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Abstract: Drug resistance in cancer is associated with overexpression of the multidrug resistance
(MDR1) gene, leading to the failure of cancer chemotherapy treatment. Therefore, the establishment
of an effective method for the detection of the MDR1 gene is extremely crucial in cancer clinical
therapy. Here, we report a novel DNA biosensor based on an aligned multi-walled carbon nanotube
(MWCNT) array modified electrode with 3D nanostructure for the determination of the MDR1 gene.
The microstructure of the modified electrode was observed by an atomic force microscope (AFM),
which demonstrated that the electrode interface was arranged in orderly needle-shaped protrusion
arrays. The electrochemical properties of the biosensor were characterized by cyclic voltammetry
(CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS).
Chronocoulometry (CC) was used for the quantitative detection of the MDR1 gene. Taking advantage
of the good conductivity and large electrode area of the MWCNT arrays, this electrochemical DNA
sensor achieved a dynamic range from 1.0 × 10−12 M to 1.0 × 10−8 M with a minimal detection limit
of 6.4 × 10−13 M. In addition, this proposed DNA biosensor exhibited high sensitivity, selectivity,
and stability, which may be useful for the trace analysis of the MDR1 gene in complex samples.

Keywords: multidrug resistant gene; multi-walled carbon nanotube array; electrochemical DNA
biosensor; 3D sensing interface

1. Introduction

Cancer is one of the leading causes of death, and has become a serious threat to
human health worldwide in recent years. Multidrug resistance (MDR) is the main factor
leading to the failure of chemotherapy, which has been one of the most effective cancer
treatments [1]. The over-expression of the human MDR1 gene, which encodes a plasma
membrane multidrug efflux transporter P-glycoprotein (P-gp), was believed to be the
main reason for MDR [2]. P-gp uses the energy released from ATP hydrolysis to efflux
drugs across cell membranes, leading to a decrease in the intracellular concentration of
anticancer drugs [3]. The expression of MDR1 is mainly determined by regulatory changes
in the transcription or stability of MDR1 mRNA [4]; therefore, the detection of mRNA is
particularly important for the study of the level of MDR of tumor cells, thus providing
important guidance for cancer chemotherapy in clinical treatment [5]. Taking into account
the instability of mRNA, the corresponding cDNA obtained by reverse transcription was
used as the detection target for the purposes of our study.

Various techniques have been adopted to detect MDR, including reverse transcriptase
polymerase chain reaction (RT-PCR) [6], western blot [7], northern blot [8], slot blot [9],
immunocytochemistry [10], and flow cytometry [11]. The classical methods have many
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limitations and shortages, such as being expensive, complicated to operate, and time-
consuming, as well as having low sensitivity. A more convenient method was demanded
for MDR detection. The electrochemical DNA biosensor has received considerable attention
due to its excellent performance, which is suitable for the rapid, sensitive, and specific
detection of DNA [12–17]. Currently, various electrochemical DNA biosensors have been
reported for the analysis of the human MDR1 gene [18–21].

Nanomaterials have been widely used in biological sensing research due to their
extraordinary properties. Electrochemical biosensors modified with nanomaterials demon-
strate greatly improved performance. Carbon nanotubes, especially, as a traditional nano-
material, have a high specific surface area and good conductivity and biocompatibility, all
of which make them most suitable for modification with biosensors [22–27]. Among carbon
nanotubes, multi-walled carbon nanotubes (MWCNTs) are cheap and generally available
industrial products that can reduce the cost of a biosensor.

