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Abstract: Early detection and timely intervention play a vital role in the effective management of
Alzheimer’s disease. Currently, the diagnostic accuracy for Alzheimer’s disease based on a single
blood biomarker is relatively low, and the combined use of multiple blood biomarkers can greatly
improve diagnostic accuracy. Herein, we report a printed electrochemical biosensor based on vertical
graphene (VG) modified with gold nanoparticles (VG@nanoAu) for the simultaneous detection of four
Alzheimer’s disease blood biomarkers. The printed electrochemical electrode array was constructed
by laser etching and inkjet printing. Then gold nanoparticles were modified onto the working
electrode surface via electrodeposition to further improve the sensitivity of the sensor. In addition, the
entire printed electrochemical sensing system incorporates an electrochemical micro-workstation and
a smartphone. The customized electrochemical micro-workstation incorporates four electro-chemical
control chips, enabling the sensor to simultaneously analyze four biomarkers. Consequently, the
printed electrochemical sensing system exhibits excellent analytical performance due to the large
surface area, biocompatibility, and good conductivity of VG@nanoAu. The detection limit of the
sensing system for Aβ40, Aβ42, T-tau, and P-tau181 was 0.072, 0.089, 0.071, and 0.051 pg/mL,
respectively, which meets the detection requirements of Alzheimer’s disease blood biomarkers. The
printed electrochemical sensing system also exhibits good specificity and stability. This work has
great value and promising prospects for early Alzheimer’s disease diagnosis using blood biomarkers.

Keywords: printed electrochemical biosensor; Alzheimer’s disease; biomarkers; vertical graphene

1. Introduction

Alzheimer’s disease (AD) is characterized as a chronic neurodegenerative disorder
with a very long duration cycle. AD patients exhibit symptoms such as memory impairment
and language dysfunction, which can lead to death in severe cases, thereby imposing a huge
economic and mental burden on the country, society, and the patient’s family [1,2]. However,
currently, the pathogenesis of AD remains unclear, and no effective drugs to cure the disease
have been developed. Thus, early diagnosis, detection and intervention are particularly
important. In clinical settings, AD is diagnosed by cognitive scales, neuroimaging and
molecular biomarkers in the cerebrospinal fluid (CSF) [2–4]. Among them, changes in the
level of molecular biomarkers in the CSF can directly reflect neurological damage in the
brain, thereby allowing for earlier diagnosis of AD. However, CSF is difficult to obtain, and
is highly invasive and prone to adverse reactions, which greatly limits its application in
large-scale general screening. Therefore, exploring diagnostic methods for AD in terms of
easily accessible blood biomarkers is important.

Recently, numerous studies have found that blood biomarkers, including Aβ40, Aβ42,
T-tau, P-tau181, etc., are closely associated with the onset of AD, thereby indicating the fea-
sibility of diagnosing AD [5–7]. However, the levels of AD blood biomarkers are extremely
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low, reaching the picogram per milliliter (pg/mL) range [8], which surpasses the detection
limit of the conventional enzyme-linked immunosorbent assay (ELISA) technique. There-
fore, developing ultrasensitive blood detection methods is extremely urgent. At present,
several techniques have been developed to analyze blood biomarkers for AD diagnosis,
including electrochemical [9–11], fluorescence [12–14], field effect transistor [15,16], surface-
enhanced Raman scattering (SERS) [17,18], and colorimetric methods [19,20]. Among these
approaches, the electrochemical analytical method exhibits immense promise in disease
diagnosis owing to its exceptional sensitivity and ease of miniaturization.

Printed sensors are made on substrates using printing technology (e.g., inkjet printing,
screen printing, etc.) [21–23]. Given their advantages of low cost, large-scale production,
and convenient customization, printed sensors are widely used in disease diagnosis [24,25].
In the field of AD blood biomarker detection, there have been some reports, such as Mor-
eira’s screen-printing electrochemical sensor for the ultra-sensitive detection of Aβ42 [26],
Vu et al.’s microelectrode-based SERS sensor for the detection of Aβ [17], and Subramaniyan
Parimalam et al.’s laser-printed microfluidic chip sensor for the detection of tau protein [27].

