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Abstract: MicroRNAs (miRNAs) are a class of small noncoding RNAs that are approximately 22 nt
in length and regulate gene expression post-transcriptionally. miRNAs play a vital role in both
physiological and pathological processes and are regarded as promising biomarkers for cancer,
cardiovascular diseases, neurodegenerative diseases, and so on. Accurate detection of miRNA
expression level in clinical samples is important for miRNA-guided diagnostics. However, the
common miRNA detection approaches like RNA sequencing, qRT-PCR, and miRNA microarray are
performed in a professional laboratory with complex intermediate steps and are time-consuming
and costly, challenging the miRNA-guided diagnostics. Hence, sensitive, highly specific, rapid,
and easy-to-use detection of miRNAs is crucial for clinical diagnosis based on miRNAs. With the
advantages of being specific, sensitive, efficient, cost-saving, and easy to operate, point-of-care testing
(POCT) has been widely used in the detection of miRNAs. For the first time, we mainly focus on
summarizing the research progress in POCT of miRNAs based on portable instruments and visual
readout methods. As widely available pocket-size portable instruments and visual detection play
important roles in POCT, we provide an all-sided discussion of the principles of these methods
and their main limitations and challenges, in order to provide a guide for the development of more
accurate, specific, and sensitive POCT methods for miRNA detection.

Keywords: microRNA (miRNA); point-of-care testing (POCT); visual detection; portable instruments

1. Introduction

MicroRNAs (miRNAs) are a type of small noncoding RNA with a length of ~21–25 nt
that act as regulators of gene expression at the post-transcriptional level [1]. The miRNA
genes are transcribed into hairpin-containing pre-miRNA by RNA polymerase III, and
the long dsRNA precursors are processed by Drosha and Dicer consecutively [2,3]. The
generated small dsRNAs are loaded onto an argonaute family protein (AGO) to form an
RNA-induced silencing complex (RISC). After loading, the passenger strand of the miRNA
duplex exits to produce a single-stranded mature miRNA, and the mature RISC induces
translational repression, mRNA deadenylation, and mRNA decay [4,5]. miRNAs play vital
roles in development. miRNAs regulate cellular activities, including cell growth, differen-
tiation, and apoptosis, and aberrant expression of miRNAs promotes the occurrence and
development of diseases. In recent decades, miRNAs have been implicated in various hu-
man diseases. Hence, many studies have attempted to apply miRNAs to disease diagnosis,
and miRNAs show great promise as diagnostic biomarkers, as miRNAs can not only circu-
late in the human blood in remarkably stable forms, such as exosomes, but they are also
widely present in other bio-microenvironments, such as urine, saliva, and cerebrospinal
fluid [6,7]. Accurate detection of dysregulated circulating miRNAs in biofluids is important
for miRNA-guided diagnostics in a noninvasive fashion. There have been many conven-
tional methods for the quantitative detection of miRNAs, such as northern blot, microarray,
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RNA-seq and RT-qPCR [8]. Although these traditional methods are relatively highly sensi-
tive and specific, these approaches also have various limitations. For example, northern
blotting and real-time PCR are sensitive and specific, but they are also labor-intensive and
require specialized equipment. Microarray and RNA-seq are high-throughput methods
that allow the simultaneous detection of multiple miRNAs, but they are also expensive and
require complex data analysis, and these approaches for miRNA detection are performed
in a professional laboratory, which is challenging for the application of miRNA detection in
clinical practice. Therefore, it has driven the development of reliable point-of-care testing
(POCT) of miRNAs. Point-of-care testing (POCT) is defined as testing performed near or
in the field of a patient, for whom faster results may lead to changes in patient care [9].
Recently, POCT has been applied to the quantitative detection of miRNAs and has made
rapid progress. To be more detailed, POCT can provide accurate and ultrasensitive tumor
screening results for patients with the advantages of a no-fuss operation, low cost, and
rapidity [10–13]. At the same time, POCT is also suitable for resource-limited areas, or
even for self-testing. Previous reviews provided valuable information on the evolution of
POCT-detection methods for miRNAs and the applied amplification strategies in POCT for
miRNAs [14,15]. The development in detection of multiple miRNAs and the new progress
in biosensors, microfluidics, and lateral flow assays (LFAs) for miRNA detection have also
been well reviewed [16–18]. However, the fast-evolving “miRNA detecting field” needs to
be updated, and as far as we know, there is no specific introduction to miRNA detection
based on portable instruments and visual detection, while portable instruments and visual
detection play important roles in POCT and are very promising methods for POCT for
miRNAs with the advantages of portability, convenient readout method, and low price.
Therefore, in this review, we summarize recent advances and explore the principles of these
methods and give our perspective on future development trends.

2. POCT of miRNAs

Point-of-care testing (POCT) is defined as testing conducted near or at the site of the
patient, and rapid testing may improve patient care [9]. POCT can provide accurate and
ultrasensitive disease screening results for patients with the advantages of easy operation,
low cost, rapidity, and a visual readout [10–13]. The development and validation of POCT
for early screening of a series of clinical diseases holds great significance. Moreover,
POCT provides the possibility of medical guidance and disease screening in remote areas.
Recently, POCT has been applied to the rapid and quantitative detection of miRNAs and
has made rapid progress. Microfluidics, paper-based biosensors, portable instruments,
and visual detection play important roles in POCT and are very promising methods for
POCT of miRNAs. To date, dozens of specialized strategies of miRNA detection based on
microfluidics and paper-based biosensors have been reported. Microfluidics and paper-
based biosensors for miRNA detection have been well reviewed [17,18]. For details of
the research progress of these methods, we refer the reader to the review article recently
published. Herein, we mainly focus on summarizing the current progress of POCT for
miRNA detection based on portable instruments and visual detection. Based on the
comprehensive analysis of such methods, we will explore the possibility and feasibility of
developing POCT assays for miRNAs in clinical diagnosis.

