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Abstract: The sensing responses of SARS-CoV-2 spike protein using top-down-fabricated Si-based
electrolyte-gated transistors (EGTs) have been investigated. An aptamer was employed as a receptor
for the SARS-CoV-2 spike protein. The EGT demonstrated excellent intrinsic characteristics and
higher sensitivity in the subthreshold regime compared to the linear regime. The limit of detection
(LOD) was achieved as low as 0.94 pg/mL and 20 pg/mL for the current and voltage sensitivity,
respectively. To analyze the sensing responses of EGT in detecting the aptamer–SARS-CoV-2 spike
protein conjugate, a lumped-capacitive model with the presence of an effective dipole potential
and an effective capacitance of the functionalized layer component was employed. The aptamer-
functionalized EGT showed high sensitivity even in 10 mM phosphate-buffered saline (PBS) solution.
These results suggest that Si-based EGTs are a highly promising method for detecting SARS-CoV-2
spike proteins.
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1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) represents a virulent
human infectious disease that can cause profound respiratory distress. The World Health
Organization (WHO) declared the SARS-CoV-2 outbreak a pandemic and global health
emergency on 11 March 2020 [1]. SARS-CoV-2 has a positive-stranded RNA genome that
encodes four structural proteins: a spike surface glycoprotein (S), an envelope protein (E), a
matrix protein (M), and a nucleocapsid protein (N) [2]. Among these structural proteins, the
spike protein is the most reliable biomarker [3,4]. The spike protein is expressed as a trimer on
the virus surface, consisting of two subunits, S1 and S2, and plays a crucial role in receptor
recognition and cell membrane fusion [5]. The S1 subunit contains a receptor-binding domain
(RBD) that recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor,
while the S2 subunit mediates viral cell membrane fusion. The SARS-CoV-2 spike trimer
(S1 + S2) protein offers an enhanced biological model compared to the monomeric spike RBD
protein or the single S1 subunit.

Real-time polymerase chain reaction (RT-PCR) is recognized as a gold standard for
diagnosing SARS-CoV-2 [6,7]. However, this approach is unsuitable for point-of-care test-
ing because it requires specialized laboratories, sophisticated and expensive equipment,
and trained personnel. Alternatively, several other methods, including electrochemical
techniques [8,9], fluorescence [10,11], and impedance [12,13], have been demonstrated.
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Among these, biosensor field-effect transistors (BioFETs) have emerged as a promising
approach due to their low cost, ultra-sensitivity, and label-free detection [14–16]. In con-
ventional BioFETs, the receptor is attached to the channel surface and combined with the
target [17,18]. The output drain current of these BioFETs varies with the potential generated
by the receptor–target conjugates.

Recently, electrolyte-gated transistors (EGTs) have been fabricated and analyzed using
conducting polymer films as their channel materials to detect SARS-CoV-2 [19,20]. The
utilization of a significant gate area as a functionalized surface increases the probability
of binding events. However, for commercialization, organic EGTs should overcome some
disadvantages compared to Si-based EGTs, such as environmental susceptibility, high-
voltage operation, and difficulties integrating into existing Si-based devices in complex
signal processing systems [21,22].

Aptamers, which are artificially produced single-stranded molecules of DNA or RNA,
have high affinity and specificity for binding to target molecules such as proteins or small
molecules [23,24]. Due to their smaller size, aptamers are less susceptible to interference
from charged molecules in an electrolyte, resulting in a decreased Debye screening effect.
It allows aptamers to maintain their binding affinity even in high salt concentrations or
complex sample matrices, making them a promising tool for biosensing applications in
real-world settings.

Here, we demonstrate the highly sensitive detection of SARS-CoV-2 spike protein (SC2)
using aptamer-functionalized Si-EGT. The sensing behaviors under different operating
regimes are investigated to achieve higher sensitivity. Furthermore, a lump-capacitive
model is applied to analyze the characteristics of the aptamer–SC2 in EGT devices. The
influence of buffer concentration and the non-specific binding test are also evaluated.

