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Abstract: Bovine serum albumin (BSA) is commonly incorporated in vaccines to improve stability.
However, owing to potential allergic reactions in humans, the World Health Organization (WHO)
mandates strict adherence to a BSA limit (≤50 ng/vaccine). BSA detection with conventional tech-
niques is time-consuming and requires specialized equipment. Efficient alternatives such as the
ion-sensitive field-effect transistor (ISFET), despite rapid detection, affordability, and portability, do
not detect BSA at low concentrations because of inherent sensitivity limitations. This study proposes
a silicon-on-insulator (SOI) substrate-based dual-gate (DG) ISFET platform to overcome these limi-
tations. The capacitive coupling DG structure significantly enhances sensitivity without requiring
external circuits, owing to its inherent amplification effect. The extended-gate (EG) structure separates
the transducer unit for electrical signal processing from the sensing unit for biological detection,
preventing chemical damage to the transducer, accommodating a variety of biological analytes, and
affording easy replaceability. Vapor-phase surface treatment with (3-Aminopropyl) triethoxysilane
(APTES) and the incorporation of a SnO2 sensing membrane ensure high BSA detection efficiency
and sensitivity (144.19 mV/log [BSA]). This DG-FET-based biosensor possesses a simple structure
and detects BSA at low concentrations rapidly. Envisioned as an effective on-site diagnostic tool for
various analytes including BSA, this platform addresses prior limitations in biosensing and shows
promise for practical applications.

Keywords: bovine serum albumin (BSA); biosensor; ion-sensitive field-effect transistor (ISFET);
dual-gate (DG) structure; capacitive coupling effect; SnO2 sensing membrane; surface treatment

1. Introduction

The ongoing global pandemic caused by COVID-19 has created a heightened aware-
ness of biological stability in crucial medical materials, the lack of which is a pressing
concern [1–5]. This awareness is particularly pronounced with regard to vaccines and has
led to an increased demand for the evaluation of biological stability using precise detection
equipment capable of assessing various biological factors [6–9]. Bovine serum albumin
(BSA) is a protein that is widely used in biochemistry and molecular biology and is a
vital raw material for vaccine production. However, its potential allergenicity in humans
necessitates the strict limitation of BSA content. The World Health Organization (WHO)’s
recommended BSA limit is ≤50 ng per vaccine [10–13]. Consequently, biosensors that are
capable of precisely detecting BSA levels are critically needed.

Traditional methods that have been used for BSA detection, such as the Bradford
protein assay, have drawbacks such as extended detection times and the requirement
for specialized equipment [14–16]. To address these challenges, the ion-sensitive field-
effect transistor (ISFET) has emerged as an effective solution that offers rapid detection,
affordability, and portability [17–21]. Developed by Bergveld in the early 1970s, the ISFET
is a type of biosensor that analyzes the electrical characteristics of the detection material
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based on the interaction between the sensing membrane and ions. Its compatibility with
CMOS processes enables its mass production and miniaturization. However, ISFETs have
critical limitations owing to the Nernst limit (59.14 mV/pH at room temperature), which
results in reduced sensitivity [22–25].

To address these challenges, we propose an alternative dual-gate field-effect transistor
(DG-FET)-based BSA-detection biosensor platform. To enhance its detection capabilities,
we utilized a dual-gate (DG) structure and capacitive coupling effects [26–31]. The ca-
pacitive coupling effect is determined by the capacitance ratio between the top-gate (TG)
oxide and the bottom-gate (BG) oxide and achieves high sensitivity without requiring
additional circuits, owing to its inherent amplification effect. Additionally, we adopted an
extended-gate (EG) structure in which the transducer unit for electrical signal processing
and the sensing unit for biological detection are separate. This offers advantages such as
the prevention of chemical damage to the transducer and the accommodation of a variety
of biological analytes [32–35]. The economic viability and ease of EG production make it
readily replaceable; thus, it is an excellent means of detecting irreversible reactions [36–39].
Furthermore, its simple structure provides significant advantages for rapid and diverse
transformation to detect biochemical signals via various surface treatments. We performed
a vapor-phase surface treatment with (3-Aminopropyl) triethoxysilane (APTES) to incor-
porate BSA detection capability [40–42]. In addition to the commonly used SiO2 sensing
membrane, the EG sensing membrane incorporated a SnO2 sensing membrane, which has
been reported by other biochemical sensor studies to display high sensitivity and facilitate
comparative analysis. By leveraging the high detection efficiency of the SnO2 sensing
membrane, we aimed to achieve precise detection capabilities and extend its application to
BSA detection [43–46].