2.1. POCT of miRNAs Based on Portable Instruments

To avoid the need for bulky instruments and auxiliary devices to obtain a high-
sensitivity quantitative signal output, we urgently need a sensing strategy that is control-
lable, low in cost, and independent of sophisticated equipment but that can offer automated
readouts for disease-related miRNAs. In this section, we introduce the current situation
of the application of off-the-shelf instruments in miRNA detection, analyze and evaluate
the possibility and feasibility of their application, and predict their future development
trend. A summary of reported POCT methods for miRNAs based on portable instruments
is presented below (Table 1).
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2.1.1. miRNA Detection Based on a Personal Glucose Meter

Personal glucose meters (PGMs) are currently among the most widely used POCT
devices on the market by virtue of their high portability, low cost, reliable quantitative
results, and easy operation [19]. However, in 2011, a PGM was first used to detect non-
glucose targets by Lu’s group [20]. This groundbreaking study opens the door to the use of
PGMs to measure biomolecules other than glucose.

miRNA was first measured by a glucose meter in 2018 by Wu and his colleagues [21],
who designed DNA–Cu3(PO4)2 hybrid nanoflowers (HNFs) that capture the free DNA–
invertase conjugates at the start of the cotton thread in the presence of miRNAs and reduce
the hydrolysis of sucrose immobilized in the absorption pad into glucose, resulting in a re-
duction in glucose in proportion to the amount of target miRNAs (Figure 1A). Subsequently,
other reports on the detection of miRNAs by PGMs emerged [22–27]. They are mainly based
on two different principles. One is based on the release or trapping of invertase, amylase, or
sucrase, which operates in the presence of miRNAs, resulting in a glucose concentration
proportional to the level of the target miRNA. Another strategy is based on miRNAs pro-
ducing the reporter AMP to trigger the consumption of glucose through enzymatic cascade
reactions. In detail, the release of invertase, amylase, or sucrase is triggered by miRNAs
through a DNAzyme (Figure 1B), multicomponent nucleic acid enzyme (MNAzyme), DSN,
or DSN-assisted CRISPR-Cas12a strategy (Figure 1C) [23,25,26,28]. Pan Fu et al. developed
an invertase capture strategy based on dual amplification combining the CHA and HCR
reactions, and they achieved measurements as low as 0.36 fM miR-155 [27]. On the other
hand, AMP is produced by exonuclease T, which is triggered by miRNAs (Figure 1D) [22].
The exonuclease T-signal transduction strategy [22] and HNFs [21] have relatively low
sensitivity because of a lack of signal amplification (Table 1).
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Figure 1. Principles of representative POCT of miRNAs based on PGM. (A) Schematic illustra-
tion of detection of miRNAs based on HNFs and PGM. Reproduced with permission from refer-
ence [21]. Copyright (2018), American Chemical Society. (B) Schematic of the releasing of invertase
by DNAzyme, and detection of miRNA-21 based on PGM. Reproduced with permission from Refer-
ence [25]. Copyright (2020), with permission from Elsevier. (C) Schematic of the releasing of sucrase
based on DSN-assisted CRISPR-Cas12a, and detection of miRNAs based on PGM. Reproduced with
permission from Reference [26]. Copyright (2021), American Chemical Society. (D) Schematic of
miRNAs produce reporter AMP to trigger the consumption of glucose. Reproduced with permission
from Reference [22]. Copyright (2021), with permission from Elsevier.
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Compared with the strategy based on the reporter AMP to trigger the consumption
of glucose through enzymatic cascade reactions, the strategy that miRNA operates for
the release or trapping of invertase, amylase, or sucrase is more widely used, although
the used DNA–enzyme conjugates are costly, and the preparation process is cumbersome.
The former holds low sensitivity (Table 1), as it is hard to couple with the nucleic acid
amplification strategy. Furthermore, the ATP/AMP in the biofluids will interfere with
miRNA levels using this strategy.

The reports indicated that PGMs provide an alternative miRNA detection technology
that is affordable, accessible, and easily read using hand-held instruments instead of
professional laboratory equipment. However, there is still a long way to go for POCT for
miRNAs based on PGMs, such as reducing the operation complexity of DNA-functional
MBs or Au-nanoparticles and achieving accurate quantification, before this approach can
be applied in clinical diagnosis. The simple and highly efficient “click” chemistry holds
great potential for reducing the complexity of DNA-functional MBs or Au-nanoparticle
preparation [29]. In addition, the exploration of noncovalent interactions between the
DNA/RNA and MBs or Au-nanoparticles could also enable new possibilities in providing
potential solutions to address these challenges [30].

2.1.2. Detection of miRNAs Based on a Thermometer

The thermometer is a widely available, pocket-size quantitative device for temper-
ature measurements. The thermometer has also been demonstrated as a new biosensor
system that holds great promise for molecular detection, in which a portable thermometer
can measure temperature change representing the presence and concentration of a tar-
get molecule. This approach holds the potential to play a major role in environmental
monitoring, food safety, and medical diagnostics [31,32]. At present, some reliable studies
have applied thermometers to detecting biomolecules, such as proteins [33,34]. Moreover,
research has proven that thermometers have great potential in the detection of miRNAs.
Liu et al. designed a novel method for miRNA measurement based on a target-responsive
horseradish peroxidase (HRP)-encapsulated DNA hydrogel biosensor. The dissociation of
the hydrogel is directly controlled by the miRNA, and the released HRP catalyzes the forma-
tion of oxTMB from the TMB-H2O2 system, which exhibits photothermal properties under
specific laser irradiation. Thus, the thermometer can realize the visualization and portable
quantitative measurement of miRNAs (Figure 2A) [35]. A visualized thermoresponsive
sensor based on Fe3O4 nanoparticles (Fe3O4 NPs) was developed by the Zhang group and
measured miR-141 at the pM level by a thermoresponsive signal [36]. POCT for miRNAs
based on thermometers is still at the very early stage. The reported thermometer-based
miRNA assays provide convenient readouts. However, there are many challenges that
need to be overcome, such as the low sensitivity of the reported thermometer-dependent
POCT assays for miRNAs and the complexity of the synthesis of specific nanomaterials,
which impede the wide usage of these assays in practice.