2. Materials and Methods
2.1. Fabrication of Si-Based EGT

Here, we demonstrate the ultrasensitive detection of SARS-CoV-2 spike protein
(SC2) using aptamer-functionalized EGT. The sensing behaviors under different oper-
ating regimes are investigated to achieve higher sensitivity. Furthermore, a lump-capacitive
model is applied to analyze the characteristics of the aptamer–SC2 in EGT sensors. The
influence of buffer concentration and the non-specific binding test are also evaluated.

Figure 1a shows the fabrication flow of a Si-based EGT using a top-down process. An
8-inch silicon-on-insulator (SOI) wafer (p-type, 10 Ω·cm, (100)), (Soitech, Isere, France) with
a 100 nm top-Si and 400 nm buried oxide (BOX) was used. The active region was formed
using I-line stepper lithography and an inductively coupled plasma reactive ion etching
(ICP-RIE) process (DMS, Taiwan). Then, the channel region was formed using electron
beam lithography (E-beam lithography) (Elionix, Tokyo, Japan) and the ICP-RIE process.
The ion implantation (As, 5 × 1015 cm−2) was conducted onto the substrate, followed by
rapid thermal annealing (RTA) (Mattson, Fremont, CA, USA) at 1000 ◦C for 20 s. Then, 5 nm
SiO2, a gate dielectric, was grown using a high-temperature pyro furnace (Centrotherm,
Blaubeuren, Germany) at 800 ◦C 5 min. Next, the contact pads and transmission lines were
formed by depositing Ag/Ti (500 nm/50 nm) using an electron beam evaporator (KVT,
Seoul, Republic of Korea) and a conventional lift-off process. Finally, an SU-8 photoresist
(Kayaku Advanced Materials Inc., Tokyo, Japan) was passivated on the device to prevent
any leakage current flow, excluding the gate (1550 µm × 300 µm) and a channel region
(10 µm × 10 µm). Figure 1b shows an optical image of the fabricated device.
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Figure 1. (a) Optical microscope image of fabricated Si-based EGT. Inset: SEM image of nanonet
channel. (b) A schematic of fabrication flow.

2.2. Preparation of SARS-CoV-2 Spike Protein and Aptamer

The SARS-CoV-2 spike protein with S1 and S2 subunits was used, which is more
similar to the real spike protein than using only the receptor-binding domain (RBD) or
S1 subunit. Cells were cultured to produce protein, where Sf9 (Spodoptera frugiperda)
cells were cultured in Sf 900 II SFM medium (Gibco, Waltham, MA, USA) with 0.1% peni-
cillin/streptomycin mix and 0.2% amphotericin B (Sigma-Aldrich, St. Louis, MO, USA)
in a shaking incubator at 27 ◦C. A baculovirus expression system was used to produce
the spike protein. Baculovirus was generated by transfecting the recombinant baculovirus
DNA into SF9 cells. Three days after infection, the medium was centrifuged at 6000 rpm
and 10 min conditions to collect supernatant and purified by the Ni-affinity column pu-
rification method and size-exclusion chromatography. The aptamer was developed by
VIRO-SELEX [25,26]. Several cycles of VIRO-SELEX were performed, and a pool of 11 cycles
was chosen to analyze the sequence [27].

2.3. Immobilization of Aptamer on EGT

Firstly, devices were rinsed with ethanol and distilled water (DIW), followed by N2
blowing. Then, to remove residual contaminants and increase the density of the hydroxyl
group, UV/ozone treatment was conducted for 1.5 min. Next, the devices were exposed to
1% 3-aminopropyltriethoxysilane (APTES) (Sigma-Aldrich, St. Louis, MO, USA) vapors
for 1 min at 50 ◦C to cover the surface with an amine group (-NH2). After removing the
residual APTES by immediate dipping in anhydrous ethanol followed by N2 blowing, the
devices were immersed in 1 × PBS solution with 2.5% glutaraldehyde (GA) (Sigma-Aldrich,
St. Louis, MO, USA) to form an aldehyde group on the surface [28–30]. Then, the devices
were rinsed with 1 × PBS and DIW followed by N2 blowing. Next, to immobilize the
aptamer, the devices were exposed to 2.5 µL of 1 × PBS solution containing aptamers for
12 h at room temperature. Finally, the devices were exposed to 0.1% bovine serum albumin
(BSA) (Sigma-Aldrich, St. Louis, MO, USA) in 1 × PBS for 90 min at room temperature to
block the unreacted active sites to prevent non-specific binding.

