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Abstract: A flow-through biosensor system for the determination of uric acid was developed on the
platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and
equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the in-
ner surface of a replaceable reactor chamber. Its working volume was reduced to 10 µL against a previ-
ously reported similar cell. SPE was modified independently of the enzyme reactor with carbon black,
pillar[5]arene, poly(amidoamine) dendrimers based on the p-tert-butylthiacalix[4]arene (PAMAM-
calix-dendrimers) platform and electropolymerized 3,7-bis(4-aminophenylamino) phenothiazin-5-
ium chloride. Introduction of the PAMAM-calix-dendrimers into the electrode coating led to a fivefold
increase in the redox currents of the electroactive polymer. It was found that higher generations of
the PAMAM-calix-dendrimers led to a greater increase in the currents measured. Coatings consisted
of products of the electropolymerization of the phenothiazine with implemented pillar[5]arene and
PAMAM-calix-dendrimers showing high efficiency in the electrochemical reduction of hydrogen
peroxide that was formed in the enzymatic oxidation of uric acid. The presence of PAMAM-calix-
dendrimer G2 in the coating increased the redox signal related to the uric acid assay by more than
1.5 times. The biosensor system was successfully applied for the enzymatic determination of uric acid
in chronoamperometric mode. The following optimal parameters for the chronoamperometric deter-
mination of uric acid in flow-through conditions were established: pH 8.0, flow rate 0.2 mL·min−1,
5 U of uricase per reactor. Under these conditions, the biosensor system made it possible to determine
from 10 nM to 20 µM of uric acid with the limit of detection (LOD) of 4 nM. Glucose (up to 1 mM),
dopamine (up to 0.5 mM), and ascorbic acid (up to 50 µM) did not affect the signal of the biosensor
toward uric acid. The biosensor was tested on spiked artificial urine samples, and showed 101%
recovery for tenfold diluted samples. The ease of assembly of the flow cell and the low cost of
the replacement parts make for a promising future application of the biosensor system in routine
clinical analyses.

Keywords: flow-through analysis; chronoamperometry; electrochemical biosensor; replaceable
reactor; uricase; PAMAM-calix-dendrimers

1. Introduction

In recent years, electrochemical enzyme biosensors have been widely used for the
analysis of food industry facilities [1] in the monitoring of environmental pollution, e.g.,
pesticides [2], heavy metal ions [3], and other toxins in fresh and waste waters. Enzymatic
methods of analysis are also broadly applied in biochemistry and medicine to determine
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drugs [4] and clinical markers [5,6] in blood and other biological fluids. The peculiarity of
enzymes as elements of biological recognition stems from their high selectivity, and the
selectivity of enzymes as biorecognition elements, in comparison with other catalysts, make
them attractive in the determination of bioactive substances.

To assemble biosensors, many different materials have been considered as mediators
of electron transfer or analyte–receptors. Pillar[n]arenes, which consist of hydroxyquinone
or its derivatives, linked by methylene bridges at 2,5-positions, are one of the prospect
modifiers mentioned [7]. They have a rigid architecture and hydrophobic electron-donating
cavity that can bind various analyte molecules according to the “guest-host” principle.
This allows for their use in various nanocomposites [8,9], in molecular recognition [10,11],
chemosensor assembling [12,13], ion transportation [14], and the assembling of supramolec-
ular polymers [15]. Literature reports the use of pillar[n]arenes in smart materials [16],
drug release systems [17], as adsorbents [18], in chemical catalysis [19] and, most widely, in
chemical sensors, because pillar[5]arenes are electrochemically active and exhibit mediator
properties in electrode reactions [20].

Calix[n]arenes are another class of macrocyclic compounds frequently used in sensor
development. They have attracted much interest due to their ability to form host–guest
complexes and act as receptors for cations, anions or neutral molecules interacting with
functional groups of substituents at upper and lower rims of the macrocycles [21,22]. The
formation of various stereoisomeric forms and simple functionalization make calixarenes
a universal building platform for the creation of receptors, extractants, and colloidal sys-
tems sensitive to external stimuli [23,24]. Thiacalix[4]arenes are the most actively used
among the derivatives of calix[4]arenes [25]. Four sulfur atoms replacing methylene link-
ers lead to changes in the properties of the macrocycle. Namely, the size of the cavity
increases. The modification becomes easier, and the structure becomes more flexible with
a wider range of conformational configurations [26]. There are numerous cases of the
application of calix[n]arenes and thiacalix[4]arenes as parts of electrochemical sensors, e.g.,
in DNA sensors [27], those for the determination of metal ions [28], dopamine [29] and
serotonin [30].

