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Abstract: Traditional methods for measuring blood oxygen use multiple wavelengths, which produce
an intrinsic error due to ratiometric measurements. These methods assume that the absorption
changes with the wavelength, but in fact the scattering changes as well and cannot be neglected. We
found that if one measures in a specific angle around a cylindrical tissue, called the iso-pathlength
(IPL) point, the reemitted light intensity is unaffected by the tissue’s scattering. Therefore, the
absorption can be isolated from the scattering, which allows the extraction of the subject’s oxygen
saturation. In this work, we designed an optical biosensor for reading the light intensity reemitted
from the tissue, using a single light source and multiple photodetectors (PDs), with one of them in
the IPL point’s location. Using this bio-device, we developed a methodology to extract the arterial
oxygen saturation using a single wavelength light source. We proved this method is not dependent
on the light source and is applicable to different measurement locations on the body, with an error of
0.5%. Moreover, we tested thirty-eight males and females with the biosensor under normal conditions.
Finally, we show the results of measuring subjects in a hypoxic chamber that simulates extreme
conditions with low oxygen.
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1. Introduction

BioConvergence is a rapidly emerging field that involves the integration of various
disciplines, including biology, engineering, physics, and computer science, to develop
innovative solutions for healthcare problems [1]. Bio-devices, including medical devices,
are designed to interact with biological systems for the purpose of diagnosing, monitoring,
or treating health conditions [2]. Bio-chips are a subset of bio-device technologies, and
are usually equipped with sensors and actuators that detect biological conditions and
respond to changes in the biochemical environment. The integration of BioConvergence
technologies with bio-devices and bio-chips has the potential to revolutionize the field of
medicine by providing more effective monitoring tools or innovative treatments [3].

Optical bio-devices for diagnosis of physiological states, refer to a class of bio-devices
that combine optics and biological interactions, and have several advantages over tradi-
tional biochemical methods, including high sensitivity, speed, and non-invasiveness [4].
Unfortunately, human tissue poses a challenge due to its turbidity, therefore in the field of
optics the focus is on sensing changes in absorption. The reemitted light from the tissue
is dependent inseparably on both scattering and absorption. While scattering is mostly
influenced by the tissue structure, the absorption is mainly affected by the biochemical
composition of the tissue [5]. In order to extract physiological parameters from absorption,
such as blood saturation, one must assume, manipulate, or neglect values of the scatter-
ing. This assumption is required due to the strong dependency of the light intensity on
scattering and absorption.
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Oxygen saturation is defined as the proportion of oxygenated hemoglobin in the
total hemoglobin concentration. The oxygen saturation level indicates the ability of the
body to provide a sufficient amount of oxygen to all organs and reflects the proper or
improper functioning of the lungs. Normal values of arterial oxygen saturation (SpO2)
are considered to be between 95–100% for adults, while values below 90% may indicate
hypoxia or hypoxemia [6].

Optic methods for extracting oxygen saturation are based on detecting the photo-
plethysmogram (PPG) waveform, an optical signal that reflects the change in blood volume
through the tissue [7]. In fact, the PPG signal represents the reemitted light intensity from
the tissue and is composed of constant and varying components. The constant component
of the PPG waveform depends on the tissue structure, such as bone, fat, melanin, as well as
non-pulsatile arterial and venous blood. On the other hand, the varying component is com-
posed of the arterial blood fluctuations. The ratio between the pulsatile and non-pulsatile
components leads to an absorption component that is proportional to arterial blood and
optical pathlength, from which the oxygen saturation can be derived [8].

Nowadays, the common method for characterizing oxygen saturation is pulse oximetry.
This method uses at least two different wavelengths, red and infrared, for measuring
the ratio between oxygenated hemoglobin and deoxygenated hemoglobin [9]. At each
wavelength there is a different optical pathlength (OPL), in accordance with different
unknown reduced scattering coefficients. The classic method neglects the differences in
OPL or tries to assess them [10] to compensate for the interdependence of the scattering
and absorption [11], which produces an intrinsic system error.