In this study, we meticulously evaluated characteristics such as the sensing capa-
bility and long-term stability of the developed DG-FET-based BSA-detection biosensor
platform [47–49] with the aim to validate its suitability for detecting various biological
molecules and compounds to ensure safe manufacturing and quality assessment of phar-
maceuticals. Based on the results, we envision that the proposed sensor platform will
play a pivotal role in enhancing patient safety, public health protection, and the overall
advancement of biosensing technologies.

2. Materials and Methods
2.1. Material Specifications

The materials used in this study and their specifications are as follows: glass substrate
(Corning 7059; Corning Inc., Corning, NY, USA), bovine serum albumin (BSA; purity = 98%,
Sigma-Aldrich, St. Louis, MO, USA), triethylamine (C6H15N; purity = 98%, Sigma-Aldrich,
St. Louis, MO, USA), sodium chloride (NaCl; purity = 99%, Sigma-Aldrich, St. Louis, MO,
USA), calcium chloride (CaCl2; purity = 99%, Sigma-Aldrich, St. Louis, MO, USA), and
potassium chloride (KCl; purity = 99%, Sigma-Aldrich, St. Louis, MO, USA).

2.2. Fabrication of the DG-FET as Transducer for the BSA-Detection Biosensor Platform

In this study, a double-gate FET, which acts as a pivotal transducer unit in the BSA-
detection biosensor platform, was fabricated on a silicon-on-insulator (SOI) substrate. To
optimize the amplification potential of capacitive coupling, tantalum oxide (Ta2O5), which
is a high-k material, was selected as the TG dielectric. To minimize the interface defects
with the silicon channel, Ta2O5 was deposited on the silicon dioxide (SiO2) layer. The
SOI substrate comprises a 100 nm thick p-type top Si layer and a 200 nm thick buried
oxide (BOX) layer. The Radio Corporation of America (RCA) cleaning process was used
to eliminate contaminants on the substrate. Subsequently, a 150 nm thick dummy oxide
layer was deposited using radiofrequency (RF) magnetron sputtering. The source and
drain regions were fabricated on the dummy oxide layer using photolithography and
wet-etching techniques employing a 30:1 buffered oxide etchant (BOE) solution as the
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etchant. Phosphosilicate glass (PSG) doping was performed using a thermal diffusion
process on the patterned source and drain regions.

The PSG solution was applied via spin-coating at a speed of 2000 rpm for a duration
of 20 s, and then solidified on a hot plate at 200 ◦C for 10 min. To activate the dopant, rapid
thermal annealing (RTA) was conducted at 950 ◦C for a duration of 30 s in an O2/N2 gas
environment. Following activation, the remaining PSG and dummy oxide layers were
eliminated utilizing a 30:1 BOE. Subsequently, the active area was delineated through
reactive ion etching (RIE) after photolithography patterning, resulting in a channel width
of 10 µm. A high-k engineered dielectric layer comprising hybrid SiO2 and Ta2O5 layers
was applied to the TG oxide. To improve the interface properties with the Si channel and
reduce the leakage current of Ta2O5, a 20 nm thick SiO2 layer was first deposited, followed
by an 80 nm thick Ta2O5 layer. To achieve a 5-fold amplification ratio, the hybrid layer used
as the TG oxide was designed to have an equivalent oxide thickness (EOT) of less than
1/5 compared with the SiO2 layer used as the BG oxide. Subsequently, a TG electrode was
fabricated using the deposition of a 150 nm thick Al thin-film layer using an electron-beam
evaporator. To enhance the electrical properties of this electrode, forming gas annealing
(FGA) was carried out at 450 ◦C for 30 min (in a 5% H2/N2 gas ambient). Figure 1a
illustrates the overall structure of the DG-FET-based BSA-detection biosensor platform,
and Figure 1b shows the optical microscopy image of the fabricated DG-FET, providing
visual insight into the sophisticated structure of the proposed platform. Figure 1c shows a
photograph of the BSA-detection EG, providing visual insight into the implementation of
the DG-FET-based biosensor platform. These detailed fabrication steps ensured the creation
of a highly sensitive and stable transducer for this BSA-detection biosensor platform.
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2.3. DG Structure and Capacitive Coupling Effect of Transducer