Electroactive polymers, synthesized directly on the surface of electrodes from phenoth-
iazine dyes by electropolymerization, combine mediator properties [31] and the ability to
collect analytes due to non-covalent interactions and their inclusion in the polymer matrix.
Phenothiazine dyes are among the best candidates for use in electrochemical biosensors
due to the variety of electrochemical activities associated with the heteroaromatic core and
the electron-donating properties of the sulfur heteroatom [32]. In addition, the polymer
materials promote a reduced influence of the interferences, when signals are measured
directly in the sample of interest, and the expansion of the linear range of the concentrations
determined with biosensors [33]. To increase the efficiency of electrochemical polymeriza-
tion, a preliminary modification of monomers can be carried out [34]. The efficiency of
polymeric forms of the phenothiazine dyes in the assembly of biosensors has been proved
on the example of the immobilization of glucose oxidase and uricase on the poly(thionine)
film [35].

The combination of the modifiers described above in the composition of electrochemi-
cal sensors can increase sensitivity and reduce LOD for the determination of analytes.

Uric acid (7,9-dihydro-1H-purine-2,6,8(3H)-trione) is the final metabolite of purines in
humans and an important clinical biomarker [36]. Normal serum uric acid concentration
is 149–416 µM for men and 89–357 µM for women [37]. An increase in uric acid levels
above 420 µM indicates hyperuricemia [38] and can be a symptom of gout, pneumonia [39],
and leukemia [40]. Therefore, the determination of uric acid in biological fluids can be
used for early diagnosis of the above-mentioned diseases. It is determined by various
traditional methods, i.e., high-performance liquid chromatography [41], colorimetry [42],
and chemiluminescent capillary electrophoresis [43]. However, these methods require
time-consuming sample preparation and are available only in specialized laboratories
equipped with expensive instruments.
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In this work, we have developed a flow-through biosensor system for the determina-
tion of uric acid based on a compact electrochemical cell with a replaceable reactor. Uricase
was immobilized on its inner surface by carbodiimide binding. The cell was designed and
manufactured by 3D printing from poly(lactic acid). This cell is an improved version of the
cell from the flow-through system previously presented in [44,45]. The new design changed
the flow cell toward miniaturization, easier manufacture, maintenance, replacement of
structural parts, and, as a result, simpler application for the end-user. SPEs modified with
carbon black (CB), pillar[5]arene, PAMAM-calix-dendrimers, and poly(arylphenothiazine)
were used as a sensing element of the system. The modification of the electrode significantly
increased sensitivity and decreased the LOD of uric acid.

2. Materials and Methods
2.1. Reagents

Uricase from Candida sp. (EC 1.7.3.3, lyophilized powder, ≥2 U/mg solid, Product
No. U0880), polyallylamine, uric acid, poly(lactic acid), N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide chloride (EDC), N-hydroxysuccinimide (NHS) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Pillar[5]arene (Figure 1a) [46], 3,7-bis(4-aminophenylamino)
phenothiazin-5-ium chloride (PhTz-(NH2)2) (Figure 1b) [47], PAMAM-calix-dendrimers
G0 [48], G1 [49], G2 [50] (Figure 2) were synthesized using literature methods. CB (ENSACO
250G, >99.95% C) was purchased from Imerys Graphite & Carbon (Willebroek, Belgium).
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All working solutions were prepared using Millipore Q® water (Simplicity® wa-
ter purification system, Merck-Millipore, Molsheim, France). Other reagents were of
analytical grade.

Artificial urine contained 10 mM CaCl2, 6 mM MgCl2, 6 mM Na2SO4, 2 mM potassium
citrate, 20 mM KH2PO4, 21 mM KCl, 18 mM NH4Cl, 9 mM creatinine and 416 mM urea [51].