2.1.3. Detection of miRNAs Based on a Pressure Meter

A pressure meter, as a portable instrument, is used to monitor the pressure of gases
produced by chemical reactions. It is a highly promising candidate for POCT for miRNAs
due to its advantages of portability, affordability, and high sensitivity. The biological signal
of the target miRNA is converted into a pressure signal generated by the decomposition
of the substrate H2O2 into H2O and O2, which means that the content of the target can
be determined using a convenient pressure meter [37]. Shi et al. developed a POCT
method for miRNA detection via a portable pressure meter with a hairpin DNA probe
and magnetic separation technology and achieved the first ultrasensitive detection of
miRNA-21 (Figure 2B) [38]. Furthermore, for the purpose of the simultaneous detection
of multiple miRNAs to improve early cancer diagnosis, Shi et al. combined a portable
manometer with a multichannel paper chip. Interestingly, this method uses four DNA
tetrahedral probes (DTPs) as capture probes, which improves the signal-to-noise ratio
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by more than three times compared with that of single-stranded DNA capture probes.
Moreover, the ring-oven washing used in this method is cheaper, simpler, and faster than
magnetic separation [39]. They achieved the ultrasensitive detection of multiple miRNA
targets; however, the complex process of preparing or synthesizing DNA probe-conjugated
magnetic beads (MBs) and platinum nanoparticles (PtNPs) presents challenges to their
routine clinical usage.

2.1.4. Detection of miRNAs Based on Portable Fluorometers

Fluorescence is the most widely used strategy for the analysis of miRNA biomarkers.
In recent years, portable fluorometers have attracted much research interest due to their
potential to replace expensive laboratory equipment [40]. Lim and his colleagues reported
a portable fluorometer for diagnosing early-stage AD by virtue of miRNAs in the blood as
biomarkers (Figure 2C) [41]. They developed a hydrogel-based sensor containing catalytic
hairpin assembly (CHA) reaction-based probes. The CHA hairpin probes for miRNA
detection were encapsulated in lipid nanoparticles carried by a hydrogel that can be shaped
for use in porous plates or 1.5 mL EP tubes and incubated with the test sample to emit a
fluorescence signal that can be detected with a portable fluorometer. This fluorometer test
was evaluated using the plasma of AD patients and non-AD controls to validate its clinical
applicability. Moreover, the main advantage of this advanced method is that it does not
require enzymes or temperature changes, which makes it a time-saving POCT diagnostic
system with high specificity, accuracy, and sensitivity.

2.1.5. Detection of miRNAs Based on a Capillary Force Meter

A capillary meter is a new type of POCT device based on the principle of capillary
action and was first developed by Li [42]. The function of the capillary meter is similar to
that of the thermometer, allowing the concentration of the analyte to be read with the naked
eye by the height of the liquid column in the vertical capillary tube. Research has already
demonstrated the application of capillary meters to detect miRNAs. In 2021, Xueji Zhang
and colleagues proposed a visual quantitative meter relying on capillary force alteration in a
capillary tube, which converted the wettability variation induced by the target miRNA into
a capillary rise height signal [43]. They designed a cyclic amplification experiment in which
hydrophobic DNA (single-stranded DNA functionalized with hydrophobic fluorophores)
on the inner wall of the capillary was cut to control its wettability, and then the capillary
rise height was tested with pure water. The device is used in two steps. First, the capillary
is filled with a solution system containing target and accessory DNA molecules to react
with the hydrophobic DNA. The target miRNA acts as a trigger, cleaving the hydrophobic
DNA on the capillary inner wall and altering its permeability. The solution in the capillary
is subsequently washed out, and the capillary is blown dry with nitrogen gas. Second, the
capillary is placed vertically in contact with pure water, and the resulting capillary rise
height is recorded. The device successfully achieved the measurement of miR-21 in the
range of 10−13 M to 10−8 M in serum with good specificity. Additionally, the device no
longer relies excessively on good sealing and the user’s color recognition ability, and the
glass capillary used in the device costs less than $0.01, which is much less expensive than
other precision chips.

The Li group developed a DNA hydrogel POCT sensor for miRNAs based on capil-
lary force (Figure 2D). The self-driven DNA hydrogel is fixed in film at a capillary tube
end. When the sensor is immersed in the solution containing miRNA targets, the probes
hybridize with the miRNA targets in the DNA hydrogel sensor, and the permeability of the
DNA hydrogel film is increased. Then, the solution flows into the capillary tube, which is
pushed by the self-driving action. Thus, the flow-through distance in the capillary tube
can quantify the miRNA targets. This POCT assay for miRNAs based on a capillary force
meter was reported a few years ago, but its development was hindered by the complexity
of capillary tube preparation [44].
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Figure 2. Principles of detecting miRNAs using representative portable instruments. (A) Schematic of
detection of miRNAs based on (HRP)-encapsulated DNA hydrogel using thermometer. Reproduced
with permission from Reference [35]. Copyright (2021) Liu, Zhang, Chen, Cui, Yang, Lu, Qi and
Wang. (B) Schematic of detection of miRNAs based on pressure meter. Reproduced with permission
from Reference [38]. Copyright (2018), American Chemical Society. (C) Schematic of detection of
miRNAs based on portable fluorometer. (a) The illustration of lipoplex-composite hydrogel platform.
(b) Ultraviolet light (365 nm) polymerized CHA probes encapsulated PEGDA based hydrogel matrix.
(c) Collecting and washing lipoplex-composite hydrogel. (d) The measurement performed in fluores-
cence plate reader or portable device. Reproduced with permission from Reference [41]. Copyright
(2022), with permission from Elsevier. (D) Schematic of detection of miRNAs based on a capillary
force meter. Reproduced with permission from Reference [44]. Copyright (2020), with permission
from Elsevier.

2.1.6. Detection of miRNAs Based on Smartphones

Taking advantage of price, wide availability, and pocket size, smartphone-based POCT
is emerging as a potential alternative to traditional laboratory-based diagnostic tests [45].
The use of a smartphone’s built-in camera or connected external sensors to obtain informa-
tion and of various applications to achieve the automatic and rapid analysis of information
avoids the traditional use of expensive analysis equipment and the need for profession-
als [46–48]. Therefore, compared with other POCT methods, using smartphones for data
or image integration processing can make the whole analysis process more convenient,
accurate, visualizable, and adaptive [49]. Smartphones can also share data with internet
connections, which is particularly beneficial in resource-limited areas where access to
laboratory facilities may be limited or unreliable. Smartphone-based POCTs for miRNAs
mostly collect chemiluminescence (CL)/bioluminescence (BL) or fluorescence signals.