Figure 2 illustrates the simplified equivalent circuit of the DG-FET-based sensor plat-
form in single-gate (SG) and DG operation modes. As this interpretation is based on
the operational principle of the DG-FET without incorporating a surface-treated EG, we
elucidated this as in the case of a basic ISFET. In an ISFET featuring a DG structure, the
sensing process is segregated into two operation modes: the SG mode and the DG mode.
In SG mode, only one gate is utilized, whereas in DG mode, both gates are employed simul-
taneously. During SG mode operation, surface potential detection and voltage sweeping
activities are conducted exclusively at the TG, while the BG remains grounded. In this
configuration, the threshold voltage shift (∆VTH) is determined solely based on the change
in surface potential (∆ψ), as expressed in Equation (1) [50–52]:

∆VTG
TH = −∆ψ (1)
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Conversely, in the DG mode, voltage sweeping is performed using the bottom gate,
whereas changes in the surface potential are detected using the top gate. In this case,
a capacitive coupling effect arises between the dielectric layers of the TG and BG. The
BG electrode amplifies the alteration in surface potential generated by the TG electrode,
surpassing the Nernst limit. Here, the movement in the transfer curve due to ∆ψ is
amplified according to the capacitance ratio of the TG and BG dielectric layers. The
relationship between VTG

TH and VBG
TH is expressed in terms of the VTH of the TG and BG, as

shown in Equation (2). By rearranging Equations (1) and (2), we obtain Equation (3) [53–55]:

∆VBG
TH =

CTOX
CBOX

·∆VTG
TH (2)

∆VBG
TH = −CTOX

CBOX
·∆ψ (3)
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Therefore, the change in surface potential induced during detection is amplified at the
bottom gate by the ratio of CTOX/CBOX .

2.4. Fabrication of the EG for the BSA-Detection Biosensor Platform

A glass substrate (dimensions: 1.5 cm × 2.5 cm) was used to fabricate the EG sensing
unit. The electrode for the EG was deposited using a 300 nm thick indium tin oxide (ITO)
layer, and two types of EG units were prepared by adopting SiO2 or SnO2 as the sensing
membrane. The thickness of both sensing membranes was set to 50 nm, and they were
deposited using the same RF magnetron sputtering method. After physical assembly, the
sensing membranes were surface functionalized for BSA detection. Initially, the fabricated
EG was subjected to a 30 s O2 plasma treatment to induce the formation of OH groups on
the surface [56,57]. Subsequently, APTES exposure facilitated amino functionalization. This
specific functionalization was aimed at enabling the detection of BSA (a polymer protein)
and was achieved by exposing APTES to the OH groups developed on the surface of the
sensing membrane through the vapor-phase reaction method [40,41]. To minimize the
impact of humidity, a 5 L desiccator was purged with argon gas before the commencement
of the process. Two trays were placed inside the desiccator, and 30 µL of APTES and
10 µL of triethylamine were pipetted onto each tray. After preparation, the O2 plasma-
treated EGs were placed in a desiccator, and APTES and triethylamine were removed after
120 min of incubation. The desiccator was filled with argon gas. Finally, the EGs were
stored in a desiccator for 48 h to cure the APTES coatings [58,59]. The manufacturing
process of BSA-detectable EG is illustrated in Figure 3.
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Figure 3. Schematic representation of the process of fabricating the BSA-detection extended-gate (EG)
structure for the biosensor platform.