In this paper, an electrochemical DNA biosensor based on the modification of MWCNT
arrays has been designed and constructed, one depending on electrochemical sensing
technology and nano techniques for the effective detection of the human MDR1 gene. The
approach to the construction and detection of the biosensor is shown in Figure 1. The amino
groups were linked to the gold electrode (AuE) by means of a reaction with the cysteamine
via Au-S bond, and then connected with the carboxylic MWCNTs by amide linkage to
form an aligned MWCNT-array modified electrode. The 5’ end-labeled capture-probe
ssDNA with amino group was immobilized at the end of the carboxylic MWCNT pipe by
amide bond formation, and then the surface of bare gold was blocked with 6-Mercapto-1-
Hexanol (MCH) to construct the DNA biosensor. The sequence of probe ssDNA is set as a
complementary strand of cDNA in order to achieve the highly selective detection of cDNA.
In the further study of the real sample assay, the total RNAs were extracted after genome
elimination and then reversed to cDNA using a commercial kit, after which the reversed
cDNA was detected using our proposed method. In this way, the MDR1 mRNA could be
indirectly detected with robustness.
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The MWCNT array’s modified electrodes have certain advantages, as follows. First,
MWCNTs vertical to the substrate were orderly arranged to form a three-dimensional array,
which can greatly extend the surface area of the electrode and then increase the loading
of probe ssDNA to improve the sensitivity of the biosensor. Second, MWCNTs with high
electronic conductivity formed electron transmission channels connecting the probe ssDNA
and the gold electrode, which can accelerate the electronic transfer of the biosensor. Third,
the biocompatibility of MWCNTs was beneficial in maintaining the biological activities
of the probe ssDNA. Fourth, a covalent bond between the probe ssDNA and the gold
electrode constructed a more stable sensing interface, which can improve the stability and
reproducibility of the biosensor.

2. Materials and Methods
2.1. Chemicals and Reagents

Multi-walled carbon nanotubes (MWCNTs, diameter: 10–20 nm, length: 5–15 µm),
cysteamine, dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethyl aminopropyl) carbodi-
imide (EDC), and N-Hydroxysuccinimide (NHS) were purchased from Aladdin (Shanghai,
China). Hexaammineruthenium chloride (RuHex) and 6-Mercapto-1- Hexanol (MCH) were
purchased from Sigma (St. Louis, MO, USA). H3PO4, K3[Fe(CN)6] and K4[Fe(CN)6]·2H2O
were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).

All oligonucleotides used in this work were synthesized and purified by TaKaRa Inc.
(Dalian, China), and the sequences are shown in Table 1.

Table 1. Synthetic oligonucleotide sequences.

Synthetic Oligonucleotide DNA Sequences

Probe ssDNA-1 (P1) 5’-NH2-(CH2)6-TTC CTT CTT ATC TTT TTC ACT TTT ATT GTT-3’
Probe ssDNA-2 (P2) 5’-SH-(CH2)6-TTC CTT CTT ATC TTT TTC ACT TTT ATT GTT-3’

Complementary ssDNA 5’-AAC AAT AAA AGT GAA AAA GAT AAG AAG GAA-3’
One-base mismatch ssDNA 5’-AAC AAT AAA AGT GAA AGA GAT AAG AAG GAA-3’

Non-complementary ssDNA 5’-CGA CCG TGC CTC AGC CTG CTA TCA CTA CCG-3’

The buffer solutions used in this study were as follows: the buffer for immobilization
of the probe ssDNA contained 10 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid
(EDTA), and 1 M NaCl (pH 8.0). The hybridization buffer was a 10 mM phosphate buffer
solution (PBS) containing 1 M NaCl (pH 7.4).

2.2. Preparation of Carboxylic MWCNTs

Commercial MWCNTs are about 5–15 µm long and have chemical inertia. Therefore,
they should be cut off in a strong acid solution and modified by a carboxyl group at the
open end before use in electrode modification. The acidization process is as follows [28].
The mixed-acid solution of H2SO4 (98%) and HNO3 (70%) was prepared in a volume ratio
of 3:1 and then commercial MWCNTs were added to the mixed acid. Ultrasonic dispersal
of the suspension for 30 min at room temperature then ensued, followed by raising the
temperature to 60 ◦C; it was then kept at this temperature for 4 h under ultrasonic vibra-
tion. The product was poured into double-steamed water and filtered with a 0.22 mm
microporous membrane, and then repeatedly washed with double-steamed water until
pH was neutral, and subsequently vacuum-dried 24 h at 60 ◦C. SEM images (Figure S1
in Supplementary Materials) and AFM images (Figure S2 in Supplementary Materials) of
commercial MWCNTs and acid-treated MWCNTs shows that the MWCNTs were success-
fully cut off. The stretching vibration band of carbonyl in the IR spectrum indicates that the
Carboxylation of the MWCNTs (Figure S3 in Supplementary Materials).