G-quadruplex/Hemin HRP-mimic enzymes are widely used for chemiluminescence
signal production. Sun et al. constructed a novel G-quadruplex/hemin spherical nucleic
acid enzyme (SNAzyme)-sensing platform based on chemiluminescence (CL), and the
target miR-133 triggered catalytic harpin assembly (CHA) amplification. The CHA products
captured spherical nucleic acid enzymes on a 96-well plate, and the chemiluminescence
signal was recorded and analyzed by a smartphone (Figure 3A) [50]. Lin Shi and coworkers
also reported that the SNAzyme platform detected acute myocardial infarction (AMI)-
related miRNAs based on CL using a smartphone [51], G-quadruplex/Hemin HRP-mimic
SNAzymes were produced on Au-NPs via target miRNA-triggered DNAzyme cleavage.
Although the SNAzyme platform provides high sensitivity, the preparation process is quite
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time-consuming (Table 2). Lan Mi and coworkers employed the G4/MOFzyme system to
detect AMI-related miRNAs, and G4/MOFzyme was assembled when the miRNA-driven
RCA products interacted with Zn-hemin MOFs. They achieved CL detection of as little as 1
fM miRNA in human serum by smartphone (Figure 3D) [52].

The CL signal from the Cu2+-luminol-H2O2 system was also used in POCT for miRNAs
by smartphone. The Zhang group detected as little as 0.1 fM miR-21. In this strategy, the
target miRNA-induced RCA amplification, and the RCA products triggered the trans-
cleavage activity of CRISPR-Cas12a to cut linker DNA, which hindered cation exchange
between CuS NPs and AgNO3, and the chemiluminescence signal was reduced according
to the suppression of the Cu2+-luminol-H2O2 system (Figure 3C) [53].

Detecting the BL signal produced from luciferase is also popular in miRNA detection
based on smartphones. For example, a luciferase-based logic gate was introduced to sense
multiple miRNAs [54]. In principle, the NLuc inhibitor was partially complementary to
PNA in the H-Luc-PNA sensor, and in the presence of the target miRNA, the sensor was
turned on by a strand-displacement reaction between the target miRNA and PNA in the
sensor. The sensor successfully detected three target miRNAs simultaneously. The BL
signal can also be turned on with target miRNA-triggered RCA products to reassemble the
split luciferase-DNA chimeras. The Wu group demonstrated that this strategy enabled the
detection of different miRNAs with attomolar sensitivity and discriminated single-base
mutations. It has been successfully used to detect miR-21 and miR-148b in lung cancer
patient serum samples using smartphones (Figure 3B) [55]. However, the custom synthesis
of the H-Luc-PNA sensor and luciferase-DNA chimeras may hinder its widespread use
since the commercial availability and low price of material ensures that the POCT strategy
could be widely used.

Instead of recording a straightforward CL/BL signal by smartphone, the Wu group re-
ported a bioluminescent sensing system that integrated bioluminescence resonance energy
transfer (BRET) and RCA. The zinc finger protein (ZFP) fused NanoLuc luciferase (donor)
and mNeonGreen (acceptor) that were periodically assembled onto the RCA amplicons
and produced BRET signals. They detected tumor-associated miRNAs in clinical serum
samples [56]. With the advantage of ZFP-fused sensors that are specifically responsive
to target-induced RCA products, this flexible platform achieved the detection of multiple
miRNA targets without changing the structure of the sensor proteins with high specificity.

The smartphone can also record and analyze fluorescent signals conveniently. Wei
Lu et al. designed the fishhook probe-based rolling circle amplification (FP-RCA) assay
to integrate the isolation and detection of miRNAs into a compact process, which was
simple and effective without the need for bulky and expensive equipment such as a
centrifuge, thermal cycler and fluorescence microscope, only a blue light source, and a
smartphone camera [57]. Tian et al. developed an intelligent smartphone-based multiple-
miRNA detection platform that captured and analyzed fluorescent images (Figure 3E) [49].
In this strategy, the target miRNAs were captured by aptamers immobilized on hydrogel
microparticles. After sandwich immunoassays, the target miRNAs were detected through
the fluorescent signal of SA-PE on hydrogel microparticles. This method completed the
whole process within 2 h. Gao’s group reported a strategy based on photoinduced electron
transfer (PET). The target miRNA triggered the production of G-quadruplex/hemin units,
the fluorescence of AgNCs was quenched by G-quadruplex/hemin units through PET,
and this change was captured by using a smartphone. This method achieved detection of
miRNA-21 at a pM level [58]. Sun et al. utilized alkaline-earth sulfide nanodots (ASNDs)
as fluorescent labels to successfully measure miR-224 in the range of 10–2000 fM. They
employed hybridization chain reaction (HCR) amplification and ASNDs to detect the
target miRNA and distinguished single-nucleotide mutations of the target miRNA. The
changes in fluorescence can be visualized by the naked eye or captured and analyzed
by smartphones [59]. Compared to the self-illuminated CL/BL signal, the excitation of
fluorescence requires external light sources, which makes the CL/BL signal more widely
applied in POCT for miRNAs.
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The emerging POCT assays for miRNAs based on capillary force meters, pressure
meters, portable fluorometers, PGMs, and thermometers are still at the very early stage,
and most of them reported detection of synthesized or extracted miRNAs. While strategies
based on smartphones were more widely reported in the detection of clinical serum samples,
which means they have strong anti-interference ability, POCT assays for miRNAs based
on smartphones showed higher sensitivity than the others. However, all POCT methods
based on portable instruments could provide innovative methods for revolutionizing the
field of disease diagnosis only if the problems of complexity and time-consumption in
the preparation of DNA/RNA functional nanoparticles are solved and the sensitivity and
accuracy are improved.
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Table 1. The detection methods of miRNAs based on portable instruments.

