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Abstract: The use of label-free technologies based on electrical impedance is becoming 

more and more popular in drug discovery. Indeed, such a methodology allows the 

continuous monitoring of diverse cellular processes, including proliferation, migration, 

cytotoxicity and receptor-mediated signaling. The objective of the present study was to 

further assess the usefulness of the real-time cell analyzer (RTCA) and, in particular, the 

xCELLigence platform, in the context of early drug development for pharmacology and 

toxicology investigations. In the present manuscript, four cellular models were exposed to 

50 compounds to compare the cell index generated by RTCA and cell viability measured 

with a traditional viability assay. The data revealed an acceptable correlation (ca. 80%) for 

both cell lines (i.e., HepG2 and HepaRG), but a lack of correlation (ca. 55%) for the 

primary human and rat hepatocytes. In addition, specific RTCA profiles (signatures) were 

generated when HepG2 and HepaRG cells were exposed to calcium modulators, 

antimitotics, DNA damaging and nuclear receptor agents, with a percentage of prediction 

close to 80% for both cellular models. In a subsequent experiment, HepG2 cells were 

exposed to 81 proprietary UCB compounds known to be genotoxic or not. Based on the 

DNA damaging signatures, the RTCA technology allowed the detection of ca. 50% of the 

genotoxic compounds (n = 29) and nearly 100% of the non-genotoxic compounds (n = 52). 

Overall, despite some limitations, the xCELLigence platform is a powerful and reliable 

tool that can be used in drug discovery for toxicity and pharmacology studies. 
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1. Introduction  

In drug development, in vitro approaches play an important role for the selection of efficacious and 

safe candidates before animal studies are launched [1,2]. At UCB, a battery of in vitro assays focusing 

on cytotoxicity [3], phospholipidosis [4] and micronuclei detection [5] were validated for screening 

purposes. Recently, several clinically promising cytotoxic and cytoprotective agents with potential 

applications in cancer, ischemic and neurodegenerative diseases have been identified by high-throughput 

screening (HTS), based on appropriate cell death assays [6]. Many in vitro assays are available to 

identify potential toxic liabilities, but the vast majority of the assays are invasive and measurements 

are performed at fixed time points (e.g., 24 h). Such an approach is not optimal because, for instance, 

apoptosis, which usually occurs within a few hours, is frequently followed by secondary necrosis 

events that may take place immediately or in a longer time frame. In addition, induced cell cycle arrest 

may be temporary, while in other cases the cells could be permanently blocked leading finally to cell 

death. Consequently, the use of label-free technologies (e.g., the xCELLigence platform based on 

impedance as readout), which allow continuous measurements, are receiving more and more  

attention [7,8]. For instance, recently, Kustermann et al. [8] established an impedance-based approach, 

which is able to differentiate cytostatic from cytotoxic drugs by recording time-kinetics of  

compound-effects on NIH 3T3 fibroblasts. In particular, based on a set of 40 compounds with known 

in vivo findings, they established an algorithm, which analyzes the shape of the impedance curves to 

differentiate mechanisms of toxicity [8]. Finally, another advantage of such technology is that 

compounds with similar mode of action (e.g., nuclear hormone modulators, anti-mitotic, DNA 

damaging, protein synthesis inhibitor compounds) can produce similar impedance-based time-dependent 

cell response profiles (TCRP) [9].  

Impedance-based TCRP has been used to measure and characterize cellular responses to antimitotic 

compounds [7]. Ke et al. [7] screened a compound library and identified novel antimitotic compounds, 

with the majority confirmed by independent assays, based on clustering analysis of the TCRPs.  

In other applications, impedance measurement was successfully used to measure cytotoxic effects in 

alveolar type II cells and vascular endothelial cells [10], human astrocytic cells [11], neuronal cell  

lines [12] and human epithelial intestinal HT-29 cell line [13]. Our data indicate that the methodology 

is also extremely useful to determine the best coating and cellular density conditions for different 

adherent cellular models, including HepG2, ND7/23, mouse cardiomyocytes and fibroblasts [14].  

In addition, reproducibility was also optimal when HepG2 cells were exposed to 0.1% dimethyl 

sulfoxide (DMSO) and to 0.0025% triton X-100 in 31 independent experiments, as well as when 

cardiomyocytes and fibroblasts were exposed to 21 compounds in three different experiments [14]. 