2.4. Electrical Measurement Set-Up

A semiconductor analyzer (Keithley 4200-SCS, Tektronics, Beaverton, OR, USA) was
utilized to characterize the drain current (ID) and gate voltage (VG) modulation generated
by SARS-CoV-2 responses. All measurements were conducted with a source voltage (VS) of
0 V, drain voltage (VD) of 0.1 V, and VG ranging from 0 V to 1 V with a 0.05 V step. A wide
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concentration range of SARS-CoV-2 (SC2) from 33 pg/mL to 3.3 µg/mL was prepared in
1 × PBS solution. The measurement sequence was as follows: Initially, the ID-VG curve of
the aptamer-functionalized devices was characterized in a 0.01 × PBS solution. Next, the
device was exposed to an SC2 spike protein solution (1 × PBS, 2.5 µL) for 90 min at room
temperature, followed by a rinse. Finally, the ID-VG characterization was performed again
in 0.01 × PBS solution.

3. Results
3.1. Electrical Characteristics of Fabricated Si-Based EGT

Figure 2a shows a transfer curve (log-scale ID-VG) and output curve (ID-VD, inset)
of the fabricated Si-EGT, demonstrating excellent intrinsic characteristics, including a
subthreshold swing (SS ≡ dVG/dlog (ID)) of ~80 mV/dec, threshold voltage (VTH) of 0.65 V,
an on–off current ratio of ~107, and a gate leakage current (IG) of ~10−12 A. Figure 2b shows
a representative transfer curve of the EGT with various concentrations of [SC2], ranging
from the initial amount (no [SC2]) up to 3.3 µg/mL. The increase in [SC2] causes a negative
shift in the transfer curves.
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Figure 2. (a) A representative intrinsic transfer characteristics (Log (ID) vs. VG) and gate leakage
characteristic of the fabricated EGT at VD = 0.1 V. The device was characterized in 0.01 × PBS solution.
Inset: an output characteristic (ID vs. VD) at fixed VG ranging from 0.7 V~1.0 V. (b) A shift in the
transfer curve with various [SC2] values. The inset shows the overall transfer curve. A compliance ID

of 100 nA was applied to ensure reproducibility and avoid degradation.

3.2. Sensing Responses of the EGTs for the SC2 Detection

The current sensitivity (SI) and voltage sensitivity (SV) are typically defined as fol-
lows [31,32]:

SI =
ID_SC2 − ID_AP

ID_AP
(1)

SV = VGAP − VGSC2 (2)

where ID_AP and ID_SC2 are the drain currents at a fixed VG_AP after aptamer immobilization
and after SC2 exposure, respectively, and VG_AP and VG_SC2 are the gate voltages at a fixed
ID_AP after aptamer immobilization and after SC2 exposure, respectively.

Figure 3 shows the dependence of SI and SV on ID_AP. Both SI and SV show different
behaviors as the operation shifts from the subthreshold regime (ID < 10 nA) to the linear
regime (ID > 10 nA) through an increase in VG. At a given SC2 exposure, SI shows a
constant behavior as ID_AP decreases in the subthreshold regime, while it radically reduces
in the linear regime, as shown in Figure 3a. In contrast, the SV has a constant behavior
independent of ID_AP values. It suggests that the exposure to SC2 causes little degradation
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to the devices with a lateral shift in the transfer curve from subthreshold to linear regimes.
Thus, the Si-based EGTs should be operated in the subthreshold regime to achieve high
sensitivity and low power consumption.
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Figure 4 shows SI and SV as a function of [SC2]. The logistic calibration curves were
SI = 376.2 × [SC2]0.26/(0.03 + [SC2]0.26) and SV = 72.1 × [SC2]0.2/(0.06 + [SC2]0.2) [33,34]. The
dynamic range was about four orders of magnitude from 33 pg/mL to 3.3 µg/mL of [SC2].
The LOD was determined using the three-sigma method with the fitting sensitivity equation
and blank replicate data (1 × PBS without [SC2]) [31,35]. The average of the blank replicate
was as low as −9.3% for SI and −1.84 mV for SV, respectively, while the standard deviation of
the blank replicate was as low as 10.4% for SI and 3.47 mV for SV, respectively. The extracted
LOD was achieved as low as 945 fg/mL and 20 pg/mL for SI and SV, respectively. From the
slope of the logistic fitted line in Figure 4, the SC2 sensitivities of 50.8%/log [SC2] for SI and
7.9 mV/log [SC2] for SV are extracted, respectively. These values are more than two times
higher than the previous results (Table 1).
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Figure 5 shows the |QS| versus SV characteristics for different [SC2] values. For an n-