Currently, most detection methods only detect one type of AD blood biomarker.
However, individual biomarkers greatly vary among individuals due to genetic factors,
dietary habits, living environment, and other factors, thereby resulting in low AD diagnosis
accuracy based on a single biomarker. AD diagnosis accuracy can be improved to some
extent by combining multiple blood biomarkers [28,29]. In previous studies, we reported an
electrochemical biosensor based on superwetting microdroplet array for multiple AD blood
marker detection. The sensor displayed good analytical performance, but in subsequent
usage we discovered that the shedding of hydrophobic molecules led to the disruption
of the microdroplet array, resulting in poor durability of the entire sensor [30]. Based on
this, we attempted to construct an electrode array by printing technology instead of using
superwetting microarray technology to avoid the issue of easy shedding of hydrophobic
molecules. Considering the advantages of easy miniaturization and mass production,
combining electrochemical and printed sensing techniques to construct multiplexed printed
electrochemical sensors to simultaneously detect multiple AD biomarkers holds great value.

In this work, we develop a printed electrochemical biosensor based on vertical
graphene modified with gold nanoparticles (VG@nanoAu) by combining electrochem-
istry with printed sensor technology for the ultrasensitive detection of four AD biomarkers.
As shown in Figure 1, in this printed electrochemical sensing system, there are four working
electrodes (WE1, WE2, WE3, and WE4), one reference electrode (RE), and one counter
electrode (CE). The working electrode material is VG@nanoAu, and the counter electrode
material is VG. The modification of nanogold on VG by electrodeposition is to increase
the electroactive area, thereby improving the sensitivity of the sensor. The VG@nanoAu
surface is functionalized with pretreated antibodies. The antibody of the target protein is
treated with 2-mercaptoethylamine (2-MEA), resulting an antibody with thiol termination,
which allows it to be immobilized to the electrode surface by gold-sulfur bond [31]. After
the binding of the target antigen and antibody, the impedance on the working electrode
surface increases, leading to a decrease in the differential pulse voltammetry (DPV) signal.
The change in the DPV signal is directly proportional to the concentration of the target
antigen. Therefore, the concentration of the target antigen can be calculated according to
the variation in the DPV signal. In particular, a specially customized electrochemical micro-
workstation is employed to control and monitor the electrochemical signal. As shown in the
internal structure, the micro-workstation incorporates four electrochemical control chips.
These four chips are independent of each other, which enables the sensor to simultane-
ously analyze four biomarkers. The printed electrochemical sensing system demonstrates
promising prospects in early AD diagnosis based on multiple blood biomarkers.
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Figure 1. Schematic representation of the printed electrochemical sensing system for simultaneous
detection of four AD biomarkers.

2. Materials and Methods
2.1. Chemicals and Reagents

T-tau protein, P-tau181 protein, and Aβ antibody were obtained from Abcam Ltd.
(Hong Kong, China). Aβ protein, K3[Fe(CN)6]/K4[Fe(CN)6], glucose (GLU), bovine serum
albumin (BSA), potassium chloride (KCl), phosphate-buffered solution (PBS, pH = 7.4,
10 mM), 2-mercaptoethylamine, and chloroauric acid (HAuCl4) were purchased from
Sigma-Aldrich (Shanghai, China). The antibodies of T-tau and P-tau181 were purchased
from Thermo Fisher Scientific Co., Ltd. (Beijing, China). All chemical reagents used were
of high purity grade. All solution preparations were made using ultrapure water (Milli-Q,
18.2 MΩ).

2.2. Characterization and Measurement

Field-emission scanning electron microscopy (SEM, Thermo Fisher, FEI Apreo S,
Waltham, MA, USA) was employed to analyze the surface morphology and elemental
distribution of VG@nanoAu. The VG array was fabricated by laser etching (Laser engraving
machine, SCM-2200, Wuhan Sangong Laser Technology Co. Ltd., Wuhan, China), and the
Ag/AgCl reference electrode and Ag conductor were constructed using a Fujifilm Dimatix
nanomaterial deposition jet printer (DMP2850). Electrochemical tests were conducted
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utilizing a tailor-made electrochemical micro-workstation (Refresh AI Biosensor Co., Ltd.,
Shenzhen, China).