Electrochemical measurements were performed in 0.01 M phosphate buffer containing
0.1 M NaCl.

2.2. Screen-Printed Electrodes Manufacture and Modification

SPEs were produced on the DEC 248 printer (DEK, London, UK) as described else-
where [45]. The electrode set made on a polycarbonate sheet had dimensions of 11 × 27 mm
and contained a working electrode with a working area of 3.8 mm2, an auxiliary electrode,
and a Ag pseudo-reference electrode (see Figure 3(4)). Modification of the working electrode
was carried out by dropping onto it 1 µL of a propylene carbonate suspension containing
0.66 mg·mL−1 CB (pre-oxidized with nitric acid) and 10 mM pillar[5]arene. It was then
dried at 100 ◦C. On the top of the resulting layer, 1 µL of 1 mM PAMAM-calix-dendrimer
in ethanol was cast and the electropolymerization of 0.1 mM PhTz-(NH2)2 was carried
out. The electropolymerization was performed by multiple cycling of the potential in the
conditions established previously [52]. Fifteen potential sweep cycles were applied.
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2.3. Design and Mounting of Flow-Through Cell and Uricase Immobilization

The flow-through cell was prepared using Wanhao Duplicator 9/300 (Jinhua Wan-
hao Spare Parts Co., Wanhao, Hangzhou, China) with single extruder (nozzle diameter
0.3 mm) from the poly(lactic acid) filaments. Layer thickness was 0.1 mm and printing
rate 70 mm s−1. The printing temperature was 220 ◦C. The design of the flow-through cell
is shown in Figure 3. The cell consisted of two components secured by two screws with
corresponding flat washers and nuts. At the base of the cell, there was a rectangular cutout
for fixing the electrode. The rectangular reactor contained two channels equipped with
plastic tubes with stainless needles for pumping solutions through the cell. The reactor
was placed in a rectangular cutout in the cell lid, positioned at an angle of 30◦ to ensure
precise placement of the reactor chamber on the working electrode. A cavity at the bottom
of the reactor, 0.6 mm deep and 17 mm2 in area, served as a working cell. The inner surface
of the cavity was used to immobilize the enzyme. This cell is an improved version of
the flow-through cell with a replaceable reactor that previously showed its efficiency in
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biosensor designs [44,45]. To immobilize uricase, the reactor was first fixed upside down.
Then, 5 µL of 100 mM EDC and 5 µL of 400 mM NHS were dropped onto the inner surface
of the reactor. After a 10-min. incubation, the reactor was washed with deionized water.
After that, 5 µL of the enzyme solution containing 5 U of uricase were placed into the same
cavity and left at room temperature for 60 min. The immobilization occurred through the
carbodiimide reaction with a formation of covalent bonds between activated terminal car-
boxyl groups of poly(lactic acid) of the reactor and the amino groups of enzyme molecules.
Finally, the reactor was carefully washed with deionized water.

2.4. Biosensor Signal Measurement

The flow-through cell with SPE was assembled, then the buffer or a solution containing
uric acid were alternately pumped through it using a Model 100 syringe pump (ALS, Tokyo,
Japan). Currents corresponding to the reduction of the enzymatic reaction products were
recorded in chronoamperometric mode using a BioStat multichannel potentiostat with
dedicated software BIOSTAT version 2.1.3 (ESA Biosciences, Inc., Chelmsford, MA, USA).
Cyclic voltammograms were recorded using the CHI 660E electrochemical workstation
with dedicated software CHI version 14.08 (CH Instruments, Austin, TX, USA). Statistical
treatment of the results was carried out using the OriginPro 8.1 application (OriginLab
Corp., Northampton, MA, USA).

3. Results
3.1. Electrochemical Properties of PhTz-(NH2)2 Polymerized on Modified SPE

Phenothiazine dyes have shown their effectiveness for use in electrochemical biosen-
sors [53–55]. The functionalization of these compounds with additional groups changes
their properties and can affect the performance of appropriate sensors. The formation of
electropolymerization products of PhTz-(NH2)2 has been previously reported [52]. The
electropolymerization of phenothiazines involves depositing a dense thin film with high
adhesion to the electrode surface that exhibits a significant redox response in a certain
potential range.