Existing methods to extract oxygen saturation include measurements using multiple
wavelengths [12–14], averaging multiple sensors [15], measuring behind the ear [16], and
remote sensing measurements [17–19]. Both classical methods and the methods mentioned
previously have errors ranging between 2–3% and are still insensitive outside of the normal
saturation range.

The work we present in this paper is based on a physical phenomenon that was
revealed in our lab, called the iso-pathlength (IPL) point [20–23]. The IPL point is an angle
around a cylindrical tissue, such as finger or wrist, that is invariant to scattering. This
was discovered by a new method of measuring the full scattering profile (FSP), which is
the angular distribution of light intensity of cylindrical tissues [21]. For this reason, at the
IPL point two different wavelengths experience the same optical pathlength in biological
tissue condition, which solves the inherent error of assessing oxygen saturation. Another
option, which we implement in this work, is using a single wavelength source and a few
angles, while the IPL point serves for self-calibration. This phenomenon was verified in
finger-sized tissue-mimicking phantoms as well as human fingers [24]. It was also found
that there is a linear relationship between the diameter of the cylindrical tissue and the
angle at which the IPL point appears [25]. By using these principles, we designed an optic
biosensor for reading the light intensity reemitted from the tissue, which uses a single light
source and multiple photodetectors (PDs), with one of them in the IPL point’s location.
For the first time in the field of oxygen saturation, the concept of the IPL point enables
measuring subjects’ SpO2 with respect to another position on the tissue rather than another
wavelength and external calibration. The IPL point’s angle, as estimated in lab experiments,
is relatively close to the light source, and can be easily translated into a distance. We will
present the results of nearly 40 subjects, both males and females, that had their oxygen
saturation measured.

2. Materials and Methods
2.1. Theory

The FSP of the transmitted light, It, is a function of absorption, scattering, wavelength,
OPL and the geometry of the tissue [21]. More specifically, for a cylindrical tissue with an
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absorption coefficient µa and a reduced scattering coefficient µ’s, the light intensity at an
angle θ is given by the Beer–Lambert law:

It(θ, µa, µ′s) = I0(θ, µ′s) exp[−µa · l(θ, µa, µ′s)] (1)

where I0 is the light intensity without absorption and l is the OPL. The major problem is
that the OPL as well as the absorption and reduced scattering coefficients are unknown
and depend on the optical properties of the tissue.

The IPL point (as illustrated in Figure 1) is a geometrical point on a cylindrical tissue’s
surface, which depends only on the diameter [26]. At this point, the light intensity and
the OPL are constant regardless of variations in tissue scattering. We define R to be the
ratio between the intensities at the IPL point with and without absorption. The differential
pathlength factor (DPF) is the ratio between the OPL and the distance between the light
source and the PD, d. With DPF0 defined as the DPF in the case of no absorption, the
absorption coefficient can be extracted, as defined in [26]:

µa = − ln(R)
d · DPF0 ·

√
R

(2)
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Figure 1. Illustration of the optical system for measuring the iso-pathlength (IPL) point. A pho-
todetector (PD) collects the reemitted light intensity from all angles around the sample, called the
full scattering profile (FSP). The IPL point, denoted as θIPL in the figure, is a specific position on the
circumference of the sample.

The absorption coefficient of human tissue has been widely investigated. As described
in Steven Jacques’ review [27], the absorption coefficient of a generic tissue is a superposi-
tion of all its parts: blood, fat, melanin, bone, and so on. The equation is denoted as the
sum of the absorption coefficient of each component of the tissue, µa,i [m−1], multiplied by
the volume fraction of the component, fv,i:

µa = ∑
i

fv,i · µa,i (3)

For the range of wavelengths, usually red and infrared, used by methods typically
intended for extracting oxygen in blood, the most significant absorptive components are
oxygenated and deoxygenated hemoglobin (µox and µdox), as well as melanin, which will
be neglected. For this reason, Equation (3) can be adjusted to:

µblood
a =

(
Cp + ∆Cp

)
[µoxSpO2 + µdox(1 − SpO2)] + Cv[µoxSvO2 + µdox(1 − SvO2)] (4)