2.3. Construction of Printed Electrode Array Based on VG@nanoAu

First, a chemical vapor deposition (CVD) was used to fabricate a VG layer on a
ceramic substrate (1 cm × 1 cm). Then, nanogold is deposited onto the surface of the
VG by electrodeposition of 10 mM chloroauric acid, as previously reported. Afterward,
the VG is laser-etched into an array as shown in Figure 2A. Subsequently, a silver/silver
chloride ink is printed onto the substrate surface as a reference electrode. Then, a dam
sealant is printed as a reaction cell. Finally, the silver ink is printed onto the surface as
wires. In addition, insulating ink is printed on the periphery as an enclosure. After the
completion of the VG electrode array, gold nanoparticles were deposited onto the VG
working electrodes by electrodeposition in a solution of 10 mM HAuCl4. The deposition
voltage and deposition time is −1.8 V and 300 s. At this point, the entire printed electrode
array based on VG@nanoAu was constructed.
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2.4. Preparation of Printed Electrochemical Sensor Based on VG@nanoAu for AD Biomarkers

After the printed electrode array is completed, the printed electrochemical sensor is
constructed through a series of modifications. First, a volume of 3 µL antibody solution
was dropped onto the VG@nanoAu electrode surface and allowed to incubate at 37 ◦C for
1 h. Beforehand, the antibody of target protein was treated with 2-mercaptoethylamine,
resulting in an antibody with thiol termination. Then, a blocking solution containing 3 µL
of BSA (1%) was applied to prevent nonspecific binding (the treatment time of BSA is
1 h at 37 ◦C), followed by the addition of a protein mixture consisting of Aβ40, Aβ42,
T-tau, and P-tau181. The reaction mixture was then incubated at 37 ◦C for 1 h. Following
each modification step, the electrode surface is rinsed three times with PBS buffer solution.
Finally, the printed electrode array is combined with a customized electrochemical micro-
workstation. A printed electrochemical sensing system for detecting four AD biomarkers is
successfully constructed.

The concentration of antigen was measured using a customized electrochemistry micro-
workstation through DPV. DPV test was conducted in 5 mM [Fe(CN)6]3−/[Fe(CN)6]4−

solution containing 0.1 M KCl. The scan rate is 0.1 V/s. the pulse width and period are
0.05 s and 0.5 s, respectively. The amplitude is 0.05 V. The working voltage range of DPV
signals was 0–0.4 V. Then, the peak current change before and after the binding of the target
protein with the antibody was measured, and the antigen concentration was determined
using this signal.

The selectivity of this printed electrochemical sensor based on VG@nanoAu for de-
tecting four AD blood biomarkers was assessed in PBS solutions containing Aβ40, Aβ42,
Tau441, P-tau181, HSA, and GLU.

2.5. The Application of This Printed Electrochemical Sensor in Clinical Samples

Two clinical samples were tested using the sensor to validate its clinical application
value. The clinical samples were obtained from Longgang Central Hospital of Shenzhen,
and the study was approved by the Ethics Committee of the Longgang Central Hospital of
Shenzhen (protocol code 2021ECYJ048 and date of approval 2 September 2021). Briefly, a
volume of 3 µL antibody solution was dropped on the working electrode surface. Then,
3 µL blocking solution (1% BSA) was applied to prevent nonspecific binding after 1 h of
incubation. At this point, the initial current was tested by DPV, and the DPV signal was
recorded. Then, 20 µL of serum sample (diluted with PBS solution at 1:3) was added to the
sample pool and incubated at 37 ◦C for 1 h. The variation in peak current before and after
incubation was monitored and utilized for the calculation of the antigen concentration.