Despite the evident assets of the xCELLigence platform, many validation studies are still required 

to better evaluate this quite recent technology. For instance, it was shown recently that a cell index 

decrease is not always associated with cytotoxicity effects and that there are some confounding factors 
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that can bring confusions in the analysis [14]. The objective of this study was to further assess the 

usefulness of the RTCA and, in particular, the xCELLigence platform. The objectives were to  

(i) compare cell index generated by RTCA and cell viability measured with a traditional cytotoxicity 

assay in primary human and rat hepatocytes, as well as in HepG2 and HepaRG cells exposed to  

50 compounds, (ii) determine if compounds with similar mechanisms of action produce specific 

profiles in HepG2 and HepaRG cells exposed to 17 reference compounds and (iii) evaluate the 

predictivity of the genotoxicity signatures (specificity and sensitivity evaluation) determined by 

impedance with a set of 81 proprietary UCB compounds in HepG2 cells. 

2. Materials and Methods 

2.1. Chemicals Tested 

All compounds were ordered from Sigma-Aldrich (Saint-Louis, MO, USA), except celecoxib and 

teniposide, which were purchased from Sequoia Research Products (Pangbourne, UK). Fresh 

concentrated stock solutions were prepared in dimethyl sulfoxide (DMSO) immediately before first use 

and then kept at −20 °C for potential retesting. 

2.2. Quality Control: Test of Different Coating Conditions and Cell Titration Test 

Different experiments were performed to determine the optimal culture conditions for each cellular 

model, except for the cryopreserved HepaRG. For this latter model, the provider of the cells 

recommended to work at very high cell density (i.e., 100,000 cells/well). For the fresh HepaRG cells, 

Biopredic performed the cell seeding, according to their internal procedures. For the other cell types 

(i.e., HepG2, primary Human and rat hepatocytes), the following coating conditions were used: no 

coating, collagen (Collagen R Solution 0.2%; Serva, Heidelberg, Germany), fibronectin (Sigma-Aldrich, 

Saint-Louis, MO, USA) and poly-D-lysine (Sigma-Aldrich). E-plates were coated, according to the 

manufacturer‟s recommendations. For each coating condition, different cell densities (0.625, 1.25, 2.5, 

5, 10, 20, 40 and 80 × 10
3
 cells per well) were tested in triplicate. The best combination (coating and 

cell density) was selected according to two important criteria. Firstly, as recommended by the 

manufacturer (Roche Diagnostics), the cell index should be minimum 0.5 and ideally 1 (or above) 

before starting any experiment (i.e., before cells are exposed to compounds). Secondly, the cell number 

selected should be in the cell index/cell number linear range. For more details, please refer to  

Atienzar et al. [14]. According to both criteria, the optimal and used conditions (cell density, coating) 

for the different cellular models are summarized below: 

• HepG2 cells: 10,000 cells/well, collagen 

• HepaRG cells (cryopreserved): 100,000 cells/well (as recommended by the cell provider), collagen 

• Primary human hepatocytes: 20,000 cells/well, collagen 

• Primary rat hepatocytes: 15,000 cells/well, collagen 

Results were recently published for four different models, including HepG2, ND7/23, as well as 

mouse cardiomyocytes and fibroblasts cells [14]. 
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2.3. Cellular Models Used, Cell Culture and Manipulation of the Cells 

HepG2 cells: the human hepatocellular carcinoma cell line (HepG2) was purchased from the 

European Collection of Cell Cultures (ECACC, Salisbury, UK). Cells were maintained in Dulbecco‟s 

modified Eagle‟s medium supplemented with 10% fetal bovine serum, 2 mmol/L L-glutamine and  

1× nonessential amino acid solution at 37 °C in a humidified 5% CO2/95% air atmosphere. Cells were 

passaged twice a week using 0.5% trypsin-EDTA. Cells were used between passage 19 and 35.  

HepaRG cells: experiments with HepaRG cells (human hepatoma cell line) were performed on  

(1) 96-well plates ready to use or (2) with cryopreserved HepaRG. Two different formats were used, 

because both experiments on HepaRG cells were not performed at the same time and the Biopredic 

format evolved from fresh to cryopreserved cells. Consequently, it was not possible to compare both 

formats, but we recently successfully used both fresh and cryopreserved HepaRG for gene 

expression/cytochrome P450 activity evaluation and cytotoxicity investigations, respectively [15].  

