters by also using (6). The initial

parameters that are calculated are the same for all t(j), and therefore, the values are
not re-estimated during the simulation. The whole process of estimating the initial
parameters is illustrated in the Figure 5 block diagram, which starts from the results
of step 1 and ends at the beginning of the third and last step.

3. Real-time ff estimation: The last step and the goal of the routine is to predict the
parameter ff in RT. Once the initial parameters of the models are obtained (after the
previous step), ff is computed for all the previous measurements and the measure-
ments that will be performed until the end of the experiment. Figure 6 describes the
whole prediction process.
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Figure 5. Step 2: block diagram of step 2 of RT simulation, whose target is to find the initial
parameters ( f f → 0) by using the fCE and aCE values.
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Figure 6. Step 3: block diagram of step 3 of RT simulation. It describes the simulation process from
j = 1 to j = jmax after obtaining the initial parameters.
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First, the time index j is initialized to start the ff estimation from j = 1 to j = jmax. With
the minimization, the model attempts to obtain the values of the parameters for each j
measure: ff, Rgap, z(ff→1), and ∆Rs (for the REW model) and ff, Rgap, z(ff→1), and α2 (for the
FO REW model) by using fCE(j) and aCE(j). For this purpose, a loop is used to increment
the index j from 1 to jmax. Inside the loop, for each j value, the CF minimization function is
used to obtain the candidate parameter values that will be used to obtain a lower fval value
(minimum h(aosc, fosc) value). These candidate values are indexed by the indices m (from
1 to mmax) and n (from 1 to nmax); the m and n index are internal to the CF minimization
function, so the parameters computed inside the function (ff, Rgap, etc.) indexed with m
and n are not the same as the parameters outside the function. When the parameters with
the best fval are obtained, the parameters with the lowest fval are chosen and assigned as
the values taken by the parameters for time j. Inside the CF minimization function, the
first step is to define the bounds of these parameters, which are shown in (Section 2.2). The
ff bounds change with each j estimation, but the bounds of the other parameters remain
constant for all j estimations depending on the outcomes of the procedures outlined in the
previous sections of this article.

f f bounds(j) =
[

f (j− 1)− 0.2 f f (j− 1) + 0.2
]

Rbounds
gap =

[
0.1 ∞

]
zbounds

f f→1 =
[
103 105]

∆Rbounds
s =

[
−R f f→0

s 4 · R f f→0
s

]
αbounds

2 =
[
0.9 α1

] (16)

The CF minimization is performed by using the values shown in (Section 2.3) as the
initial values. As can be seen, Rini

gap and zini
f f→1 have four and two initial values, respectively.

The index m moves along the vector Rini
gap (from 1 to mmax = 4), and the index n moves along

zini
f f→1 (from 1 to nmax = 2). This is because for each j estimation, several CF minimizations

are performed to obtain as many combinations of the initial values as possible, i.e., eight
minimizations. The main purpose of this approach is to find the minimization that results
in the lowest fval in a robust and computationally time efficient way. As a result, a matrix
of values is obtained at each time j for each of the estimated parameters. This process
is performed for each j value, after which, when finishing the function and as already
explained, the values of the parameters for which fval is minimum are chosen (note that an
fval exists for each value of the m × n matrix, and an m × n matrix exists for each j value).

f f ini(j) = f f (j− 1)
Rini

gap =
[
10 100 103 104]

zini
f f→1 =

[
103 104]

∆Rini
s = 0αini

2 = 1

(17)

The steps described above were applied for each j value of each well of each cell line,
whereby we performed simulations that did not consider the future fCE and aCE values
by using the REW and FO REW models. The following section shows the results of the
simulation of the real CC assay experiments, which predicted the cell concentration in RT.

3. Results

The RT simulation method was designed to be implemented in a prototype model so
that the ff and cell concentration values could be reported after each measurement. As the
required sampling time was 1 h, the time taken to perform all the necessary mathematical
operations was not a critical concern. Thus, the time taken to compute the initial parameters,
ff, and other parameters for each measurement was not a critical problem.