SpO2 and SvO2 represent the oxygen saturation in arterial and venous blood, respec-
tively. ∆Cp and Cp are the pulsatile or non-pulsatile portions of the artery blood, while Cv
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represents the non-pulsatile portion of venous blood. We define µa
75% to be the absorption

coefficient when the average of SpO2 and SvO2 is set to be 75%, as described in [27]. µa
75%

is composed from the constant elements of both arterial and venous blood, and therefore
can be described as a DC component (Figure 2). The pulsatile component, denoted as AC,
depends only on the SpO2.
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Figure 2. The photoplethysmogram (PPG) signal as extracted from the optic biosensor. The PPG 
waveform is a periodic signal with both higher and lower peaks, representing the systolic and dias-
tolic phases, through the cardiac cycle. The signal consists of an AC component, influenced by the 
blood fluctuations, and a DC component, derived from the non-pulsatile elements in blood and 
tissue. 

  

Figure 2. The photoplethysmogram (PPG) signal as extracted from the optic biosensor. The PPG
waveform is a periodic signal with both higher and lower peaks, representing the systolic and
diastolic phases, through the cardiac cycle. The signal consists of an AC component, influenced
by the blood fluctuations, and a DC component, derived from the non-pulsatile elements in blood
and tissue.

In order to extract the arterial blood saturation, we follow the common method of
examining the ratio between pulsatile and non-pulsatile components of the
blood [7,8,12,28,29]. In contrast to the classic method, which uses light intensity, we
work with the absorption coefficients presented in Equation (2). The AC/DC ratio can be
described by the pulsatile component in Equation (4), and the DC is represented by µa

75%:

µAC
a

µDC
a

=
∆Cp(µoxSpO2 + µdox(1 − SpO2))

µ75%
a

− C (5)

At the end of diastole, when the blood fluctuations are minimal and the AC compo-
nent is approximately zero, there is still a DC component. Therefore, in order to force the
oxygen saturation trendlines to cross the origin, the equation also includes an empirical
factorial correction, C. To further simplify the equation, let us mark F = ∆Cp/µa

75%. Equa-
tion (6) illustrates the final extraction of SpO2, which we implemented in the biosensor
measurements.

SpO2 =
µAC

a /FµDC
a + C − µdox

(µox − µdox)
(6)

2.2. Biosensor

In this study we designed an optic biosensor for measuring oxygen saturation by
utilizing the IPL point. The biosensor was manufactured according to our design by
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BINATA (Yokneam, Israel). The chip consists of a red LED with a wavelength of 655 [nm]
to fit the absorption range of hemoglobin [27] and five PDs located at different distances
from the light source (Figure 3a). From these five PDs, two are used to calculate the SpO2
from the ratio between them, with one of the PDs being used specifically for self-calibration.
The chip operates at a frequency of 100 [Hz] to fit the necessary sampling rate for a PPG
signal [30]. The PPG signal is known to be affected by ambient light; therefore, the biosensor
is equipped with a component that modulates the LED and PDs in the same frequency
and performs synchronized detection (ADPD4101, Analog Devices, Norwood, MA, USA).
The PDs of the sensor collect the reemitted light intensity from the tissue simultaneously,
which helps tackle movement artifacts. The light measured by each PD is optimized to find
the IPL point’s location per subject, thus operating as a self-calibrating sensor. The chip is
equipped with a plastic cover printed by a 3D printer that protects the PDs from directly
touching the skin and allows comfortable use (Figure 3b).