Methods miRNA Detection Limit Samples Time Reference

Personal glucose
meter miR-21 0.41 nM/

1 million cells synthesized miR-21/A549 cell lysates <2 h [21]

miR-21 10 fM synthesized miR-21 <2 h [23]
miR-21

miRNA205
2.4 pM
1.1 pM

synthesized miR-21
synthesized miRNA205 <3 h [26]

miR-21 3.65 nM
synthesized miR-21

clinical serum samples from cancer
patients

2 h [22]

miR-21 60 pM
3 × 106 cells/mL

synthesized miR-21
MCF-7, A549 and HeLa cell lysates <3 h [24]

miR-21 68.08 fM synthesized miR-21
urine samples from DIKI mice 1.5 h [25]

miRNA-155 0.36 fM synthesized miRNA-155 >5 h [27]
miR-21, miR-335,

miR-155, and
miR-122

0.325 fmol
synthesized miRNAs

extract from HeLa, HepG2, MCF-7, and
L02 Cells

6 h [28]

Thermometer miR-21 7.8 nM synthesized miR-21
HeLa cell lysate

Not
mentioned [35]

miRNA-141 0.5 pM synthesized miRNA-141 >8 h [36]

Pressure meter miR-21 7.6 fM
100 cells

synthesized miR-21
A549, MCF-7, HepG2 and HL-7702 cells 20 min [38]

miR-21 10 pM Serum 0.5 h [39]
Portable fluorometer miR-574-5p 2 ng/µL RNA extract from 5XFAD mice >3 h [40]
Capillary force meter miR-21 10 nM Human serum 1 h [43]

miR-21 MCF-7 cell line 25 min [44]
Smartphone miR-133a 0.3 pM synthesized miR-133a in serum >5 h [50]

miRNA-499,
miRNA-133a 10 fM synthesized miR-133a in serum 13 h [51]

let-7a 1.7 fM synthesized let-7a
human serum 2.75 h [56]

miR-133a,
miR-499 1 fM Synthesized miRNAs

human serum - [52]

miR-21,
let-7a fM Synthesized miRNAs

human serum <2 h [49]

miR-21 1.43 pM Synthesized miR-21
human serum, urine 0.5 h [58]

miR-224 1.6 fM Synthesized miR-224
human plasma <4.5 h [59]

miR-21 100 fM
500 cells

Synthesized miR-21
MCF-7 and L02 cells >1 h [57]

2.2. Visual Detection of miRNAs Based on Colorimetry

Visual detection is particularly attractive for POCT because the readout can be read
with the naked eye with no need for instruments. In this section, we summarize recent
advances in the visual detection of miRNAs, mainly focusing on colorimetric methods. We
provide an all-sided discussion of the principles of the methods and rationally evaluate
the applicability of these visual detection methods for early diagnosis based on miRNA
detection. A summary of the reported POCT for miRNAs based on colorimetric methods is
presented below (Table 2).

Colorimetric assays provide qualitative or quantitative measurement of targets by
measuring color changes with no need for special instruments. Detecting a change in color
can be used to determine the presence or absence of a target or even to determine its amount
range. As color changes can be conveniently judged by the naked eye, colorimetric assays
have attracted increasing attention for POCT for miRNAs [12]. Herein, we summarize the
colorimetric methods for the detection of miRNAs, mainly focusing on color change based
on gold nanoparticle (AuNP) aggregation or disaggregation and enzymatic chromogenic
reactions that catalyze the color change of substrates.
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2.2.1. Colorimetric Detection Based on Au-NPs

In 1996, Mirkin et al. first reported that the DNA-driven self-assembly of DNA-
modified gold nanoparticles (DNA-GNPs) caused an obvious color change in solutions. In
this study, the target DNA hybrid with two grafted DNA molecules was immobilized on
DNA-GNPs, which drove the DNA-GNPs to assemble into aggregates. Since then, DNA-
GNPs have attracted increasing attention in the development of colorimetric methods for
POCT [60]. In principle, localized surface plasmon resonance (LSPR) leads to a blueshift in
the aggregation of Au-NPs, and non-crosslinking and crosslinking hybridization are the
two main strategies used in Au-NP aggregation [61].

The non-crosslinking hybridization method is of greater interest than the crosslinking
method due to its fast response, simplicity, and convenience. The first distinct mechanisms
in non-crosslinking aggregation were reported by Sato and colleagues, who identified a
short ssDNA using non-crosslinking aggregation in 2003 [62]. The hybridization of the
target 15 nt ssDNA with 15 mer DNA immobilized on Au-NPs induced Au-NP aggre-
gation due to the salting-out effect. The color change based on Au-NP aggregation can
be detected in less than 3 min. Based on this mechanism, Asma Hamidi and coworkers
detected miR-21 and miR-155 in plasma from cancerous patients (Figure 4A) [63]. They
analyzed thirty samples, and a high concentration of miR-21 was detected in stomach,
colon, breast, esophagus, sarcoma, diaphragm, prostate, bladder, and lung samples, while
miR-155 demonstrated high expression in colon, breast, lung, diaphragm, and esophagus
samples. As little as 5 ng µL−1 of miRNAs can be measured. Maria Pitou et al. also reported
the easy and rapid detection of miR-93 in blood samples of osteoarthritic patients based
on this non-crosslinking aggregation strategy [64]. Another method of non-crosslinking
aggregation was first reported by Baptista et al. [65]. Unlike aggregation due to the salting-
out effect, the target sequence binding to Au-NPs improved its stability and prevented a
blueshift. miR-21 and miR-155 extracts from cancer cell lines, the osteosarcoma biomarker
miRNA-195, the urinary microRNA-210-3p from bladder cancer patients, and urinary
miRNAs (miR-210 and miR-34a) from diabetic nephropathy patients were measured using
this non-crosslinking aggregation method (Figure 4B) [66–69]. The last mechanism of
non-crosslinking aggregation was based on the ssDNA or the sticky end of harpin DNA
closely absorbed on Au-NPs to prevent salt-induced Au-NP aggregation, while the nega-
tively charged duplex DNA moved away from the Au-NPs, causing the naked Au-NPs to
aggregate and appear blueshifted. Several groups reported label-free, enzyme-free, and
immobilization-free miRNA strategies, in which the target miRNA induced ssDNA or
harpin DNA to transform into duplexes, leading to Au-NP aggregation [70–73]. Compared
to crosslinking aggregation, non-crosslinking aggregation has lower sensitivity.