2.5. Device Characterization

The electrical properties of the proposed sensor platform were assessed during sensing
operations employing an Agilent 4156 B precision semiconductor parameter analyzer (Agi-
lent Technologies, Santa Clara, CA, USA). The sensing unit and the transducer unit were
connected using an RG58A 9222 electrical cable (BELDEN, St. Louis, MO, USA). To mitigate
potential interference from external factors such as light and noise, all measurements were
performed within a light-attenuating enclosure. The reference electrode (Horiba 2080-06T;
Kyoto, Japan) was submerged in the BSA buffer solution within the PDMS reservoir located
on the EG unit and linked to the TG of the DG-FET. The sensitivity of the DG-FET-based
BSA-detection biosensor platform was determined by measuring the change in the transfer
curve at a drain current of 1 nA (constant-current method) corresponding to the BSA con-
centration of the buffer solution. This measurement method involves designating the point
where a specific current value is reached during the detection of the analyte as the ‘refer-
ence voltage (VREF)’ and tracking its changes. For sensitivity measurements, BSA buffer
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solutions with concentrations ranging from 10 nM to 100 µM were prepared by dissolving
BSA powder in deionized water. Sensitivity extraction was defined as the difference in
VREF when detecting deionized water (zero BSA concentration) and each concentration of
the BSA buffer solution; this was used to quantify the response of the sensor to varying
BSA concentrations. Additionally, the non-ideal effects of the proposed sensor platform
were assessed by evaluating the drift effects. To evaluate reliability during continuous
measurements, drift effects were investigated by exposing the sensing membrane of the EG
to a 100 µM BSA buffer solution for a duration of 10 h and monitoring the ∆VREF between
the initial and final values.

3. Results and Discussion
3.1. Electrical Characteristics of the DG-FET

Figure 4 illustrates the electrical characteristics of the proposed transducer device in
both SG and DG operation modes. The electrical characteristics were evaluated using trans-
fer (ID–VG) and output (ID–VD) curve measurements. For the transfer curve measurements,
VD was set to 1 V in both SG and DG modes. In the output curve measurements, VG–VTH
was varied from 0 to 1 V in 11 steps (1 step = 0.1), and the VD sweep range was set from
0 to 1 V. Table 1 summarizes the electrical parameters of the fabricated transducer based
on data from Figure 4. In the SG mode, the device exhibited a subthreshold swing (SS)
of 137.76, an ON/OFF current ratio (ION/IOFF) of 1.52 × 108, and a field-effect mobility
(µFE) of 140.51. In contrast, in the DG mode, it demonstrated an SS of 213.56, an ION/IOFF
ratio of 8.44 × 107, and a µFE of 384.55, respectively. In the SG mode, in which operation
occurs through the TG, the characteristics of the TG oxide with high-k materials play a
significant role. This confirms the excellent SS characteristics stemming from the outstand-
ing electric field transferability of the TG oxide layer. In the DG mode, enhanced channel
control was achieved while operating through both TG and BG, which allows for a higher
current value.
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Figure 4. Electrical characteristics of the DG-FET in (a) SG and (b) DG operation modes.

Table 1. Summary of electrical parameters for the dual-gate field-effect transistor (DG-FET) in
single-gate (SG) and dual-gate (DG) operation modes.

Electrical
Parameters

VTH
(V)

SS
(mV/dec)

ION/IOFF
(A/A)

µFE
(cm2/V·s)

SG mode 0.13 137.76 1.52 × 108 140.51
DG mode −0.25 213.56 8.44 × 107 384.55
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3.2. Sensing Characteristics of the DG-FET-Based BSA-Detection Biosensor Platform

The stringent WHO guidelines, which stipulate a maximum allowable BSA concen-
tration of ≤50 ng/vaccine, pose a considerable challenge for electrochemical detection
in solutions at extremely low BSA concentrations [10]. However, the engineered DG-
FET-based BSA-detection biosensor platform is distinguished by its capacity to precisely
self-amplify minute potentials, which effectively demonstrates its proficiency in detecting
BSA levels with remarkable sensitivity. An EG with integrated BSA sensing capabilities was
used to perform the measurements, as outlined in the illustration of the surface treatment
process in Figure 3. The BSA detection characteristics of the prepared biosensor platform
were evaluated with respect to BSA concentration, and the ∆VREF for various BSA buffer
solutions was extracted at 1 nA, as shown in Figure 5. At concentrations below 10−9 M, the
linearity of the transfer curve shift was not maintained, making accurate detection impossi-
ble. Therefore, the detection limit was set to 10−8 M, and concentrations were extracted in
the range of 10−8 to 10−4 M. Figure 5a,b show the transfer characteristic curves as a function
of BSA concentration for the SG and DG sensing modes, respectively. Notably, for both the
SiO2 and SnO2 sensing membranes, the observed ∆VREF in the DG mode surpasses that in
the SG mode. This observation underscores that the BSA detection capability in DG mode
sensing, especially with the SnO2 sensing membrane used in this study, outperforms SG
mode sensing using the conventional SiO2 sensing membrane, owing to the amplification
effect of capacitive coupling in the DG mode.
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Figure 5. Transfer characteristic curves as a function of BSA concentration for (a) SG and (b) DG
sensing modes.