(1) Plates ready to use were purchased from Biopredic International (Rennes, France). E-plates (Roche 

Diagnostics, Vilvoorde, Belgium) were sent to Biopredic, who performed the cell seeding according to 

their internal procedures. On arrival, HepaRG cells were handled according to the manufacturer‟s 

recommendations. In brief, the medium was discarded, and 100 µL of low DMSO medium was added 

for 24 h. The low DMSO medium was then replaced by 100 µL of high DMSO medium for at least  

2 days. On the day of the experiment, the high DMSO medium was replaced with the „enriched‟ 

medium (without DMSO, proprietary medium), and the compounds were added, with 0.5% as a final 

DMSO concentration in each well. The plates were incubated at 37 °C in a humidified 5% CO2/95% 

air atmosphere). Cryopreserved HepaRG cells were purchased from Invitrogen (Life Technologies, 

Merelbeke, Belgium). The cells were handled according to the manufacturer‟s instructions. In brief, 

HepaRG cells were thawed at 37 °C, poured in 9 mL of pre-warmed (37 °C) HepaRG
TM

 Thaw,  

Plate and General Purpose Working medium (Life Technologies‟ proprietary medium). The cells were 

centrifuged at 360 g for 2 min at room temperature (RT), resuspended in 5 mL HepaRG
TM

 Thaw,  

Plate and General Purpose Working medium and cell viability was determined. The cells were seeded in 

a collagen-coated E-plate at a density of 100,000 cells/well (as recommended by the cell provider) and 

placed on the plate reader in a humidified 5% CO2/95% air atmosphere at 37 °C. The medium was 

renewed every 2–3 days for 8 days. At day 9, 10 µL of compound was added to the cells. 

Primary Human Hepatocytes (HH): the cells were purchased from CellzDirect (Cheshire, UK). 

Cells were thawed based upon CellzDirect‟s standard method. In brief, hepatocytes were thawed at  

37 °C, poured into pre-warmed (37 °C) CHRM™ thawing medium (CellzDirect‟s proprietary medium) 

at a ratio of one vial/50 mL. The cells were centrifuged at 100 g for 10 min, resuspended in  

2–3 mL cold (4 °C) CHPM™ plating medium and cell viability was determined. The cells were seeded 

in a collagen-coated E-plate at a density of 20,000 cells/well and allowed to attach in a humidified  

5% CO2/95% air atmosphere at 37 °C for ca. 4–6 h, after which the medium was changed with 

Williams E medium supplemented with dexamethasone and cocktail B (cat n° CM4000, Life 

Technologies). Subsequently, 10 μL of compound was added to the wells.  

Primary Rat Hepatocytes (HH): the cells were purchased from Life technologies (Gent, Belgium). 

Cells were thawed according to Life Technologies‟ standard protocol. In brief, hepatocytes were 

thawed at 37 °C, poured into pre-warmed (37 °C) thawing-plating medium (11% serum, Williams E 
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medium containing dexamethasone, as well as cocktail A (cat n° CM3000, Life technologies)) at a 

ratio of one vial/50 mL. The cells were centrifuged at 80 g for 10 min, resuspended in 2–3 mL cold  

(4 °C) thawing-plating medium and cell viability was determined. The cells were seeded in  

a collagen-coated E-plate at a density of 15,000 cells/well and allowed to attach in a humidified 5% 

CO2/95% air atmosphere at 37 °C for ca. 4–6 h, after which the medium was changed with Williams E 

medium supplemented with dexamethasone and cocktail B (cat n° CM4000, Life Technologies).  

2.4. Impedance, Cell Index Measurements [9] 

To quantify cell status based on the measured cell-electrode impedance, a parameter termed cell 

index (CI) is derived, according to the following equation:  

CI =            
         

      
    

where Rb(f) and Rcell(f) are the frequency-dependent electrode resistances (a component of impedance) 

without cells or with cell present, respectively. N is the number of the frequency points at which the 

impedance is measured. Thus, cell index is a quantitative measure of the status of the cells in an 

electrode-containing well. Under the same physiological conditions, more cells attaching onto the 

electrodes lead to larger Rcell(f) value and then to a larger value for cell index. Furthermore, for the 

same number of cells present in the well, a change in the cell status, such as morphology will lead to a 

change in the cell index. A “normalized cell index” at a given time point is calculated by dividing the 

cell index at the time point by the cell index at a reference time point. Thus, the normalized cell index 

is 1 at the reference time point.  

In our experiments, the normalization was always done by using the last timepoint before compound 

addition. This allows comparing more precisely the effect of the different concentrations tested versus 

the control. The cell index values presented in this manuscript were calculated from triplicate values 

(technical replicates) except for the cells exposed to DMSO (n = 6) and for the positive controls (n = 2, 

0.00125, 0.0025 and 0.005% triton X-100). Data represent the average ± standard deviation. For more 

details concerning the RTCA measurement principle, please refer to Solly et al. [16]. For all 

experiments, the background reading was performed in presence of medium, except for the fresh 

HepaRG cells. For this latter model, the background was done in presence of the cells when the plates 

were received from Biopredic, who performed the cell seeding according to their internal procedures. 