Biosensors 2024, 14, x FOR PEER REVIEW 5 of 13 
 

 

2.2. Biosensor 
In this study we designed an optic biosensor for measuring oxygen saturation by 

utilizing the IPL point. The biosensor was manufactured according to our design by BI-
NATA (Yokneam, Israel). The chip consists of a red LED with a wavelength of 655 [nm] to 
fit the absorption range of hemoglobin [27] and five PDs located at different distances 
from the light source (Figure 3a). From these five PDs, two are used to calculate the SpO2 
from the ratio between them, with one of the PDs being used specifically for self-calibra-
tion. The chip operates at a frequency of 100 [Hz] to fit the necessary sampling rate for a 
PPG signal [30]. The PPG signal is known to be affected by ambient light; therefore, the 
biosensor is equipped with a component that modulates the LED and PDs in the same 
frequency and performs synchronized detection (ADPD4101, Analog Devices, Norwood, 
MA, USA). The PDs of the sensor collect the reemitted light intensity from the tissue sim-
ultaneously, which helps tackle movement artifacts. The light measured by each PD is 
optimized to find the IPL point’s location per subject, thus operating as a self-calibrating 
sensor. The chip is equipped with a plastic cover printed by a 3D printer that protects the 
PDs from directly touching the skin and allows comfortable use (Figure 3b). 

 
Figure 3. (a) The interior of the biochip, equipped with five photodetectors (PDs) and a single wave-
length LED. (b) The chip inside its protective case. 

2.3. Phantoms 
We tested the biosensor on tissue-mimicking phantoms we produced in the lab, in 

order to inspect the sensor. The phantoms are made of a PDMS and TiO2 mixture that 
underwent a degassing process [31]. We measured four phantoms with different reduced 
scattering coefficients, in the range of 16–26 [1/cm], since this range represents human skin 
[27]. 

2.4. Human Research 
Following the phantoms’ measurements, we advanced to measuring human wrists 

using the biosensor. We measured 38 adults, all between the ages of 17–77, both males and 
females as described in Table 1 (all subjects signed a participant consent form). Each sub-
ject was measured twice using the sensor, at the internal and external side of the wrist, 
with each test lasting about 60 s. The average of both measurements is shown in the last 
column of Table 1. All subjects were requested to sit comfortably without moving or talk-
ing throughout the entire measurement. Furthermore, we tested their oxySgen saturation 
with a pulse oximeter (CMS50M, Contec Medical Systems, Qinhuangdao, China) as a ref-
erence device in order to compare the findings. Next, we tested several subjects under 
abnormal conditions in the hypoxic chamber in the Wingate institute (Netanya, Israel) 
[32]. 

Table 1. Demographic and clinical data of the study group. 

Subject Sex Age Referenced SpO2 [%] Biosensor’s SpO2 [%] 
1 male 27 97 97.8 
2 male 30 97 98.2 
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wavelength LED. (b) The chip inside its protective case.

2.3. Phantoms

We tested the biosensor on tissue-mimicking phantoms we produced in the lab, in
order to inspect the sensor. The phantoms are made of a PDMS and TiO2 mixture that under-
went a degassing process [31]. We measured four phantoms with different reduced scatter-
ing coefficients, in the range of 16–26 [1/cm], since this range represents human skin [27].

2.4. Human Research

Following the phantoms’ measurements, we advanced to measuring human wrists
using the biosensor. We measured 38 adults, all between the ages of 17–77, both males
and females as described in Table 1 (all subjects signed a participant consent form). Each
subject was measured twice using the sensor, at the internal and external side of the wrist,
with each test lasting about 60 s. The average of both measurements is shown in the last
column of Table 1. All subjects were requested to sit comfortably without moving or talking
throughout the entire measurement. Furthermore, we tested their oxySgen saturation with
a pulse oximeter (CMS50M, Contec Medical Systems, Qinhuangdao, China) as a reference
device in order to compare the findings. Next, we tested several subjects under abnormal
conditions in the hypoxic chamber in the Wingate institute (Netanya, Israel) [32].
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Table 1. Demographic and clinical data of the study group.