2.3. Preparation of Amino-Modified AuE

Amino-modified AuE was prepared by reaction with cysteamine via the Au-S
bond [29,30]. AuE was successively ultrasonicated in a piranha solution (H2SO4/H2O2:
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3/1) and doubly distilled water at room temperature for 10 min before being wet polished
to mirror-like surface with alumina slurry of 0.3 and 0.05 mm. The electrode was then
successively ultrasonically cleaned by 1:1 nitric acid, acetone, and doubly distilled water,
respectively. The pre-processed AuE was immersed in an ethanol solution containing 1 mM
cysteamine at room temperature for 24 h, then cleaned with doubly distilled water and
dried with nitrogen.

2.4. Preparation of MWCNTs/AuE

MWCNTs/AuE were prepared by reaction of carboxylic MWCNTs and amino-modified
AuE in the presence of DCC as the coupling agent [29,30]. A quantum of 10 mg carboxylic
MWCNTs and 20 mg DCC were added to 10 mL of N, N- dimethylformamide (DMF), and
then subjected to ultrasonic dispersion at room temperature for 10 min; MWCNTs/AuE were
obtained by soaking amino-modified AuE in the mentioned solution at 60 ◦C for 9 h, and then
cleaning with doubly distilled water and dried with nitrogen. The effects of reaction time on
the modification of MWCNTs were as shown in Figure S4 in Supplementary Materials.

2.5. Preparation of ssDNA/MWCNTs/AuE

MWCNTs/AuE were immersed in a mixture solution of EDC and NHS at room
temperature for 30 min to activate the carboxyl groups that were located at the end of
the carboxylic MWCNTs pipe, washed with doubly distilled water, and then dried with
nitrogen to reserve. Dropwise, 4 µL 5 µM amino-modified probe ssDNA-1 (P1) was added
to the surface of the AuE at room temperature for 1.5 h to form an amide bond with carboxyl
groups of MWCNTs. The probe ssDNA was covalently linked onto the pipe end of the
MWCNTs. The gold electrode modified with ssDNA was immersed in blocking buffer
containing 200 µL MCH at room temperature for 1 h to block the bare gold surface, and
then washed with doubly distilled water and dried with nitrogen. Finally, we obtained
a DNA biosensor marked as ssDNA/MWCNTs/AuE. Effects of the reaction time and
probe concentration of the probe ssDNA immobilization were as shown in Figure S5 in
Supplementary Materials.

2.6. Hybridization of the DNA Biosensor

The hybridization procedure was performed by immersing the ssDNA/MWCNTs/
AuE in 10 mM PBS containing target ssDNA at 40 ◦C for 1 h to form double-stranded
DNA (dsDNA). The hybridized electrode was rinsed with doubly distilled water to re-
move the nonspecifically adsorbed ssDNA. The electrode obtained was marked as ds-
DNA/MWCNTs/AuE. Effects of hybridization temperature and hybridization time were
as shown in Figure S6 in Supplementary Materials.

2.7. Instrument and Apparatus

A traditional three-electrode system had been set up for the electrochemical charac-
terization in which the modified electrode, the Ag/AgCl electrode, and platinum wire
electrode were used as the working electrode, reference electrode, and auxiliary electrode,
respectively. Electrochemical measurements for cyclic voltammogram (CV), electrochem-
ical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and chrono-
coulometry (CC) were performed on an Autolab PGSTAT302F electrochemical workstation
(Metrohm, The Netherlands).

2.8. Quantitative Analysis of Chronocoulometry

The modified electrode was immersed in a pH 7.4 Tris-HCl buffer containing 50 µM
[Ru(NH3)6]Cl3 for 30 min and then the charge on the electrode surface was measured
by chronocoulometry. Perform CC readouts indicated the following parameters: initial
potential: 0.2 V; final potential: −0.5 V; pulse width: 0.25 s; sample interval: 0.002.
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3. Results and Discussion
3.1. Morphology Characterization of MWCNTs/AuE

In order to observe the surface morphology of the MWCNTs array modified electrode
more intuitively, we used a detachable gold electrode in the experiment. MWCNTs/AuE was
prepared according to the method mentioned above in Section 2. After the electrode was
modified, the gold sheet could be disassembled and used directly for AFM characterization.