3. Results and Discussion
3.1. Preparation and Characterization of Printed Electrode Array

The construction process of the printed VG electrode array is shown in Figure 2A. First,
VG was grown on a ceramic substrate by chemical vapor deposition, then it was etched into
an electrode array using laser ablation. Afterward, the reference electrode and electrode
wires were printed using an inkjet printer, resulting in a VG-based electrode array. After the
construction of the VG electrode array, gold nanoparticles were deposited onto the surface
of the VG working electrode to further enhance the sensitivity of the printed electrochemical
sensor. The detailed procedures are described in the experimental section. The surface
morphology of the VG was characterized, and Figure 2B demonstrates the presence of a
distinct flaky structure. After gold plating, the morphology is shown in Figure 2C. SEM
images show that spherical gold particles appeared on the surface of the VG, and the size
of gold particles is in a range of tens to a hundred nanometers. The cross-sectional images
of VG@nanoAu demonstrated that the majority of gold nanoparticles were observed to
be concentrated on the upper part region of the VG. (Figure 2D) The height of the VG is
approximately 2 µm, and the thickness of the gold nanoparticles is approximately 1 µm.
Surface element distribution was also characterized. As shown in Figure 2E–G, most areas
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of the VG surface are covered by gold nanoparticles, and the surface mass fraction of the
gold element is 44.35%.

3.2. Construction and Analytical Performance of Printed Electrochemical Biosensor

The electroactive area of VG and VG@nanoAu surfaces were compared using cyclic
voltammetry (CV). The electroactive surface area was remarkably increased after being
modified with gold nanoparticles (Figure 3A). In this process of CV, when an anodic
potential is applied, ferrous ions undergo oxidation, resulting in the appearance of an
oxidation peak. Conversely, when a cathodic potential is applied, ferric ions undergo
reduction, leading to the manifestation of a reduction peak. Furthermore, the surface
kinetics processes were assessed by conducting CV measurements at various scan rates.
The result showed that, as depicted in Figure 3B, the ratio between the cathodic peak
current (Ipc) and anodic peak current (Ipa) is greater than 1, and this ratio is also influenced
by the scan rate, indicating that the electron transfer reaction is quasi-reversible. The
peak current exhibited a linear correlation with the square root of the scan rate, which
suggested that a diffusion-limited mass transfer process occurred at the working electrode
interface. After modification with gold nanoparticles, the antibodies for the target protein
were immobilized on the surface of the working electrode through gold–sulfur bonds. DPV
peak current decreased after the modification of antibodies, thereby indicating successful
antibody immobilization on the electrode surface. The antibody concentration used in
the experiment is 10 µg/mL according to our previous study [30,32]. Subsequently, BSA
was employed to obstruct unbound sites, resulting in a further reduction of the DPV peak
current (Figure S1). Finally, a mixture of four proteins (Aβ40, Aβ42, T-tau, and P-tau181)
was pipetted into the sample well and incubated for 1 h, and the DPV signals before
and after incubation were recorded. At this point, the printed electrochemical sensor for
detecting four AD blood biomarkers had been successfully constructed.
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Figure 3. Analytical performance of the VG@nanoAu-based printed sensor for detecting four AD
blood biomarkers. (A) CVs of VG and VG@nanoAu electrode. (B) CVs of the VG@nanoAu−based
printed sensor at various scan rates. The inset graph illustrates the correlation between the peak
current of CV and the square root of the scan rate. DPV signals toward four AD blood biomarkers
and the linear relationship between peak current change value (∆I) of DPV signals and the logarithm
of antigen concentration of Aβ40 (C,D), Aβ42 (E,F), T−tau (G,H), and P−tau181 (I,J). CV and DPV
test was conducted in 5 mM [Fe(CN)6]3−/[Fe(CN)6]4− solution containing 0.1 M KCl at 0.1 V/s.

Furthermore, as illustrated in Figure 3C–J, as the antigen concentration increases, the
DPV peak current signal gradually decreases. A logarithmic linear correlation is observed
between the change in peak current value (∆I) and the target protein concentration. The
detection limits of the printed electrochemical sensor for Aβ40, Aβ42, T-tau, and P-tau181
were 0.072, 0.089, 0.071, and 0.051 pg/mL, respectively. The detection limit was calculated
according to three times the standard deviation of the blank sample [33,34]. Briefly, PBS
buffer was used as a blank sample, which was measured ten times with the printed sensors.
Then, the standard deviation was calculated. The detection limit is calculated by bringing
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the standard deviation into the standard curve equation. (The standard curve equations are
shown in Figure 3). In physiological conditions, the concentrations of AD blood biomarkers,
such as Aβ40, Aβ42, T-tau, and P-tau181 are measured at pg/mL levels. Our developed
VG@nanoAu-based printed sensor showed excellent analytical performance with detection
limits below 0.1 pg/mL, thereby meeting the requirement for ultra-sensitive detection of
AD biomarkers in blood samples.