To increase the efficiency of the PhTz-(NH2)2 electropolymerization, the electrodes were
preliminarily modified with pillar[5]arene and PAMAM-calix-dendrimers. Pillar[5]arene has
proven to be an effective electron transfer mediator. However, direct adsorption of pil-
lar[5]arene onto a carbon electrode leads to its rapid inactivation due to the chemisorption
of intermediate oxidation products [56]. Therefore, it is usually included in the surface
layer together with a carbon material that acts as a carrier of the macrocycle and increases
the effective surface area of an electrode. We used CB as a carbon matrix. To increase its
dispersibility, CB was pre-oxidized and dispersed in propylene carbonate together with
pillar[5]arene. The use of propylene carbonate made it possible to apply pillar[5]arene to-
gether with CB from a single aliquot according to the “one-pot synthesis” approach. Fifteen
cycles of the potential were applied in the stage of the PhTz-(NH2)2 electropolymerization
performed in the presence of pillar[5]arene. The anodic currents in the potential range
from −0.4 to 0.2 V and cathodic currents in the potential range from −0.1 to −0.7 V were
more than three times greater than those obtained with the coating without pillar[5]arene.
This can be due to reversible oxidation of pillar[5]arene together with the products of
the electropolymerization (Figure 4). To increase the efficiency of electropolymerization,
PAMAM-calix-dendrimers were implemented into the composition of the surface layer.
Changes in cyclic voltammograms during the electropolymerization of PhTz-(NH2)2 re-
sulted from the additional modification of the electrodes with PAMAM-calix-dendrimer
G2 (Figure 2c), as shown in Figure 4(4).
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Figure 4. Cyclic voltammograms, 15 cycles, recorded in the presence of 0.1 mM PhTz-(NH2)2 during
electropolymerization on SPE modified with: (1) unmodified SPE; (2) CB; (3) CB and pillar[5]arene;
(4) CB, pillar[5]arene and PAMAM-calix-dendrimer G2. Measurements in 0.01 M phosphate buffer +
0.1 M NaCl, pH = 7.0, 100 mV/s.

The implementation of the PAMAM-calix-dendrimers into the surface layer increased
the peak currents of the electropolymerized PhTz-(NH2)2. Moreover, the peak currents grew
with the increasing generation of the number of the PAMAM-calix-dendrimers from G0 to
G2 (Figure 5). In comparison, similar experiments were also performed with polyallylamine
containing the same functional primary amino groups. Figure 5 shows the dependence
of peak currents on the amount of PAMAM-calix-dendrimers and polyallylamine used
for the modification of the surface layer. For each of the PAMAM-calix-dendrimers, a
maximum was observed on the dependence. With further increase in the amount of the
PAMAM-calix-dendrimers per electrode, the peak currents began to decrease. This can be
due to the physical blocking of the working surface of the electrode with non-conducting
PAMAM-calix-dendrimer molecules. In the case of the PAMAM-calix-dendrimer G2, the
currents of the polymer coating increased more than fivefold compared to the coating
with no PAMAM-calix-dendrimer. Figure 5 shows that the current increased from 11 to
54 µA when using the electrode modification with 1 nmol of the PAMAM-calix-dendrimer
G2. It is worth noting that the introduction of polyallylamine as a polycation instead
of PAMAM-calix-dendrimers did not result in noticeable changes in the peak currents.
This fact indicates that the influence of PAMAM-calix-dendrimers can be explained by the
structure of the PAMAM-calix-dendrimer molecules but not by the charge of amino groups.

