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The essential properties of a biosensor are its sensitivity and selectivity to detect,
monitor and quantify the biomarker(s) for the interests of medicine. Bio-recognition
mechanism is the core element of a biosensor. New designs and methods for advancing the
sensitivity and selectivity of a bio-recognition mechanism of a biosensor are scientifically
and practically relevant and significant.

A conventional bio-recognition element, such as an antibody, realizes its sensing func-
tion through molecular interactions. The downstream transduction of this sensing signal
relies on externally designed strategies, such as surface impedance or light scattering [1].
In contrast, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a
programmable gene editing tool that provides the capability to realize targeted cleavage
of nucleic acids [2], thereby the nature of CRISPR Cas systems is collective machinery for
sensing and actuating [3]. This advantage of CRISPR Cas systems allows engineers to
design simple interfaces and molecular circuits to utilize the programmability of CRISPR
to detect a wide range of targets of interest, from proteins to nucleic acids [4–9].

This Special Issue, “Application of CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) Cas Systems for Biosensing”, intends to bring awareness to and
demonstrate the uniqueness of the CRISPR-Cas systems for advancing biosensing. It is
hoped that the advancement of CRISPR-Cas based bio-recognition mechanism will lead to
a biosensor system with excellent and improved sensitivity and selectivity. Specifically, the
methods and the techniques of integrating CRISPR-Cas into various biosensing systems,
the design strategies of a CRISPR-Cas system in a biosensor, and the integration between
conventional nucleic acid probe-based recognition elements and CRISPR-based recognition
elements require additional research and development endeavors. Thus, expanding sci-
entific research and development efforts by biosensor researchers for CRISPR-Cas-based
biosensing systems are timely and important to translational biomedical science. Different
CRISPR-Cas biosensing systems are described in the manuscripts of this Special Issue,
demonstrating the applicability of a CRISPR-Cas system in biosensing. Furthermore, var-
ious methods and techniques in cooperating the CRISPR-Cas system into a completed
biosensor system are discussed and presented. The research discussed in this Special
Issue exhibits the utilization of a CRISPR-Cas biosensing system for detecting different
biomarkers and/or measuring a special need.

Specifically, in this issue, Arold S. et al. described a systematic guideline on select-
ing the right CRISPR systems for in vitro application [10], which provides a tutorial for
researchers to design and engineer CRISPR for diverse in vitro applications. To understand
the performance of CRISPR-Cas 9 on genome engineering [11], Ozsoz M. et al. developed a
carbon nanotube-based electrochemical genosensor capable of detecting mutations intro-
duced by Cas9. Liang, D. et al. designed a Cas12a-based lateral flow assay to detect spinal
muscular atrophy [12]. Liang, D. et al. further demonstrated using Cas14a to detect the
same disease [13]. Liang, Q. et al. interfaced optogenetic control and CRISPR to engineer
a novel approach to modulate metabolic burden [14]. These works showcase the diverse
capabilities of CRISPR-Cas-based systems for engineering and medicine.
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