3.3. Selectivity and Stability

In clinical applications, selectivity and stability are considered as two critical parame-
ters in evaluating a sensor. This study also investigated the selectivity and stability of this
printed sensor. According to the illustration in Figure 4A, when the concentration of Aβ40
was 10 pg/mL, the peak current significantly decreased. When 100-fold of other proteins
including Aβ42, T-tau, P-tau181, GLU, and HSA was added, the variation in peak current
is insignificant, and was much lower than the ∆I of Aβ40. The result showed that the
printed electrochemical sensor has good selectivity for Aβ40. Similarly, this printed sensor
showed excellent selectivity for Aβ42, T-tau, and P-tau181 (Figure 4B–D). In addition, this
result indicates that the four target proteins (Aβ40, Aβ42, T-tau, and P-tau181) do not
interfere much with each other. Furthermore, the stability of this printed electrochemical
sensor was assessed by testing the 100 pg/mL target proteins (Aβ40, Aβ42, T-tau, and
P-tau181) six times over 2 weeks. During this period, the printed sensor was kept in a
refrigerator at 4 ◦C. As shown in Figure S2, the ∆I maintained more than 90% of the initial
value even after 14 days, which suggested that this VG@nanoAu-based printed sensor
had good stability. These results also demonstrated that this VG@nanoAu-based printed
electrochemical exhibited outstanding stability and specificity.
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Figure 4. Selectivity of the printed electrochemical biosensor based on VG@nanoAu. (A) DPV signals
for Aβ40 and Aβ42, T-tau, P-tau181, GLU, and HSA. The concentration of Aβ40 is 100 pg/mL,
and other protein concentration is 10 ng/mL. (B) DPV signals for 100 pg/mL Aβ42 and 10 ng/mL
other protein including Aβ40, T-tau, P-tau181, GLU, and HSA. (C) DPV signals for 100 pg/mL T-tau
and 10 ng/mL other protein including Aβ40, Aβ42, P-tau181, GLU, and HSA. (D) DPV signals for
100 pg/mL P-tau181 and 10 ng/mL other protein including Aβ40, Aβ42, T-tau, GLU, and HSA.
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3.4. Application of This Printed Electrochemical Sensor in Clinical Samples

To further assess its potential for clinical application, we conducted measurements of
Aβ40, Aβ42, T-tau, and P-tau181 in two clinical samples using the printed electrochemical
sensor, and the results were compared with those obtained from the classic ELISA method.
The results are shown in Table 1. The detection results of Aβ obtained from this printed
electrochemical sensor showed no significant difference compared to the results obtained
from the classic ELISA method. Moreover, this printed sensor can accurately measure
the levels of tau proteins in the two clinical samples. However, the classic ELISA method
cannot detect extremely low levels of tau and P-tau181. These results demonstrate the
printed electrochemical sensor holds great potential in clinical applications.

Table 1. Comparison between our printed electrochemical sensing system and typical ELISA for
detecting four AD biomarkers in two clinical samples.

Sample Biomarkers
Average Measured Concentration (pg/mL)