The BSA sensitivity extracted from Figure 5 is shown in Figure 6. The sensitivity values
were determined as the averages of the measurement results from five samples. Owing to
the irreversible nature of the detection response in the BSA-detection EG, each individual
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EG was used as a disposable unit for precise detection. The SiO2 sensing membrane
exhibited sensitivities of 14.83 mV/log [BSA] in SG mode and 71.59 mV/log [BSA] in DG
mode. Meanwhile, the SnO2 sensing membrane demonstrated sensitivities of 29.08 mV/log
[BSA] in SG mode and an impressive 141.19 mV/log [BSA] in DG mode. Both sensing
membranes demonstrated approximately 4.8 times increased sensitivity owing to the
amplification effect of the capacitive coupling in the DG mode. Notably, the SnO2 sensing
membrane, with exceptional detection capabilities, achieved a remarkable sensitivity of
141.19 mV/log [BSA] after amplification. These results indicate that the proposed DG-FET-
based biosensor effectively detects BSA, proving its efficiency as a biosensor platform with
high sensitivity for detecting minute quantities of biomolecules via self-amplification.
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3.3. Selectivity Characteristics of the DG-FET-Based BSA-Detection Biosensor

To assess the selective detection capability of the fabricated DG-FET-based BSA-
detection biosensor for biological analytes, sensitivity characteristics were compared for
NaCl, CaCl2, KCl, and BSA buffer solutions. Figure 7a,b illustrate the sensitivity character-
istics in the SG and DG sensing modes for each buffer solution. The sensitivity values were
calculated as the averages of the measurement results from five samples. The maximum
interference ratios of other ions to BSA were 17.93% in SG mode and 18.13% in DG mode
for SiO2 samples, and 11.21% in SG mode and 11.37% in DG mode for SnO2 samples.
This reaffirms that the SnO2 sensing membrane can provide stable and accurate BSA de-
tection capability compared with the SiO2 sensing membrane. Moreover, the maximum
interference ratios of other ions to BSA were sufficiently small to be negligible, indicating
the potential utility of the proposed biosensor platform capable of BSA detection. The
numerical values extracted from Figure 7 for the selectivity characteristics are presented in
Table 2.

Table 2. Summary of selectivity characteristics of the DG-FET-based BSA-detection biosensor platform.

Membrane
Type

Operation
Mode

Sensitivity
[mV/dec]

BSA Na+ Ca2+ K+

SiO2
SG mode 14.89

(σ = 0.0021)
2.67

(σ = 0.0012)
1.67

(σ = 0.0032)
1.19

(σ = 0.0044)

DG mode 70.66
(σ = 0.0119)

12.81
(σ = 0.0037)

7.96
(σ = 0.0021)

5.72
(σ = 0.0016)

SnO2
SG mode 29.25

(σ = 0.0061)
3.28

(σ = 0.0018)
2.15

(σ = 0.0011)
1.55

(σ = 0.0019)

DG mode 140.91
(σ = 0.0121)

16.02
(σ = 0.0046)

10.34
(σ = 0.0028)

7.56
(σ = 0.0037)
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Figure 7. Selectivity characteristics of the DG-FET-based BSA-detection biosensor platform for (a) SG
and (b) DG sensing modes.