The morphology of the surface of MWCNTs/AuE was as shown in Figure 2; the or-
dered needle-shaped protrusion arrays on the surface of the MWCNTs/AuE indicated that
the carboxyl group of MWCNTs located in the end of the tube pipe had been successfully
connected to the amino-modified AuE. The MWCNTs remain upright on the gold surface,
and an ordered three-dimensional array nanostructure is constructed, greatly extending
their specific area and increasing the loading of probe ssDNA, which will improve the sensi-
tivity of the biosensor. The covalent bonds between MWCNTs and gold surfaces are much
stronger than those of the molecular forces, and the electrostatic force contributed to the
building of a more stable sensing interface, which improved the stability and reproducibil-
ity of the biosensor. The MWCNT arrays on the gold’s surface formed a conducting layer
with a thickness of about 50 nm, according to the AFM images. MWCNTs are conductor
wires that connect probe ssDNA and the gold’s surface directly to accelerate the electron
transfer of the electrode surface. The space between MWCNTs can be an accelerated mass
transfer process, which contributes to the rapid detection of the biosensor.
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3.2. Electrochemical Characterization

Cyclic voltammogram (CV), differential pulse voltammetry (DPV), and electrochemi-
cal impedance spectroscopy (EIS) were employed to explore the electrochemical features
of the modified electrode’s surface. Electrochemical characterization was performed in an
aqueous solution containing 0.1 M KCl and 10 mM K3[Fe(CN)6]/K4[Fe(CN)6].

CVs in the potential range of −0.4 to 0.8 V are shown in Figure 3. Two well-defined
redox peaks were observed at AuE and MWCNTs/AuE, respectively (curves a and b); the
peak potential differences increased and the peak electric current decreased accordingly
when probe ssDNA was immobilized (ssDNA/MWCNTs/AuE, curve c), and the peak elec-
tric current decreased further after hybridization with target ssDNA (dsDNA/MWCNTs/
AuE, curve d). This result indicated that the negatively charged DNA phosphate skele-
ton is blocked by the electronegative [Fe(CN)6]3−/4−, forming an electron-transfer and
mass-transfer blocking layer to inhibit the reaction on the electrodes.
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Figure 3. Cyclic voltammogram diagram of modified electrodes in different states. AuE (a, black),
MWCNTs/AuE (b, red), ssDNA/MWCNTs/AuE (c, green), and dsDNA/MWCNTs/AuE (d, blue).

The construction processes of the modified MWCNT array electrode were further
confirmed by DPV analysis, as shown in Figure 4. A similar phenomenon was observed
in DPVs in the potential range of −0.1 to 0.5 V; the peak electric current decreased greatly
with increased amounts of DNA on the electrode’s surface.
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Figure 4. Differential pulse voltammetry diagram of modified electrodes in different states. AuE (a,
black), MWCNTs/AuE (b, red), ssDNA/MWCNTs/AuE (c, green), and dsDNA/MWCNTs/AuE
(d, blue).

EIS was used to track the conductivity of different sensing interfaces for stepwise
modification processes. A typical impedance spectrum plot was created, including two
parts presented in the form of the Nyquist plot. The semicircle at higher frequencies corre-
sponds to the electron transfer process, and the linear tail at lower frequencies corresponds
to the diffusion process. The electron-transfer resistance Ret is represented by the diameter
of the semicircle, which is the most sensitive parameter with respect to changes in the
electrode’s interface.