The crosslinking Au-NP aggregation method offers a reliable and effective solution
for detecting nucleic acid sequences. By utilizing two DNA/RNA-modified Au-NPs with
complementary sequences to two separate halves of the target nucleic acid, accurate detec-
tion is ensured without the need for complex equipment or procedures. The hybridization
of these nanoprobes with the target DNA leads to Au-NP aggregation and a blueshift in
the LSPR spectrum, providing a clear indication of the presence of the desired nucleic acid
sequence [74]. Based on this principle, a miRNA molecule cross-links two Au-NPs together
through a sandwich hybridization reaction. Jun Cai and coworkers detected miR-148a in
gastric cancer samples, and a nanomolar level of miR-148a was detected with the colorimet-
ric method [75]. miR-146a, a possible biomarker of mastitis, was also measured at the nM
level using a similar strategy (Figure 4C) [76]. Motoi Oishi and Satomi Sugiyama developed
miRNA-triggered GNP/MB-composite disaggregation allowing the detection of miRNAs
with the naked eye, achieving a detection limit of 10 pM [77]. Jong-Souk Yeo et al. designed
a nanoplasmonic core-satellite assembly strategy to detect 1 pM to 10 µM miR-21 [78].
To improve the sensitivity, the crosslinking aggregation strategy was coupled with the
nucleic acid amplification method. Bang-Ce Ye et al. developed a DSN-assisted crosslinking
aggregation strategy and detected pM-level miRNAs [79]. Yongmei Yin et al. developed a
strategy of entropy-driven amplification (EDA) coupled with Nb.BbvCl-assisted Au-NP
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aggregation and successfully detected as little as 10 fM let-7a [80]. Yifu Guan and coworkers
utilized target miRNA to initiate rolling circle amplification (RCA), and the hybridization
of RCA products with the DNA immobilized on Au-NPs led to aggregation and blueshift,
achieving a 0.13 pM detection limit (Figure 4D) [81]. Enzyme-free hybridization chain
reaction (HCR) was also introduced into colorimetric detection-based on Au-NPs. The
target miRNA released the initiator sequence, and the initiator triggered the HCR between
the hairpin DNA modified on Au-NPs [82]. EXPAR, with the advantages of high amplifi-
cation efficiency and speed, is attractive for crosslinking aggregation strategies, and the
target miRNA-induced EXPAR products act as DNA linkers for Au-NP aggregation. This
EXPAR-assisted crosslinking aggregation enabled the detection of aM-level miRNA targets
(Figure 4E) [83,84] (Table 2). Bang-Ce Ye et al. reported that the target miRNA triggered the
EXPAR and released the phosphorothioate-modified polyA from Au-NPs. Then, the naked
Au-NPs aggregated in high-salt solution and appeared blueshifted, and the proposed
method provided a detection limit of approximately 100 fM when read with the naked
eye [85]. On the other hand, CRISPR-CasCas12a/Cas13a assisted the degradation of linker
DNA in the presence of the target miRNA, resulting in Au-NP disaggregation, and colori-
metric methods detected 500 fM miR-17 and 1 fM miR-143 from clinical samples of prostate
cancer [86,87]. Recently, the Guo group developed a colorimetric method employing the
crosslinking-aggregation of DNA Au-NPs and an entropy-driven dynamic DNA network
(EDN), in which the target miRNAs triggered the release of converter DNA through the
EDN, and converter DNA further triggered DNA Au-NP release from the hydrogel film.
The color change of the DNA Au-NP hydrogel film and solution in the testing tube could
determine the number of miRNAs [88]. Colorimetric assays using DNA-GNPs have at-
tracted much attention as a visual detection platform for POCT; however, the complex and
time-consuming preparation of DNA or RNA functional nanoparticles has hindered their
practical usage in clinical diagnostics.

2.2.2. Colorimetric Method Based on Enzymatic Chromogenic Reactions

Enzymatic chromogenic reactions are widely used in colorimetric methods because
they are stable and easy to operate. The G-quadruplex/hemin complex is currently a popu-
lar DNAzyme in colorimetric methods [89]. G-quadruplexes are four-stranded structures
formed by tandem repeat G-rich sequences, and G-quadruplex/hemin is an HRP-mimic
DNAzyme [90]. In the presence of H2O2, G-quadruplex/hemin DNAzyme can catalyze
the oxidation of TMB or ABTS, resulting in a significant color change of substrates [90,91].
G-quadruplex/hemin DNAzyme holds great advantages in stability and easy preparation,
making it a decisive tool for colorimetric readouts. G-quadruplex/hemin DNAzyme is widely
used in miRNA colorimetric detection. Wu and coworkers designed CHA coupled with an
HCR sensing strategy to produce numerous G-quadruplexes: the G-quadruplexes bind with
hemin to catalyze ABTS, turning it green. ABTS−. This proposed method showed a detection
limit of 7.4 fM (Figure 5A) [92]. Several other studies also utilized CHA coupled with the
HCR sensing strategy [93,94]. Hosseinzadeh et al. reported a triple amplification strategy
to detect miR-21, in which miR-21 triggered the formation of G-quadruplex DNAzymes
to give a colorimetric signal [95]. Recent distinct strategies for G-quadruplex DNAzyme
production include (1) target miRNA-triggered RCA to produce numerous G-quadruplex
DNAzymes (Figure 5D) [96,97]; (2) miRNA-triggered RCA coupled with nicking enzyme as-
sistance to produce G-quadruplex DNAzymes [98,99], (3) miRNA-induced toehold-mediated
strand displacement reactions to release G-quadruplexes (Figure 5B) [100–105]; (4) nick-
ing enzyme-assisted strand displacement amplification (Figure 5C) [106–108]; (5) target
miRNA-triggered HCR to form long G-quadruplex DNAzyme chains [109]; and (6) DSN-
assisted G-quadruplex DNAzyme release [110,111]. Beyond these, there are also some special
colorimetric assay strategies based on G-quadruplexes. Melika Agahi and Mahdi Rahaie
designed a split G-quadruplex-containing tweezer to detect dual miRNA markers [112].
Ling Lan and coworkers reported a G-quadruplex/Hemin DNAzyme blocking strategy to
detect microRNA, in which G-quadruplex formation was hindered by the target miRNA
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through primer extension [113]. The Mao group reported that target miRNAs triggered the
formation of G-quadruplex/Hemin DNAzyme fibers, which could serve as colorimetric
signal reports (Figure 5F) [109]. Colorimetric assays can also be based on other chromogenic
enzymes, such as alkaline phosphatase (AP) [114], DNA-templated copper nanoclusters
(DNA-CuNCs) [115], glucose oxidase (GOx) [116], HRP [117], and nanozymes. Marta Broto
et al. developed a Pt@Au nanozyme-based colorimetric assay for miRNA. The Pt@Au
nanozymes were captured through an RNA linker and catalyzed the oxidation of TMB,
resulting in a color change. In the presence of the target miRNA, the Cas13 enzyme cleaved
the RNA linker, resulting in no color change (Figure 5E) [118].
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Figure 4. Principles of colorimetric detection of miRNAs based on Au-NPs. (A) Schematic of
detection of miRNAs based on Au-NPs non-crosslinking aggregation due to the salting-out effect.
Reproduced with permission from Reference [63]. Copyright (2021), with permission from Elsevier.
(B) Schematic of detection of miRNAs based on target binding improve the stability of Au-NPs
preventing the aggregation. Reproduced with permission from Reference [67]. Copyright (2021),
with permission from Elsevier. (C) Schematic of detection of miRNAs based on RNA-functionalized
Au-NPs crosslinking aggregation. Reproduced with permission from Reference [76]. Copyright
(2020), with permission from Elsevier. (D) Schematic of miRNA-triggered RCA products lead to
Au-NP aggregation. Reproduced with permission from Reference [81]. Copyright (2017), with
permission from Elsevier. (E) Schematic of detection of miRNA based on EXPAR and triplex DNA
lead to Au-NPs aggregation. Reproduced with permission from Reference [84]. Copyright (2020),
with permission from Elsevier.