Subject Sex Age Referenced SpO2 [%] Biosensor’s SpO2 [%]

1 male 27 97 97.8
2 male 30 97 98.2
3 male 27 97 98.8
4 female 27 98 97.8
5 male 20 98 96.8
6 female 25 99 98.4
7 female 19 97 98.6
8 female 18 95 96.9
9 male 22 98 99.3
10 female 18 98 98.1
11 male 29 97 98.9
12 female 27 98 99.4
13 female 26 99 97.6
14 female 39 98 99.5
15 male 53 98 98.1
16 male 25 98 97.7
17 male 31 96 97.7
18 female 25 99 98.7
19 female 27 98 98.8
20 male 37 97 97.1
21 female 26 98 98.4
22 male 29 97 99.4
23 male 26 96 99.3
24 male 25 98 97.6
25 male 27 98 99.3
26 male 27 98 98.9
27 male 29 98 97.6
28 female 39 99 97.8
29 male 37 97 99.8
30 male 28 97 99.8
31 male 25 99 97.4
32 male 53 97 97.4
33 male 29 99 99.6
34 male 25 99 98.8
35 male 27 98 99.7
36 male 59 99 98.7
37 female 77 98 95.6
38 female 17 100 99.7

2.5. Processing Analysis

After extracting the raw data from the device, we began the processing stage (Figure 4).
First, we transferred the signal to the frequency domain using the Fourier transform
(Figure 3a). Then, we filtered the relevant frequency: between 1 [Hz] and 3 [Hz], as
commonly performed on PPG data [30,33] (Figure 4b). The filtering also helps clean
irrelevant noise and motion artifacts. Then we could transfer back to the time domain
and convert the filtered data into absorption coefficients, using Equation (2) (Figure 4c).
I0 is the light intensity without absorption, measured from the phantoms. It is the light
intensity measured from the tissue by the biosensor, d is the distance between the light
source and the detector at the IPL point, and DPF0 is set to be 12, as described in [26]. The
next step was selecting the PPG shapes, and then oxygen saturation could be calculated
according to the ratio between AC and DC as described in Equation (6) (Figure 4d). The
traditional methods continued from the filtering step right to the AC/DC observation,
without extracting absorption coefficients, and used two wavelengths instead of one in
order to find a signal that is proportional to µa.
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Measured values of the oxygen saturation are shown on the graph, with results from the inner side of
the wrist marked with a circle and the external side of the wrist marked with a triangle.

3. Results
3.1. Biosensor’s Measurement of Phantoms

First, we measured four phantoms with the biosensor, each with different reduced
scattering coefficients (Figure 5). The biosensor’s PDs in this experiment represent the
different locations around the phantom. This indicates and further proves the existence of
the IPL point, where the second PD is located. In previous studies we have discussed the
influence of system errors, as well as the influence of detector size, distance from the tissue,
etc. [25,26]. Nevertheless, given all these errors, we claim that this method is still viable,
with this work being the first proof of concept.
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Figure 5. The light intensity measured by the biosensor of four PDMS phantoms with different
reduced scattering coefficients. The phantoms have a µ’s value of 17, 19, 24 and 28 [1/cm] represented
by a blue solid, orange dashed, yellow dotted, and purple dash-dotted line, respectively. There is an
intercept slightly before the second PD, representing the location of the IPL point.
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3.2. Extracted Saturation Values of Healthy Population

Figure 6 shows the results of 38 subjects that were tested with the biosensor on their
wrists. As described in the methods section, all subjects were tested on the inner and outer
sides of their wrists, as shown in the inset of the graph. The plot compares the AC to DC
for all measurements, while the colored lines represent oxygen saturation in the range of
95–100%. The oxygen saturation of all subjects is calculated to be in the range of 95–100%
for the inner side of the wrist, and 94.8–100% for the external side of the wrist. Most
measurements are between 97–99% which is as expected since this is the range of saturation
for healthy people. The DC measured in the inner wrist appears to be concentrated in the
smaller values of the axis, compared to the external wrist where the DC seems to be more
spread-out over the axis. This result matches with the fact that naturally there is a higher
amount of melanin on the external side of the wrist, which has strong absorption.
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colored lines represent the normal values of oxygen saturation (95–100%) and the asterisks represent
the measured values per subject. The insets show the location of the sensor on the wrist.