The metric used to determine the accuracy of the method was the error in the cell con-
centration calculation. By using traditional optical counting methods, the cell concentration
could be obtained (defined as Ctrad), whereby we obtained one concentration value per day
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(a time step of 24 h). Ctrad was compared with the cell concentration obtained in RT (Csim).
Csim was obtained by using the following expression:

Csim(j) =

(
f fsim(j) Awell

Ac

)
Awell

(18)

where ffsim is the vector of the ff values obtained from the RT simulation, Csim is the
cell concentration calculated by using ffsim, Ac is the cell area, and Awell is the well area.
Comparing Ctrad with the ideal concentration (Ci) is also desirable, which would have
been performed if any errors occurred during the ff real-time estimation. The error in the
ff estimation was measured with respect to the deviation from its ideal final value. For
the maximum ff obtained during the simulation, the error is the difference between the
maximum value obtained and the maximum value that the ff should reach, i.e., a value
of 0.99. Thus, calculating the real ff curve that should have been obtained for each well is
possible by using the following equation:

f fi(j) = k f f · f fsim(j)
k f f =

0.99
max( f fsim)

(19)

where ffi is the vector of the theoretically real ff values and kff is the factor applied to ffsim to
obtain ffi. Then, Ci is derived as follows:

Ci(j) =

(
f fi(j) Awell

Ac

)
Awell

(20)

The metrics used to measure accuracy are the mean relative error on the cell concen-
tration (erm), in percent (%), defined as follows:

erm.sim = ∑
jtrad

|Csim(jtrad)−Ctrad(jtrad)|
Ctrad(jtrad)

erm.i = ∑
jtrad

|Ci(jtrad)−Ctrad(jtrad)|
Ctrad(jtrad)

(21)

where jtrad is the index of the cell concentration obtained by using a traditional optical
method.

Figure 7 shows the estimated cell concentration of the RT simulation for Nini with
2500, 5000, and 10,000 cells by using the experimental data obtained from the AA8 cell
line. The blue and red lines represent the cell concentrations obtained by using the ffsim
and ffi of the FO REW model, respectively. The yellow and purple lines illustrate the cell
concentrations obtained by using the ffsim and ffi of the REW model, respectively. The last
line, in green, represents the cell concentration obtained by using the traditional optical
counting method. As can be seen, the FO REW model performed a little worse than the
REW model on the final point (t = 120 h). In addition, the graph also shows that the higher
the initial concentration, the more accurate the cell concentration estimation method.

The main results (and conclusions) are obtained from the mean relative error data.
Thus, the RT simulation results of the three cell lines used during the present experiment
(AA8, N2a, and N2aAPP) must be compared. The data were analyzed and compared and
were divided into sections of the experiment. Two main sections (time windows) of interest
existed: the initial section, where the cells adapted to the culture medium and adhered to
the bottom of the well (ff→0), and the section from the beginning of the growth phase (the
exponential phase) to the saturation phase of the well (ff→1).
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Figure 7. AA8 cell line cell concentration comparison between RT simulation using FO REW model
(obtained from ffsim in blue and ffi in red), REW model (obtained from ffsim in yellow and ffi in purple),
and traditional counting method (green).

Table 1 shows the erm of the cell concentration for the three cell lines obtained through-
out the whole experiment.

Table 2 shows the erm of the cell concentration for the three cell lines. The error
shown is the erm of the cell concentration curves during the first hours and/or days of the
experiment, i.e., from the time that the CC assay was seeded until the moment when it
started to considerably grow (the beginning of the exponential phase). During the first
simulation period, erm was larger than the total erm (Table 1). Specifically, the REW model
returned much larger errors than the FO REW because it did not obtain strong results for
the low ff.
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Table 1. Cell concentration mean relative error in %.