Compared with colorimetric detection based on Au-NPs, the enzymatic chromogenic
reactions strategies often take much more time, and both showed high sensitivity (Table 2).
However, one major drawback of colorimetry is that it cannot accurately quantify miR-
NAs through color changes and requires other instruments, such as spectrometers and
smartphones, to perform quantitative analysis.
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(A) Schematic of CHA coupled with HCR to assemble G-quadruplex/Hemin DNAzyme. Reproduced
with permission from Reference [92]. Copyright (2016), with permission from Elsevier. (B) Schematic
of miRNA triggered self-assembled G-quadruplex/hemin DNAzyme. Reproduced with permission
from Reference [105]. Copyright (2023), with permission from Elsevier. (C) Schematic of miRNA-
triggered nicking enzyme-assisted self-assembled G-quadruplex/hemin DNAzyme. Reproduced
with permission from Reference [108]. Copyright (2023), with permission from Elsevier. (D) Schematic
of miRNA-triggered RCA to produced numerus G-quadruplex/Hemin DNAzymes. Reproduced
with permission from Reference [97]. Copyright (2021), American Chemical Society. (E) Schematic of
colorimetric detection of miRNAs based on nanozyme-catalyzed CRISPR assay. Reproduced with
permission from Reference [118]. Copyright (2022), with permission from Elsevier. (F) Schematic of
miRNA-triggered formation of G-quadruplex/Hemin DNAzyme fibers. Reproduced with permission
from Reference [109]. Copyright (2022), John Wiley & Sons, Inc.



Biosensors 2023, 13, 747 14 of 21

Table 2. The detection methods of miRNAs based on visual methods.

Methods miRNA Detection Limit Samples Time Reference

Colorimetric
detection based on

Au-NPs

miR-21
miR-155 5 ng µL−1 Plasma <3 min [63]

miR-93
miR-223 - Human serum - [64]

miR-34a
miR-210 50 ng µL−1 Urine <20 min [66]

miR-195 40 fM Human serum 10 min [67]
miR-210-3p 10 pM Urine 20 min [68]

miR-21
miR-155 1 ng µL−1 Multiple cancerous cell lines and primary

fibroblast <10 min [69]

miR-21
miR-141 3 pM Synthesized miRNA human serum samples <5 h [70]

miR-137 0.5 nM Plasma 1 min [72]
miR-146a 5 nM Raw cow milk 20 min [76]

let-7a 0.13 pM A549 cells 50 min [81]
miR-148a 1.9 nM Plasma 5 min [75]
miR-122 16 pM Cancerous cell lines 2 h [79]

let-7a 3.13 fM Human serum 1 h [80]
miR-203 10 pM MCF-7 cells - [82]
miR-21 0.23 fM HeLa, MCF-7, AGS cells 0.5 h [84]
let-7a 4.176 aM Synthesized let-7a 1 h [83]

miR-221-3p 46 fM BEL-7404, MDA-MB231, HeLa, and 22Rv1cells 1 h [85]

miR-143 1 fM
Synthesized miR-143

Prostate cancer cell lines VCaP, LNCaP, Du145,
and PC-3

>1.5 h [87]

Colorimetric
detection based on

enzymatic
chromogenic

reactions

let-7a 7.4 fM Synthesized let-7a 2.5 h [92]

miR-122 0.15 aM Serum 5 min [93]
miR-21 0.2 pM Serum 50 min [94]
miR-21 1 aM Serum <4 h [95]
Let-7a 34 fM A549 cells 4 h [96]

miR-10b 1 fM Serum and cell extracts 20 min [97]
miR-141 0.48 nM Serum >3 h [100]
miR-21 1 pM Serum 150 min [102]

miR-141 0.5 pM Prostate cancer cells 210 min [104]
miR-21 90.3 fM Serum <1.5 h [105]
miR-21,
miR-17 1.7 fM MCF-7 80 min [106]

let-7a 0.1 nM Serum 3 min [108]
miR-21 44.76 fM Exosome 2 h [111]
miR-21,
miR-155 0.38 nM Blood >1 h [112]

miR-21 4.5 nM MCF-7 and serum 130 min [113]

miR-21 5 fM
Plasma sample

Cancer cells
Tumor tissues

>6.5 h [109]

miR-155 0.6 pM Plasma 15 min [115]
miR-205,
miR-944 36.4 fM Serum >2 h [116]

miR-155 31.8 fM Serum 1 h [117]
miR-223
miR-143 20 pM Synthesized miR-223

iPSCs and CMs 3.5 h [118]

3. Conclusions and Future Perspectives

miRNAs are a type of small noncoding RNA that play crucial roles in the regula-
tion of gene expression during development and disease progression by acting as post-
transcriptional regulators. Studies have proven differential expression between diseased
and healthy individuals, and miRNAs are stable in blood, saliva, and urine. These indicate
that miRNAs can serve as promising noninvasive biomarkers for the diagnosis and prog-
nosis of various diseases. Many studies have evaluated miRNA-based diagnostic tests for
clinical use in many diseases, such as cancers. The usage of miRNAs as biomarkers has
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the potential to revolutionize the field of disease diagnosis, leading to earlier and more
accurate diagnoses.