This Printed Sensor ELISA

1

Aβ40 155 ± 10 153 ± 6.8
Aβ42 15.4 ± 1.3 15.1 ± 1.2
T-tau 4.8 ± 0.2 /

P-tau181 1.8 ± 0.1 /

2

Aβ40 348 ± 16 350 ± 8.0
Aβ42 17.8 ± 1.2 17.6 ± 0.9
T-tau 3.1 ± 0.1 /

P-tau181 1.2 ± 0.2 /

Finally, the analytical performance of this printed electrochemical sensor was com-
pared to that of previously reported methods. Among the numerous reports on detecting
AD biomarkers, the majority of studies have focused on the detection of a single AD
biomarker. Some studies that detect multiple AD biomarkers are separately listed and com-
pared with our method, as shown in Table 2. For instance, an electrochemical device based
on screen-printed electrodes developed by Sanati-Nezhad’s group [35] simultaneously de-
tects two proteins, C-Tau and NFL. The detection limits for C-Tau and NFL are 0.32 pg/mL
and 0.18 pg/mL, respectively, with a linear range from 10 pg/mL to 100 ng/mL. In com-
parison, our sensor exhibits a linear range of 0.1 pg/mL to 1 ng/mL. Under physiological
conditions, the concentrations of most AD biomarkers such as Aβ, T-tau, P-tau, etc., fall
within this range. This linear range of our printed sensor better meets the requirements
for detecting clinical samples. For fluorescence detection, Chan et al. [36] developed a
fluorescent sensor capable of simultaneously detecting three biomarkers, Aβ42, tau441,
and p-tau181, with detection limits of 340.07, 669.44, and 493.79 pg/mL, respectively. This
sensor meets the detection requirements for these biomarkers in cerebrospinal fluid but may
face challenges when detecting biomarkers in blood samples. In addition, Kim et al. [37]
designed an SPR biosensor based on gold nanocrystals with different morphologies for
simultaneous detection of three biomarkers, Aβ40, Aβ42, and T-tau. This sensor requires
the preparation of different gold nanocrystals and the specific modification of target protein
antibodies, making the process relatively intricate. Our printed electrochemical sensor is
fabricated through integrated inkjet printing technology, offering a simple and scalable
approach for mass production. A specially customized electrochemical micro-workstation,
incorporating four electrochemical control micro-chips, was utilized, enabling our detection
platform to simultaneously analyze four biomarkers instead of sequentially testing them
one by one. In summary, our printed sensor not only demonstrates outstanding analytical
performance but also boasts a straightforward fabrication process that allows for efficient
mass production.
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Table 2. A comparison of detection performance for multiple AD biomarkers.

Methods Biomarkers Detection limit References

Electrochemistry Aβ40, Aβ42,
Tau, P-tau181,

2.20, 2.13,
2.45, 2.72 fM [37]

Electrochemistry T-tau, NFL 0.32, 0.18 pg/mL [35]
Electrochemistry Aβ, Tau, ApoE4, 8.6 × 10−12; 7.1 × 10−11; 5.91 × 10−11 mg/mL [38]

Electrochemistry Aβ40, Aβ42,
T-tau, P-tau181 0.142, 0.176, 0.125, 0.089 pg/mL [34]

Fluorescence Aβ42, tau441,
P-tau181 340.07, 669.44, 493.79 pg/mL [36]

LSPR Aβ40, Aβ42,
T-tau, 34.9, 26, 23.6 fM [39]

SERS Aβ42 oligomers, Tau 3.7 × 10−2 nM
4.2 × 10−4 pM

[40]

IME sensor Aβ40, Aβ42,
T-tau

50.19, 143.44,
12.19 fM [29]

Electrochemistry Aβ40, Aβ42,
T-tau, P-tau181 0.064, 0.012, 0.039, 0.041 pg/mL [30]

Electrochemistry Aβ40, Aβ42,
T-tau, P-tau181 0.072, 0.089, 0.071, 0.051 pg/mL This work

4. Conclusions

In conclusion, we designed and constructed a VG@nanoAu-based printed sensor
based on combining laser etching and inkjet printing technology for the simultaneous de-
tection of four AD blood biomarkers. The decoration of the VG electrode surface with gold
nanoparticles remarkably increased the electroactive surface area and provided antibodies
binding sites. In this printed electrochemical sensing system, a particularly customized elec-
trochemical micro-workstation incorporating four independent control chips was employed
to control and acquire electrochemical signals, which enables the sensor to simultaneously
detect four biomarkers. The printed biosensor displayed outstanding detection perfor-
mance. Consequently, the detection limits of the printed sensing system for Aβ40, Aβ42,
T-tau, and P-tau181, were 0.072, 0.089, 0.071, and 0.051, respectively. In clinical sample
detection, the printed electrochemical sensing system also demonstrated outstanding detec-
tion results. Therefore, this work provides a new detection method for early diagnosis of
AD based on multiple blood biomarkers, and has broad application prospects in the field
of combined diagnosis of multifactorial diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
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four AD biomarkers.
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