type channel, the negative QS can be determined by summing the depletion charge, inver-
sion charge, and interface trap charge in the channel [39,40]. VDP_EFF and CFN_EFF are ob-
tained from the y-intercept and reciprocal slope of the curves, respectively. 

Figure 4. (a) SI and (b) SV vs. [SC2] at ID_AP = 1 nA. The red dashed lines represent the logistic fitted
curves. The inset shows the SI and SV values obtained from blank samples without SC2 to calculate
the LOD using the three-sigma method.
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To further understand the sensing responses of EGT in detecting the aptamer–SC2
conjugate, a lumped-capacitive model with the presence of a dipole layer and a capacitive
component was employed [19,36,37]. The binding factor α, defined as the ratio of the
aptamer sites bound with the SC2 molecules to the total aptamer sites, can be expressed
as [33,36,38]

α =
NAP_SC2

NAP
=

[SC2]n(
K + [SC2]n

) (3)

where NAP_SC2 is the density of the aptamer–SC2 conjugates, NAP is the density of total
immobilized aptamers, K is related to the dissociation constant of the aptamer–SC2 binding,
and n is a slope factor that indicates the cooperativity of SC2 binding.

After introducing SC2 to the aptamer-functionalized surface, it generates an effective
dipole moment (VDP_EFF) and an effective capacitance (CFN_EFF). VDP_EFF can be expressed
as follows [20,36,37]:

VDP_EFF =
α·NAP·PDP

εDP
∼= VDP_GT (4)

where PDP is the perpendicular component of the dipole moment, εDP is the permittivity
of the dipole layer, and VDP_GT is the dipole potentials at the gate electrode. VDP_EFF is
mainly determined from the gate electrode since the gate area is ~5000 times larger than the
channel area in the fabricated EGT device. The established VDP_EFF changes the flatband
voltage, causing a shift in the ID vs. VG curve. The positive VDP_EFF reduces VTH and shifts
the transfer curve toward the negative VG direction.

CFN_EFF is related to the biomaterials on the channel and can be expressed as fol-
lows [36]:

CFN_EFF = CSC2_CH + (CSC2_CH + CAP_CH)
K

[SC2]n
(5)

where CSC2_CH and CAP_CH are the SC2 and aptamer capacitances per unit area at the
channel.

Then, SV is calculated using VDP_EFF and CFN_EFF as follows:

SV = VDP_EFF +
QS

CFN_EFF
(6)

where QS is the total charge density in the channel.
Figure 5 shows the |QS| versus SV characteristics for different [SC2] values. For an

n-type channel, the negative QS can be determined by summing the depletion charge,
inversion charge, and interface trap charge in the channel [39,40]. VDP_EFF and CFN_EFF are
obtained from the y-intercept and reciprocal slope of the curves, respectively.
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Figure 6a shows the relationship between VDP_EFF and [SC2]. The positive VDP_EFF is
clearly proportional to [SC2], and the logistics calibration curve of VDP_EFF is obtained as
VDP_EFF = 72.7 × [SC2]0.2/(0.047 + [SC2]0.2). By utilizing equations (3), the binding factor α
can be calculated as α = [SC2]0.2/(4.7 × 10−2 + [SC2]0.2) with K = 4.7 × 10−2 and n = 0.2.
A lower K value of the aptamer reaction, compared to the previous protein detection
(K = 1.84 × 10−3), indicates that the aptamer conjugate is more prone to dissociation
than the peanut protein conjugates [36]. In Figure 6b, the extracted CFN_EFF is fitted as
CFN_EFF = 1.37 × 10−8 − 9.4 × 10−12 × [SC2]−0.2 ≈ 1.37 × 10−8 using the extracted K and
n values. The [SC2] capacitance generates a constant CFN_EFF for various [SC2]. Thus,
compared to previous protein detection [36], the binding characteristics in the channel are
negligibly involved in the overall aptamer detection.
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Debye screening is another crucial factor that can affect the sensing performance of
BioFETs. It refers to the phenomenon in which charged ions in an electrolyte shield the
electric charge of the conjugates [41–43]. The Debye length is the characteristic length scale
over which the electrical potential of a charged molecule decays exponentially due to the
surrounding ions in an electrolyte. When the Debye length is comparable to the distance
between the channel surface and the conjugates, the electrostatic interaction is significantly
weakened due to the shielding effect of the charged ions in the solution [44].