The conventional methods of detecting miRNAs, including northern blotting, real-
time PCR, microarray and RNA-seq, have been widely used and validated. However, these
methods also have limitations. For example, northern blotting and real-time PCR are labor-
intensive and require specialized equipment. Microarray and RNA-seq are expensive and
require complex data analysis, and these approaches for miRNA detection are performed
in a professional laboratory, which is challenging for the application of miRNA detection in
clinical practice. The huge demand for the improvement of health and safety has driven
sensors to evolve rapidly [119–122]. Recent advances in POCT for miRNAs have shown
promise in overcoming some of these challenges and have the potential to revolutionize
miRNA detection in the future. Widely available pocket-size devices and visual detection
play major roles in POCT. In this review, we mainly focused on summarizing the research
progress in POCT for miRNAs based on portable instruments and visual readout methods
and compared the design of POCT methods based on portable instruments and visual
detection for miRNAs.

In the miRNA detection based on PGM, the release or trapping of invertase, amy-
lase, or sucrase, which operates in the presence of miRNA, results in a glucose concen-
tration proportional to the level of target miRNA. In addition, thermometers measure
temperature change representing the presence and concentration of a target miRNA. A
smartphone’s built-in camera or connected external sensors could collect chemilumines-
cence (CL)/bioluminescence (BL) or fluorescence signals proportional to the level of target
miRNA; a smartphone can also share data with internet connections and achieve the
automatic and rapid analysis of information.

The POCT for miRNA detection based on PGM, thermometers, and smartphones
has the advantage of using portable instruments that are widely applied as home-use
devices; it will be suitable for resource-limited areas, or even for self-testing, which assesses
the risk of related diseases in a household’s devices without relying on sophisticated
equipment or professional operation. Similarly, the visual detection of miRNAs based on
colorimetry can also achieve signal reading without the need for complex operations with
sophisticated instruments. Colorimetric methods sensed the miRNA level according to
the color change based on gold nanoparticle (AuNP) aggregation or disaggregation and
enzymatic chromogenic reactions that catalyze the color change of substrates.

There is no doubt that miRNA detection using portable instruments and visual detec-
tion has made significant progress over the years. Recent advances in portable instrumenta-
tion and visual detection have increased the sensitivity, specificity, and accuracy of miRNA
detection, making it more promising for clinical applications. These methods offer rapid
detection of miRNAs and are useful for low-resource settings where sophisticated instru-
mentation is not available. The use of POCT devices and visually read miRNA detection
methods can help diagnose diseases, identify high-risk patients for further assessment, and
facilitate the monitoring of disease progression and treatment efficacy. The progress made
in miRNA detection using POCT devices and visual detection methods has paved the way
for the development of new diagnostic approaches in clinical settings. As new technologies
emerge, it is expected that miRNA detection and analysis will continue to evolve and
become more accessible and affordable for routine clinical use. The emerging POCT assays
for miRNAs based on capillary force meters, pressure meters, portable fluorometers, PGMs,
and thermometers are still at the very early stage, and most of them reported detection of
the synthesized or extracted miRNAs. While POCT assays for miRNAs based on smart-
phones showed higher sensitivity and stronger anti-interference ability than the others,
as it was widely reported in the detection of clinical serum samples. Colorimetric assays
provide measurement of the targets by measuring color changes with no need for special
instruments. One major drawback of colorimetry is that it cannot accurately quantify
miRNAs through color changes and requires other instruments, such as spectrometers and
smartphones, to perform quantitative analysis.
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However, miRNA-based POCT assays hold great potential for clinical applications,
though several challenges need to be overcome to make them a reality. Firstly, the prepa-
ration of DNA/RNA immobilized Au or magnetic nanoparticles, as well as other nano-
materials used in these methods, is relatively complex and time-consuming, even if some
materials are customized. Therefore, the development of easily preparable materials en-
sures the stability, repeatability, and efficiency of the detection methods. The simple and
highly efficient “click” chemistry and the exploration on noncovalent interactions between
the DNA/RNA and MBs or Au-nanoparticles could enable new possibilities in providing
potential solutions to addressing these challenges [29,30]. Second, the standardization of
miRNA quantification in POCT methods is crucial for the implementation of miRNA-based
diagnostic tests. However, there is currently a lack of consensus on the optimal method
for normalizing miRNA levels across different studies, which results in ambiguous data
explanations, controversial conclusions, and erroneous predictions. POCT of miRNAs with
spike-in would be helpful for normalizing miRNA levels like the processing of single-cell
microRNA sequencing [123]. Lastly, and most importantly, most POCT methods have been
validated with a single synthetic miRNA or purified from biological samples. However,
in practice, biological samples, such as blood, saliva, and urine, are complex, and a single
miRNA often fails to meet clinical diagnostic needs. Therefore, it is important to develop
multichannel POCT biosensors for the detection of multiple miRNA biomarkers and set up
a “sample-in-answer-out” microfluidic system for miRNA-based diagnostic tests. Multi-
channel POCT biosensors could meet the clinical diagnostic needs and perform the patient
miRNA profile to determine the miRNA signatures. Multichannel POCT biosensors save
time and cost and decrease the risks for error.

POCT of miRNAs is promising and widely used in the field of disease diagnosis, but it
is necessary to simplify and pull together the process of miRNA purification, amplification,
and signal transduction. This review introduced the development status of point-of-care
testing of microRNAs based on portable instruments and visual detection and summarized
the advantages and disadvantages of the common detection modes based on these methods,
in order to provide a guide for the development of more accurate, specific, and sensitive
miRNA POCT methods.
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