We also wanted to determine whether the biosensor’s light source intensity has an
influence on the measurements. Figure 7 shows the calculated oxygen saturation, conducted
on a single individual, with different intensities applied to the biosensor’s LED, 5–30 [mA]
every 5 [mA]. The colored lines represent the oxygen saturation of 95–100% as previously
described in Figure 6. The average value of this experiment is 99.3% with a standard
deviation of 0.4%, meaning the biosensor has an error of less than half a percentage.
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Figure 7. AC vs. DC absorption values of a single individual. We measured the subject’s wrist
several times while changing the biosensor’s LED intensity to evaluate the standard deviation between
saturation measurements. The colored lines represent the normal values of oxygen saturation (95–100%).
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Next, we placed the biosensor at different locations on a single subject: the internal
and external sides of the wrist, the chest, the lower back, and the stomach. These locations
were chosen under the low penetration depth of red light and are possible locations to
assess the skin microcirculation [34,35]. Chest, stomach and back may not be cylindrical,
but can be considered as semi-infinite samples, thus the IPL point concept is valid even in
these cases [36]. For each location we measured the oxygen saturation for 60 s, in order to
test the influence of location on the biosensor, as described in Figure 8. It is clear that all
locations produce a similar value, and the calculated mean value is 99.8% with a standard
deviation of 0.4%.
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Figure 8. AC vs. DC absorption values of a single individual. We measured the subject at different
locations on the body: the internal and external sides of the wrist, chest, stomach and back. The
colored lines represent the normal values of oxygen saturation (95–100%).

We also compared the extracted oxygen saturation of all 38 subjects, for both the
internal and external sides of the wrist (Figure 9). As expected, almost all subjects measured
had saturation within the range between 95% to 100%, while most measurements lie on
the right side of the graph, between 98.8% to 100%. The calculated mean value between
individuals is 98.4% for both sides with a standard deviation of 1% for the inner side and
2% for the external side of the wrist.
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3.3. Extracted Saturation Values in Hypoxic Conditions

As a part of this study, we conducted an experiment where subjects were placed in
a hypoxic chamber that reduced the oxygen in the air [32]. The oxygen level inside the
chamber was approximately 14.5%, which is equivalent to a height of 3000 m above sea
level [37], in contrast to a normal oxygen percentage of 21% at sea level. We tested four
subjects, three males and one female, with each measurement lasting 60 s per subject.
According to the operators of the hypoxic chamber, the typical reaction when entering
the chamber is that the subjects’ oxygen levels decline, then immediately stabilize back to
normal. To overcome the fast recovery of the body and to decrease the oxygen saturation,
each one of the male subjects was asked to exercise inside the hypoxic chamber. Figure 10a,b
demonstrate the results of the male subjects, before and after exercising, respectively. Our
results indicate that the oxygen saturation of the male subjects remained quite high, save
for one.

Biosensors 2024, 14, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 10. Results of the subjects’ oxygen saturation over time, where each test took 60 s. (a) The 
male subjects were measured right after they entered the hypoxic chamber (b) and after exercising. 
The three of them are represented by a blue solid, orange dashed and dash-dotted yellow line, in 
both graphs. (c) The female subject was tested right after exiting the room. The female’s results show 
a significantly low oxygen saturation, corresponding with the subject’s report of feeling unwell. 

4. Discussion 
The optical measurements of a human tissue depend on both scattering and absorp-

tion, and are inseparable. In the field of bio-optical sensing of physiological parameters, 
the focus is on sensing absorption due to the blood’s property of being highly absorptive. 
Nowadays, this field lacks any methods for isolating absorption from scattering, therefore 
for measuring blood oxygen, most methods use multiple wavelength measurements 
which require additional calibration, resulting in inherent errors. By using the IPL point, 
we developed a method for quantitating the absorption from the reemitted light intensity 
from the tissue. We designed a sensor equipped with a single wavelength light source and 
several PDs, based on the IPL point’s concept. For this reason, the biosensor calibrates 
itself per subject and does not require further calibration. Therefore, the sensor lacks the 
traditional inherent errors related to common SpO2 sensors. 