The resulting electrode coating demonstrated sensitivity to hydrogen peroxide, which
was used for further development of the biosensor system. Figure 6 shows cyclic voltammo-
grams obtained in a stationary solution (with stopped flow) using the modified electrode in
the presence, and in the absence, of hydrogen peroxide. The presence of hydrogen peroxide
increased the cathodic peak near −0.4 V.
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Figure 5. The dependences of anodic peak currents for PhTz-(NH2)2, electropolymerized onto SPE
modified with CB, pillar[5]arene, a PAMAM-calix-dendrimer or polyallylamine, on the amount of
PAMAM-calix-dendrimer and polyallylamine (expressed in moles of monomer) used for modification.
Anodic peak currents measured in the potential range from −0.4 to 0.2 V. Average ± S.D. of five
individual electrodes. Measurements in 0.01 M phosphate buffer + 0.1 M NaCl, pH = 7.0, 100 mV·s−1.
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Figure 6. Cyclic voltammograms obtained in the absence and in the presence of 0.1 mM hydrogen
peroxide on the SPE modified with CB, pillar[5]arene, PAMAM-calix-dendrimer G2 and electropoly-
merized PhTz-(NH2)2. Measurements in 0.01 M phosphate buffer + 0.1 M NaCl, pH = 7.0, 100 mV·s−1.

3.2. Flow-Through Uricase Biosensor System

To assemble the flow-through biosensor system, SPE modified with CB, pillar[5]arene,
PAMAM-calix-dendrimer and electropolymerized PhTz-(NH2)2 was used. Uricase was
immobilized to the inner side of the replaceable reactor (Figure 3(2)) by carbodiimide
binding. The design of the biosensor system ensures the separation of the immobilization
site from the electrode modification site. This makes the system more flexible for the
enzyme replacement and further modifications of the electrode as a primary transducer of
a biosensor.



Biosensors 2024, 14, 120 8 of 14

In the presence of uric acid, hydrogen peroxide is formed on the inner walls of the
reactor (Equation (1)). Then, it is cathodically reduced on the electrode located at the bottom
of the reactor chamber inside the flow cell.
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The electrochemical response of the sensor to uric acid was measured in chronoamper-
ometric mode by switching the flow of the phosphate buffer and that of uric acid. The uric
acid signal was measured at a constant potential as the maximum change in the current
after the flow switching. Examples of the chronoamperometric response of the biosensor
system to uric acid are presented in Figure 7 for differently modified electrodes.
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Figure 7. Chronoamperometric response recorded with the flow-through biosensor system to 20 µM
uric acid using differently modified SPEs: (1) CB + pillar[5]arene, −0.45 V; (2) CB + pillar[5]arene
+ poly(PhTz-(NH2)2), −0.35 V; (3) CB + pillar[5]arene + PAMAM-calix-dendrimer G2 + poly(PhTz-
(NH2)2), −0.35 V. Measurements in 0.01 M phosphate buffer + 0.1 M NaCl, pH = 8.0. Arrows indicate
switching the flow of the buffer solution to the uric acid solution and vice versa.

Figure 8 shows the dependence of the recorded response of the biosensor system to uric
acid on the electrode potential obtained from the electrodes with different modifications.
The maximum response was observed for the electrode modified with CB, pillar[5]arene,
PAMAM-calix-dendrimer G2 and poly(PhTz-(NH2)2). For it, a signal close to the maximum
can be measured at −0.35 V, which was selected for use in further experiments.

Optimal operation conditions corresponding to the maximal response were established
for the biosensor system. The minimal amount of uricase used for immobilization to
produce a stable and reproduceable response to the uric acid was 5 U per reactor (Figure S1).
The maximum response was observed at phosphate buffer pH = 8.0 (Figure S2). The signal
also increased with the flow rate until stabilization at about 0.2 mL·min−1 (Figure S3).

The dependences of the biosensor system signal on the concentration of uric acid
in the buffer solution obtained under optimal measurement conditions are presented in
Figure 9 for variously modified electrodes. It can be seen that the presence of PAMAM-
calix-dendrimer G2 in the coating increased the redox signal related to the uric acid assay
by more than 1.5 times (dependence 3 compared to 2).
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Figure 8. The dependences of response of the flow-through biosensor system to 20 µM uric acid on
the potential applied to differently modified SPEs: (1) CB + pillar[5]arene; (2) CB + pillar[5]arene
+ poly(PhTz-(NH2)2; (3) CB + pillar[5]arene + PAMAM-calix-dendrimer G2 + poly(PhTz-(NH2)2.
Measurements in 0.01 M phosphate buffer + 0.1 M NaCl, pH = 8.0.
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Figure 9. The dependences of the response of the flow-through biosensor system on the uric
acid concentration obtained with differently modified SPEs: (1) CB + pillar[5]arene, −0.45 V;
(2) CB + pillar[5]arene + poly(PhTz-(NH2)2), −0.35 V; (3) CB + pillar[5]arene + PAMAM-calix-
dendrimer G2 + poly(PhTz-(NH2)2), −0.35 V. Measurements in 0.01 M phosphate buffer + 0.1 M
NaCl, pH = 8.0.