Please see below for more details. 

2.5. Generation of Different Signatures in HepG2 and (Fresh) HepaRG Cells 

HepG2 plates were coated with collagen R. The background reading was performed in presence of 

100 µL of medium. Then 90 µL of cells were added to obtain the adequate cell density (10,000 HepG2 

cells per well). The E-plates containing the HepG2 cells were allowed to incubate at RT for 30 min and 

placed on the plate reader in the incubator for continuous recording of impedance overnight. After  

16–24 h, the HepG2 cells were exposed to the compounds for at least 72 h.  

Experiments on fresh HepaRG cells were performed with HepaRG plates ready to use. The  

96-HepaRG plates were handled as described in the previous “HepaRG cells” section. The background 
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reading was done on the E-plates seeded with the cells. The background reading is normally done in 

absence of the cells, but since the E-plates were sent to Biopredic, to avoid any contamination problems, 

we decided not to perform the background reading in absence of cells. HepaRG cells were also 

exposed to compounds for at least 72 h. 

Stock solutions of 100 mM (in DMSO) were used to prepare 3 other stock solutions at 10, 1 and  

0.1 mM in 100% DMSO. These solutions were diluted 50 times in water. Then, 10 µL of these 

solutions were directly added into the wells containing 190 µL of medium. Final concentrations in the 

plates were 0.1, 1, 10 and 100 µM with 0.1% DMSO as final concentration. Compounds were added 

only once. Each condition was measured in triplicate except for the cells exposed to 0.1% DMSO  

(n = 6) and for the positive controls (n = 2, 0.00125, 0.0025 and 0.005% triton X-100). The cells were 

monitored in real-time, at 37 °C in a humidified 5% CO2/95% air atmosphere, using the multi-plate 

(96-well plate format) xCELLigence platform (Roche Diagnostics). Intervals for data collection were 

every 10 minutes after compounds addition for the first 2 h and every 30 min for at least 72 h. 

Seventeen compounds were used in this experiment. Three to five compounds known to be calcium 

modulators, anti-mitotic agents, DNA damaging compounds and nuclear receptor agents were 

evaluated per category. The cellular models investigated were HepG2 and HepaRG cells. These latter 

were exposed for at least 72 h to 0.1, 1, 10 and 100 µM of compound. The objective was to determine 

if similar profiles were generated by compounds sharing the same mechanism of action and if the 

profiles were comparable to those generated in A549 (non-small lung cancer cells), as published in 

Abassi et al. [9]. A score of 1 or 0 was given when the profile was comparable or not, respectively, to 

those generated in the paper of Abassi et al. [9]. The main criteria used to compare the RTCA profiles 

was the shape of the curve, and this parameter was qualitatively evaluated by eye. Some of the RTCA 

signatures due to calcium modulators, antimitotics, DNA damaging agents and nuclear receptor 

modulators have been well characterized in A549 cells. In practice, a visual comparison was 

accomplished for HepG2 and HepaRG cells with the reference curves generated in A549 cells [9]. 

Indeed, the complete list of the clustered compounds shown in supplementary figures [9] helped to 

better define the typical RTCA profiles obtained in A549 cells for the different mechanisms of actions.  

2.6. Cytotoxicity: LC50 Calculation Comparison of Cell Index-Generated by RTCA and Cell Viability 

Measured by a Traditional Assay in HepG2, Cryopreserved HepaRG Cells, Primary Human and Rat 

Hepatocytes 

Experiments on HepaRG were performed with cryopreserved HepaRG cells. Please refer to the 

“HepaRG cells” section for more details. HepG2 and cryopreserved HepaRG cells were seeded on 

coated collagen E-plates, according to the manufacturer‟s recommendations. The background reading 

was performed in presence of 100 µL of medium. Then 90 µL of cells were added to obtain the 

adequate cell density per well (10,000 for HepG2 cells; 100,000 for HepaRG cells). For both cell 

types, the E-plates containing the cells were allowed to incubate at room temperature (RT) for 30 min 

and placed on the plate reader in the incubator for continuous recording of impedance overnight. After 

16–24 h, the HepG2 cells were exposed to the compounds. HepaRG cells were cultured for 9–10 days 

before compound addition, according to CellzDirect‟s recommendations.  
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Primary rat and human hepatocytes were seeded on collagen R coated E-plates, according to the 

manufacturer‟s recommendations. The background reading was performed in presence of 100 µL of 

medium. Then 90 µL of cells were added to obtain the adequate cell density per well (15,000 for rat 

hepatocytes; 20,000 for human cells). The E-plates containing the cells were allowed to incubate at RT 

for 30 min and placed on the plate reader in the incubator for continuous recording of impedance. 