The standard deviation of an oxygen saturation measurement through a common 
pulse oximeter is claimed to be ±2%, while the standard deviation from measuring with 
our biosensor was demonstrated to be less than ±0.5%, when comparing the different 
measurements performed on a single test subject. The biosensor’s results show its inde-
pendence from the light source, since different LED’s intensities produced similar values 
of oxygen saturation, with an error of 0.4%. The same error was also obtained when testing 
on different locations on the body of a single subject. 

The experiment included the participation of 38 subjects, with measurements taken 
from both their inner and outer wrist. Figure 11 summarizes the oxygen saturated meas-
ured from all subjects, with the grey region denoting the normal values of saturation. For 
half of all participants (16 of all 38 subjects), the oxygen saturation in both sides of the 
wrist was calculated with less than 1% difference. Among the remaining 22 subjects that 
were tested with more than 1% difference, 13 of them had a low DC value for at least one 
of the wrist sides. Low DC represents having an absorption of less than 5 [m−1] (Figure 6). 
These low values of DC indicate that the LED’s intensity is overly high and thus reaches 
the saturation of the sensor. This can be amended by altering the intensity during the 
measurement and allows for improved results. 

Figure 10. Results of the subjects’ oxygen saturation over time, where each test took 60 s. (a) The
male subjects were measured right after they entered the hypoxic chamber (b) and after exercising.
The three of them are represented by a blue solid, orange dashed and dash-dotted yellow line, in
both graphs. (c) The female subject was tested right after exiting the room. The female’s results show
a significantly low oxygen saturation, corresponding with the subject’s report of feeling unwell.

The female subject reported feeling unwell whilst inside the chamber. Therefore, she
was not asked to exercise, and was measured right after exiting the hypoxic chamber.
The measurement produced a significantly lower saturation level (Figure 10c), which
corresponded with the general ill feeling of the subject and her appearance.

4. Discussion

The optical measurements of a human tissue depend on both scattering and absorption,
and are inseparable. In the field of bio-optical sensing of physiological parameters, the
focus is on sensing absorption due to the blood’s property of being highly absorptive.
Nowadays, this field lacks any methods for isolating absorption from scattering, therefore
for measuring blood oxygen, most methods use multiple wavelength measurements which
require additional calibration, resulting in inherent errors. By using the IPL point, we
developed a method for quantitating the absorption from the reemitted light intensity
from the tissue. We designed a sensor equipped with a single wavelength light source and
several PDs, based on the IPL point’s concept. For this reason, the biosensor calibrates
itself per subject and does not require further calibration. Therefore, the sensor lacks the
traditional inherent errors related to common SpO2 sensors.
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The standard deviation of an oxygen saturation measurement through a common
pulse oximeter is claimed to be ±2%, while the standard deviation from measuring with
our biosensor was demonstrated to be less than ±0.5%, when comparing the different
measurements performed on a single test subject. The biosensor’s results show its indepen-
dence from the light source, since different LED’s intensities produced similar values of
oxygen saturation, with an error of 0.4%. The same error was also obtained when testing
on different locations on the body of a single subject.

The experiment included the participation of 38 subjects, with measurements taken
from both their inner and outer wrist. Figure 11 summarizes the oxygen saturated measured
from all subjects, with the grey region denoting the normal values of saturation. For half of
all participants (16 of all 38 subjects), the oxygen saturation in both sides of the wrist was
calculated with less than 1% difference. Among the remaining 22 subjects that were tested
with more than 1% difference, 13 of them had a low DC value for at least one of the wrist
sides. Low DC represents having an absorption of less than 5 [m−1] (Figure 6). These low
values of DC indicate that the LED’s intensity is overly high and thus reaches the saturation
of the sensor. This can be amended by altering the intensity during the measurement and
allows for improved results.
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The new self-calibrated device for measuring oxygen saturation proposed in this paper
can support early detection of hypoxemia conditions. Further research is needed to certify
the accuracy of the biosensor. This can be achieved through clinical research comparing an
arterial blood gas tested in parallel to the measurement of the optical biosensor. However,
from the novelty point of view, this work proves for the first time it is possible to extract
SpO2 from a single wavelength.
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