The highest sensitivity and minimal LOD were achieved with the SPEs modified with
CB, pillar[5]arene, PAMAM-calix-dendrimer G2 and poly(PhTz-(NH2)2). Parameters of the
linear regression equation are as follow: ∆I, µA = (0.055 ± 0.001) + (10.69 ± 0.03) × (c, mM),
R2 = 0.9998. This biosensor system allows for the determination of uric acid in the concen-
tration range from 10 nM to 20 µM with the LOD of 4 nM, calculated by 3 σ/S (where σ

is the standard deviation of background measurements (n = 5) and S is the slope of the
calibration curve).

The analytical performance of the developed biosensor system for uric acid determi-
nation is better than or comparable with those previously reported for electrochemical
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sensors (Table 1). It should be noted that the use of such sensors in medicine requires
measuring much higher levels of uric acid. Taking this into account, lower concentrations
in the determination range allow for a significant dilution of the analyzed biological sample
to level out the interfering influence of matrix components. The time for one measurement
of a uric acid concentration is about 3 min.

Table 1. Uric acid determination with electrochemical sensors.

Electrode and Modifications Method of
Measurement Concentration Range, M LOD, M Reference

Glassy carbon electrode, nitrogen-doped
graphene aerogel Cyclic voltammetry 4 × 10−7–5 × 10−5 1.2 × 10−7 [57]

Gold electrode, carbon nanotubes,
carboxymethylcellulose Cyclic voltammetry 2 × 10−5−2.7 × 10−3 2.8 × 10−6 [58]

Zeolite imidazolate framework-11
modified electrode

Differential pulse
voltammetry 5 × 10−6−5.4 × 10−4 4.8 × 10−7 [59]

Ultrasmall iron oxide nanoparticles decorated
urchin-like nitrogen-doped carbon

Differential pulse
voltammetry 2 × 10−6–2 × 10−4 2.9 × 10−7 [60]

Covalent organic frameworks and
Ox-MWCNT Co-Modified glassy
carbon electrode

Differential pulse
voltammetry 6 × 10−7−2.5 × 10−4 6.3 × 10−8 [61]

SPE, pillar[5]arene, poly(methylene blue),
polythionine, uricase on polylactic acid

Chronoamperometry in
flow-through
conditions

1 × 10−7–1 × 10−5 3 × 10−8 [44]

SPE, CB, pillar[5]arene,
PAMAM-calix-dendrimer G2,
poly(PhTz-(NH2)2),uricase on polylactic acid

Chronoamperometry in
flow-through
conditions

1 × 10−8–2 × 10−5 4 × 10−9 This work

The accuracy of the uric acid determination was assessed in a series of five consecutive
measurements with the same reactor and electrode. The standard deviation of the signal
for 10 µM uric acid for the same reactor was 2.1%, while for five replacement reactors
it increased to 5.5%. The immobilized enzyme maintained its activity in a continuous
flow for at least 8 h (Figure S4). As it had been shown earlier for the same reactor and
immobilization procedure of uricase [44], 50% of the enzyme activity was retained six
months after immobilization when stored in dry conditions.

One of the advantages of measuring the cathode current was the absence of the influ-
ence of oxidizable substances on the biosensor signal. The following potential interfering
substances were tested (maximum concentrations without effect are presented): glucose
1 mM, dopamine 0.5 mM, and ascorbic acid 50 µM (Figure S5).

The system was tested on artificial urine samples (Table 2). The degree of discovery
was 122% for an undiluted solution and 101% for a tenfold dilution of the original sample
with the phosphate buffer solution. Considering the normal content of uric acid in biological
fluids, the developed biosensor system provides a reliable determination of the biomarker,
sufficient for the early diagnosis of relevant diseases.