Figure 5 shows the impedance spectra of different modified electrodes. A Small
Ret was observed with the AuE (curve a), and the Ret was further reduced when the
MWCNTs were assembled on the AuE, because of the good conductivity of MWCNTs and
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the increment of the specific surface area, which accelerated the electron transfer of the
electrode’s surface (MWCNTs/AuE, curve b). After immobilization of the probe ssDNA,
Ret suddenly increased to 828 Ω (curve c) due to the rejection of DNA phosphate skeleton
being negatively charged with electronegative [Fe(CN)6]3−/4−, impeding the transmission
of electrons on the electrode’s surface. When the target ssDNA was hybridized with the
probe ssDNA to form dsDNA, Ret increased further to 1694 Ω due to more electronegative
DNA being linked to the electrode surface (curve d). These results indicated that the DNA
biosensor had been successfully built and could be hybridized with the target ssDNA
as expected.
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3.3. RuHex and Quantitative Analysis of Chronocoulometry

As shown in Figure 6A, the phosphate backbone of DNA is negatively charged.
RuHex with a positive charge can be combined with the DNA phosphate skeleton by
electrostatic force, which can be used as an electrochemical hybridization indicator [31,32].
Chronocoulometric interrogation of the redox reaction of RuHex quantitatively reflects the
number of DNA strands located at the electrode’s surface. Figure 6B shows the schematic
diagram of the probe ssDNA capturing target ssDNA. With the capture of the target ssDNA,
the number of DNA strands localized at the electrode surface increased, and the amount of
adsorbed RuHex also increased. After DNA hybridization, a stronger peak current signal
can be seen on the CV curve (Figure 6C). The chronocoulometry (CC) can produce stronger
signals than can the CV method in the system with RuHex as hybridization indicator [31].
As shown in Figure 6D, the CC curves showed significant differences before and after
hybridization, indicating an increase in the electrode’s surface charge. The calculation of
the electric quantity Q refers to the literature. [33,34]. The charge increment ∆Q is related
to the amount of target ssDNA captured, which is associated with the concentration of the
target ssDNA in solution. Therefore, CC was employed for the quantitative analysis of the
target ssDNA.
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3.4. Signal Amplification of MWCNTs Modification

ssDNA/AuE and ssDNA/MWCNTs/AuE were used to investigate the signal amplifi-
cation of MWCNTs modification. ssDNA/AuE was prepared by dropping the mercapto-
modified probe ssDNA-2 (P2) onto AuE, which can be linked to the gold electrode surface
by the formation of Au-S bonds. ssDNA/MWCNTs/AuE was prepared according to
Figure 1. The hybridization procedure was carried out by immersing the electrodes in
10 mM PBS containing 1nM complementary ssDNA at 40 ◦C for 1 h.

Electric quantity increments (∆Q) of DNA hybridization related to the loading of the
probe ssDNA and to the concentration of the target ssDNA. Under an equal concentration
of target ssDNA, the higher ∆Q means higher loading of the probe ssDNA.

Figure 7A shows a schematic diagram of the probe ssDNA loaded on the electrode’s
surface. When the probe ssDNA is directly bonded to the surface of the gold electrode,
the loading capacity is limited by the steric hindrance of DNA and the specific surface
area of the electrode. When MWCNTs are bonded on the surface of the gold electrode,
MWCNTs of different lengths form uneven 3D sensing interfaces, which greatly increases
the specific surface area and eases the steric hindrance of DNA, thus increasing the load of
the probe ssDNA.

The ∆Qs of the ssDNA/AuE and ssDNA/MWCNTs/AuE are shown in Figure 7B. The
∆Q increased to five times after the modification of the MWCNTs due to the high loading
of the ssDNA probes caused by the increase in the specific surface area. The amplification
of the electrochemical signal can greatly improve electrical responses and the detection
sensitivity of the biosensor, which was beneficial for the detection of trace amounts of the
MDR1 gene.
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3.5. Specificity and Reproducibility of DNA Biosensor

Specificity is a key factor in the evaluation of the performance of a biosensor. Biosensor
specificity experiments were performed using a concentration of 0.1 nM complementary
sequence (a), one-base mismatch sequence (b), and non-complementary sequence (c) sep-
arately hybridized with probe ssDNA, and then measured by CC. As shown in Figure 8,
∆Q after hybridization of the one-base mismatch sequence and the non-complementary
sequence corresponded to 39.25% and 5.61% of the complementary sequence, respectively.
These results indicate that the DNA biosensor we built had a good specificity in distin-
guishing the MDR1 gene from even a single-base mismatched sequence.
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Figure 8. ∆Q of ssDNA/MWCNTs/AuE after hybridization with complementary sequence (a),
one-base mismatch sequence (b), and noncomplementary sequence (c).