3.4. Reliability and Stability of the DG-FET-Based BSA-Detection Biosensor

This section discusses the reliability and stability of the DG-FET-based BSA-detection
biosensor platform, focusing on the non-ideal effects and drift rates observed during
prolonged sensing operations. Ensuring the capability to detect BSA at levels recom-
mended by the WHO demands not only high sensitivity but also the stability of the
sensor platform itself, which facilitates consistent sensing operations. Therefore, non-ideal
effects were evaluated through repetitive and sustained operations under various envi-
ronmental conditions. Figure 8 illustrates the drift effect of the proposed DG-FET-based
BSA-detection biosensor platform. The parameters were measured for 10 h after applying
a 100 µM BSA buffer solution, and the ∆VREF of the initial and final points were com-
pared. The drift effect values were determined as the averages of the measurements from
five samples. The drift effects in SG and DG modes for the SiO2 sensing membrane were
4.51 mV/h and 9.32 mV/h, and those for the SnO2 sensing membrane were 4.32 mV/h and
10.41 mV/h, respectively. In both cases, the drift effects were lower in the SG mode than in
the DG mode.
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Figure 8. Drift effects of the proposed DG-FET-based BSA-detection biosensor platform.

Table 3 presents a comprehensive summary of the observed non-ideal effects and
sensitivity values under various measurement conditions. The standard deviation (σ)
values for the extracted data are indicated below the sensitivity and drift effect values. To
facilitate a quantitative comparison, the sensitivity-to-drift effect ratio for each condition is
also provided.

Table 3. Summary of non-ideal effects and sensitivity values for the DG-FET-based BSA-detection
biosensor platform for different sensing modes and sensing membrane types.

Membrane
Type

Operation
Mode

Sensitivity
[mV/dec]

Drift
[mV/h]

Sensitivity-
Drift Ratio [%]

SiO2
SG mode 14.83

(σ = 0.0023)
4.51

(σ = 0.0043) 328.82

DG mode 71.59
(σ = 0.0137)

9.32
(σ = 0.0047) 768.13

SnO2
SG mode 29.08

(σ = 0.0063)
4.32

(σ = 0.0028) 673.15

DG mode 141.19
(σ = 0.0144)

10.41
(σ = 0.0065) 1356.29

Figure 9 presents the numerical comparative data of the non-ideal effects and sensi-
tivity values based on Table 2. Compared with that of the SiO2 sensing membrane, the
numerical value of the drift effect for the SnO2 sensing membrane is higher. Furthermore,
the drift effect in the DG mode surpasses that in the SG mode. However, considering the
significantly higher sensitivity gain achieved through the amplification effect, this differ-
ence is negligible. Using SnO2 sensing membranes and leveraging amplification minimizes
the impact of non-ideal effects, leading to the establishment of a stable sensor platform.
This highlights the exceptional detection capabilities at low BSA concentration and the high
stability of the proposed DG-FET-based BSA-detection biosensor platform.
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Figure 9. Numerical comparison of the drift effect and sensitivity of the DG-FET-based BSA-detection
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4. Conclusions

In this study, we introduce a novel DG-FET-based biosensor platform for the precise
detection of BSA. The proposed platform overcomes the limitations of traditional ISFETs by
incorporating a DG structure into an SOI substrate. The capacitive coupling effect between
the TG and BG significantly enhances sensitivity without requiring additional external cir-
cuits. This innovative design achieves rapid and sensitive detection of low concentrations of
BSA, satisfying the critical requirements mandated by the WHO for applications in vaccine
production. The DG-FET biosensor demonstrates excellent sensitivity, with a remarkable
amplification effect in the presence of SnO2 sensing membranes. This platform exhibits
superior sensitivity and stability, outperforming traditional ISFETs. Compared with sensors
produced using conventional methods, which exhibit a sensitivity of 14.83 mV/log [BSA],
this sensing platform achieves a significantly higher sensitivity (approximately 9.52 times)
of 141.19 mV/log [BSA]. Sensitivity-to-drift effect ratio analysis revealed the robustness
of the proposed biosensor, particularly when the SnO2 sensing membranes were used
in the DG mode. Our findings suggest that the developed DG-FET-based biosensor can
potentially detect various biological analytes with high precision. Hence, future studies
are required to extend the capacity of the proposed biosensor to detect various biological
molecules and compounds to ensure the continued improvement in the stability and relia-
bility of biosensing technology. We believe that the significant advances presented in this
study could potentially revolutionize biosensor applications in terms of biological stability
and detection and contribute to the ongoing efforts to enhance the accuracy and efficiency
of biosensors, which in turn would improve safety in pharmaceutical manufacturing and
quality assessment, especially in the context of global health challenges.
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