Table 2. Uric acid determination and recovery measured in spiked samples of artificial urine.

Measurement Medium Spiked, µM Found, µM Recovery, %

Undiluted artificial urine 10 12.2 ± 0.2 122 ± 2
3 times diluted artificial urine 10 10.7 ± 0.1 107 ± 1

10 times diluted artificial urine 10 10.1 ± 0.1 101 ± 1
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4. Discussion

A flow-through biosensor system with uricase immobilized on the inner surface of
the 3D-printed replaceable poly(lactic acid) reactor was developed. The design of the
flow-through cell was significantly improved over the previously presented cell [44,45] by
reduced working volume, shorter tubing, and better compliance of the geometry with the
SPE applied as signal transducer. Physical separation of the biocomponent immobilized
on the surface of the poly(lactic acid) reactor from the transducer, a modified SPE, allows
for the minimization of the aggressive effects of the reagents used for the enzyme immobi-
lization and electrode modification. The SPE used were modified with CB, pillar[5]arene,
PAMAM-calix-dendrimer G2 and poly(PhTz-(NH2)2). The modification increased the
sensitivity of the electrode signal recorded in chronoamperometric mode toward hydro-
gen peroxide, a product of the enzymatic oxidation of uric acid. The performance of the
developed biosensor system was comparable or better than previously reported for similar
electrochemical biosensors. The use of cathode current as analytical signal made it possible
to avoid the interfering influence of most substances prone to oxidation. These factors
make the developed flow-through biosensor system promising for the inexpensive but
reliable monitoring of metabolites in biological fluids. If necessary, the system can be easily
adapted to other enzymes or modified for a point-of-care testing format. The low flow
rate, small reactor volume, and low-cost manufacture make the biosensor system quite
competitive with more complex microfluidic devices or implantable biosensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios14030120/s1, Figure S1: The dependence of response of
the flow-through biosensor system to 20 µM uric acid on amount of uricase used for immobiliza-
tion. The data obtained with SPE modified with CB + pillar[5]arene + PAMAM-calix-dendrimer
G2 + poly(PhTz-(NH2)2), potential −0.35 V, flow rate 0.2 mL·min−1. Measurements in 0.01 phos-
phate buffer + 0.1 M NaCl, pH = 8.0; Figure S2: The dependence of response of the flow-through
biosensor system to 20 µM uric acid on pH of solution. The data obtained with SPE modified
with CB + pillar[5]arene + PAMAM-calix-dendrimer G2 + poly(PhTz-(NH2)2), potential −0.35 V,
flow rate 0.2 mL·min−1. Measurements in 0.01 phosphate buffer + 0.1 M NaCl; Figure S3: The
dependence of response of the flow-through biosensor system to 20 µM uric acid on flow rate of
solution. The data obtained with SPE modified with CB + pillar[5]arene + PAMAM-calix-dendrimer
G2 + poly(PhTz-(NH2)2), potential −0.35 V. Measurements in 0.01 phosphate buffer + 0.1 M NaCl,
pH = 8.0; Figure S4: Time dependency of response of the flow-through biosensor system to 10 µM
uric acid. The data obtained with SPE modified with CB + pillar[5]arene + PAMAM-calix-dendrimer
G2 + poly(PhTz-(NH2)2), potential −0.35 V, flow rate 0.2 mL·min−1. Measurements in 0.01 phos-
phate buffer + 0.1 M NaCl, pH = 8.0. The mean and standard deviation values for 5 electrodes are
presented; Figure S5: Influence of interfering substances to response of the flow-through biosen-
sor system measured in presence of 10 µM uric acid and 1—No interfering substance, 2—Glucose
1 mM, 3—Ascorbic acid 50 µM, 4—Dopamine 0.5 mM. The data obtained with SPE modified with
CB + pillar[5]arene + PAMAM-calix-dendrimer G2 + poly(PhTz-(NH2)2), potential −0.35 V, flow
rate 0.2 mL·min−1. Measurements in 0.01 phosphate buffer + 0.1 M NaCl, pH = 8.0. The mean and
standard deviation values for 5 electrodes are presented.
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