Nini 2500 5000 10,000

Line AA8 N2a Na2APP AA8 N2a Na2APP AA8 N2a Na2APP

eREW
rm.sim[%] 59.37 372.52 396.43 37.56 154.33 219.13 46.40 83.80 25.51
eREW

rm.i [%] 68.47 430.92 443.78 46.70 173.84 271.15 49.79 91.49 22.31

eFO REW
rm.sim [%] 33.34 205.13 238.65 36.79 100.82 102.22 40.70 56.00 45.56

eFO REW
rm.i [%] 41.04 275.54 276.67 31.61 129.35 135.65 31.19 55.11 30.58

The opposite occurred for the erm during the second part of the simulation, which
is detailed in Table 3. The erm in the second half of the simulation was much lower than
in the first half. The most notable difference was found for the simulations that used the
REW model, because a large difference in error existed between the first and second frame,
with the second one providing much stronger results (at the accuracy level of the FO REW
model). Another point to note is that, in general, more accurate results are obtained at a higher
Nini. Finally, the first simulation section is not as important in terms of predicting the ff and cell
concentration. Therefore, these data are quite acceptable and provide a useful starting point to
enhance the models and the simulation and parameter computation method.

Table 2. Cell concentration mean relative error in % before to start the CC assay growth (t < 40 h).

Nini 2500 5000 10,000

Line AA8 N2a Na2APP AA8 N2a Na2APP AA8 N2a Na2APP

eREW
rm.sim[%] 120.6 1082.9 946.0 88.8 390.4 515.9 111.1 200.2 31.4

eREW
rm.i [%] 128.9 1252.4 1056.6 101.1 472.5 616.7 118.6 230.6 25.6

eFO REW
rm.sim [%] 52.5 518.6 535.4 38.5 176.4 229.2 69.7 78.9 62.2

eFO REW
rm.i [%] 68.3 771.4 629.5 55.2 327.9 295.9 64.1 117.4 52.5

A separate analysis of the two experiment zones provided interesting results. The
cell concentration of a CC assay can be estimated in RT by using the CC assay during an
OBT. The errors are still large, but with some enhancements to the algorithm, and of the
OBT measurement prototypes, the error should be greatly reduced. Additionally, the erm
obtained in terms of cell concentration depends on the cell line because the lines with a
lower Ac (N2a and N2aAPP) reach much larger error values than the cell line with a higher
Ac (AA8).

Table 3. Cell concentration mean relative error in % after starting the CC assay growth (t > 40 h).

Line AA8 N2a Na2APP AA8 N2a Na2APP AA8 N2a Na2APP

eREW
rm.sim[%] 28.7 17.3 30.0 11.9 36.3 21.3 14.0 25.6 21.6

eREW
rm.i [%] 38.3 20.2 35.2 19.5 24.5 40.8 15.4 21.9 20.1

eFO REW
rm.sim [%] 23.8 48.4 40.8 35.9 63.0 17.6 26.2 44.5 34.5

eFO REW
rm.i [%] 27.4 27.6 41.4 19.8 30.1 28.8 14.8 23.9 15.9

4. Conclusions

A method used to minimize CFs was used to obtain the optimal values of the model
parameters that meet the BSC for each fCE and aCE value. Due to the complexity of the used
models (REW and FO REW), achieving sufficiently well-fitting results is not easy because
a considerable number of parameters need to be calculated at each moment, and small
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variations in one of the parameters can cause the value of the ff parameter to differ from its
real value. In addition, the fCE and aCE data for some cell lines were worse than the data
for others due to small amplitudes in the voltage signals, as the prototype measurement
was still in the experimental phase. Even with these difficulties, we successfully estimated
the RT cell concentration present in a CC assay, although with a certain margin of error.
One must be mindful of the variability in the cell concentration from well to well and the
mismatching between electrodes. Every time the cells are seeded, the real number of cells
that are being seeded can change according to the manual method followed. Thus, possible
variabilities in the traditional cell culture may exist from well to well and from well to Petri
plate. The factor to be considered is the mismatching of the electrode geometry during
fabrication, which can generate deviations from the expected sensing area (π × radius2)
and consequently change the actual electrode impedance. The deviations from the expected
values were not small, and they were within the error bars in most cases. Considering the
results of studies performed up to now, our results are promising and strong; our method
is useful and should be enhanced by future studies.

We showed that cell concentrations can be obtained in real time during cell growth
experiments by employing the methodology that we describe. The errors found, although
considerable, can be reduced by enhancing the measurement circuit and the algorithm
used to calculate the cell concentration.
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