To assess the impact of Debye screening on the responses to SC2, three different PBS
solutions (0.01 ×, 0.1 ×, and 1 × PBS) were prepared by diluting 1 × PBS with DI water.
Figure 7 shows the measured SI and SV at different PBS concentrations using an exposure of
33 ng/mL SC2. Both sensitivities increased as the PBS concentration decreased. The SI and
SV values were approximately 80% higher in 0.01 × PBS buffer than in 1 × PBS solution.
Interestingly, our devices were capable of detecting [SC2] even in 1 × PBS solution, despite
the larger [SC2] used compared to other SARS-CoV-2 spike proteins that typically consist
of only a smaller S1 subunit and RBD [14,45].
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Figure 8 presents non-specific control experiments to confirm the selectivity to SC2.
Various test samples, such as influenza B virus HA (hemagglutinin) protein and human
coronavirus (HCoV-HKU1) spike protein, were exposed to high enough concentrations to
confirm the specificity of the SARS-Cov-2 spike protein. The SI and SV values obtained
from these biomolecules were sufficiently low and below 33 pg/mL of SC2, indicating that
the sensitivity is specific to SC2 binding. In addition, when exposed to 3.3 µg/mL of SC2,
the unmodified EGT exhibited negligible SI and SV, indicating that the SC2 aptamers were
successfully immobilized and could be used to evaluate the surface functionalization process.
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Table 1 compares the sensing performance of the EGT with previously reported sensors
for detecting SC2. The Si-based EGT shows a significant improvement in both dynamic
range and sensitivity.
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Table 1. Comparison between various SC2 sensors.

Sensor Type Biomarker Dynamic Range Sensitivity from
SI (%/log [SC2])

Limit of
Detection Ref.

Paper-based electrochemical
sensor RBD 103 (1 ng/mL to 1 µg/mL) 10.7 1 ng/mL [46]

CNT-FET sensor S1 5 × 104 (0.1 fg/m to 5 pg/mL) 3.8 4.12 fg/mL [47]

Graphene-FET sensor S1 104 (1 fg/mL to 10 pg/mL 16 1 fg/mL [14]

Electrical-double-layer
(EDL)-gated FET sensor N protein 103 (0.4 ng/mL to 400 ng/mL 4.6 0.34 ng/mL [48]

Organic electrochemical
transistor immuno-sensor RBD 106 (1.4 pg/mL to 1.4 µg/mL) 1.6 1.4 pg/mL [49]

Si-based EGT S1 + S2 105 (33 pg/mL to 3.3 µg/mL) 50.8 945 fg/mL This work

4. Conclusions

We have successfully demonstrated the highly sensitive detection of SARS-CoV-2
spike protein using aptamer-functionalized Si-based EGTs. A lumped-capacitive model
was utilized to analyze the aptamer–SC2 conjugates on the sensing performances in terms
of dipole moments and capacitive components. The fabricated EGT showed higher sen-
sitivities in the subthreshold regime, achieving LODs of 0.94 pg/mL and 20 pg/mL for
current and voltage sensitivity, respectively. In addition, the EGT showed high sensitivity
even in 1 × PBS solution. These results suggest that the Si-based EGTs using advanced
microfabrication technology are promising in detecting SARS-CoV-2 spike proteins.
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and J.-S.L.; investigation, S.S., W.C. and S.J.; data curation, J.D. and J.S.; writing—original draft
preparation, S.S., K.K., J.S. and J.-S.L.; writing—review and editing, S.S. and J.-S.L.; supervision,
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