To evaluate the reproducibility of the DNA biosensor, a 1 nM complementary target
solution was used in parallel experiments five times; the relative standard deviation
of measurements is 5.3%, showing that the fabricated DNA biosensor performed with
high reproducibility.

3.6. Quantitative Analytical Performance

Under optimal conditions, the quantitative analysis of the DNA biosensor was in-
vestigated using the probe ssDNA to hybridize with the different concentrations of the
target ssDNA sequences. Figure 9 shows the CC curves of DNA/MWCNTs/AuE at var-
ious concentrations of complementary target ssDNA. As expected, the electric quantity
increased with the concentration of the complementary target ssDNA. The ∆Q were linear
with the logarithm of the complementary target ssDNA concentrations in the range from
1.0 × 10−12 M to 1.0 × 10−8 M, with a detection limit of 6.4 × 10−13 M. The linear equation
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is ∆Q = 0.1561lgCDNA + 2.0524. The result shows that the proposed DNA sensor has good
analytical performance in the detection of the MDR1 gene.
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Figure 9. (A) CC curves of different concentrations of complementary ssDNA (from a to f: 0, 10−12,
10−11, 10−10, 10−9 and 10−8 M); and (B) the standard curve of the biosensor.

The linear range and detection limit of this DNA biosensor was compared with those
published in previous similar work (Table 2), showing that the proposed DNA biosensor
has good analytical performance for specific sequences of DNA detection.

Table 2. Comparison of the linear ranges and detection limits of the different electrochemical
DNA sensors.

Modified Electrodes Detection
Method Linear Range (M) LOD (M) Ref.

DNA-Tb(QS)3 DPV 3.0 × 10−8–1.85 × 10−7 2.1 × 10−8 [12]
DNA/GO/CoFe2O4/ZnAl-LDH/FTO DPV 2.0 × 10−7–1.0 × 10−5 1.0 × 10−9 [13]

Ni-MOF composite/AuNPs/CNTs DPV 1.0 × 10−8–1.0 × 10−6 1.3 × 10−10 [14]
lambda exonuclease EIS 1.0 × 10−10–2.0 × 10−8 4.2 × 10−11 [15]

Au NPs/TB–GO/GCE DPV 1.0 × 10−11–1.0 × 10−9 2.9 × 10−12 [19]
DNA/MWCNTs/Cys/AuE CC 1.0 × 10−12–1.0 × 10−8 6.4 × 10−13 This work

4. Conclusions

This work has designed and constructed a novel three-dimensional electrochemical
DNA biosensor for rapid detection of the MDR1 gene based on a modified MWCNT array
electrode. The surface morphology of the modified electrode has been investigated by AFM.
CV, DPV, and EIS were employed to explore the electrochemical features of the electrode.
CC was used for quantitative analysis of the MDR1 gene. Under optimal conditions, the
increases in electric quantity were linearly related to the logarithm of the target ssDNA
concentrations from 1.0 × 10−12 M to 1.0 × 10−8 M, with a detection limit of 6.4 × 10−13 M
(S/N of 3). The biosensor has high specificity, sensitivity, and stability. To further evaluate
the application potential of the DNA biosensor, future research should focus on applications
in clinical diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios13080764/s1, Figure S1: SEM images of commercial MWCNTs
(A) and acid-treated MWCNTs (B); Figure S2: AFM images of commercial MWCNTs and acid-
treated MWCNTs; Figure S3: IR spectra of commercial MWCNTs (a) and acid-treated MWCNTs (b);
Figure S4: The effects of reaction time on the modification of MWCNTs; Figure S5: The effects of the
reaction time (A) and probe concentration (B) of the probe DNA immobilization on the response of
the biosensor; Figure S6: The effects of hybridization temperature (A) and hybridization time (B) on
the response of the biosensor.
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