After ca. 3 h attachment, the cells were exposed to the compounds. 

The 4 cellular models were exposed to a set of 50 compounds for 5 consecutive days. The compounds 

were added twice at day 0 and day 3. Four concentrations using technical triplicates were used for each 

compound. The 50 compounds included 46 reference compounds (drugs known to be hepatotoxic in 

Humans or not), as well as 4 proprietary UCB compounds. The concentrations used were not fixed, but 

were selected based on Cmax values found in literature, as well as in commercial and proprietary UCB 

databases. Cmax refers to the maximal concentration of a compound in human blood. The concentrations 

tested were multiple of Cmax (i.e., 12.5 Cmax, 25 Cmax, 50 Cmax and 100 Cmax).  

Stock solutions (in DMSO) were prepared in the same manner as described in the section 

previously described “Generation of signature profiles in HepG2 and fresh HepaRG cells”. Each 

condition was measured in triplicate except for the cells exposed to DMSO (n = 6) and for the positive 

controls (n = 2, 0.00125, 0.0025 and 0.005% triton X-100). The cells were monitored in real-time, at 

37 °C in a humidified 5% CO2/95% air atmosphere, using the multiplate xCELLigence platform. 

Intervals for data collection were every 10 min after compounds addition for the first 2 h and every  

30 min for 5 days. 

After 5 day exposure, impedance measurement was compared to cell viability using the Promega 

(Madison, USA) CellTiter-Fluor™ cell viability assay (reference G6080). For this purpose, the cells 

from the same E-plates were used to perform the cell viability assay. The CellTiter-Fluor™ Cell 

Viability Assay is a non-lytic fluorescence assay that measures the relative number of live cells. The 

live-cell protease activity is restricted to intact viable cells and is measured using a fluorogenic,  

cell-permeate, peptide substrate. In the plate, the culture medium was removed and replaced by fresh 

medium. The CellTiter Fluor reagent was added, according the manufacturer recommendations, and 

the fluorescence was measured.  

For the comparison, first of all, the averaged control values (i.e., cells exposed to solvent) were set 

to 100% for both impedance and fluorescence parameters at the end of the experiments (i.e., after  

5-day exposure). Then, the % of the cells exposed to the compounds at different concentrations was 

calculated relative to the control values. Finally, a coefficient of correlation was calculated for the 

impedance and fluorescence parameters using the Microsoft Excel 2010 software. 

The % viability data from the impedance and fluorescence parameters were also used to calculate 

the LC50 (concentration that kills 50% of the cells) using a linear regression fit when applicable.  

In brief, the slope (a) and intercept (b) of the regression line was automatically calculated using the 

Microsoft Excel 2010 software with the data closest to the concentration killing 50% of the cells. The 

equation, y = ax + b, was then used to calculate the LC50.  
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2.7. Evaluation of Impedance Output to Predict Genotoxicity Potential with Proprietary UCB 

Compounds in HepG2 Cells 

Plates were coated with collagen R, according to the manufacturer‟s recommendations. The 

background reading was performed in presence of 100 µL of medium. Then, 90 µL of cells were added 

to obtain the adequate cell density (i.e., 10,000 cells per well). The E-plates containing the cells were 

allowed to incubate at RT for 30 min and placed on the plate reader in the incubator for continuous 

recording of impedance overnight. After 16–24 h, the HepG2 cells were exposed to the compounds  

for 72 h. 

Stock solutions were prepared at 200, 100, 50 and 25 mM (in DMSO) and further diluted to prepare 

other intermediate stock solutions (10% DMSO). Then, 10 µL of these solutions were directly added 

into the wells containing 190 µL of medium. Final concentrations in the plates were 125, 250, 500 and 

1,000 µM with 0.5% DMSO as final concentration in the plate. Compounds were added only once. 

Each condition was measured in triplicate except for the cells exposed to 0.5% DMSO (n = 6) and for 

the positive controls (n = 2, 0.00125, 0.0025 and 0.005% triton X-100). The cells were monitored in 

real-time, at 37 °C in a humidified 5% CO2/95% air atmosphere, using the multiplate xCELLigence 

platform. Intervals for data collection were every 2 min after compounds addition for the first 2 h and 

every 30 min for 72 h.  

In this experiment, HepG2 cells were exposed for 72 h to 81 proprietary compounds belonging to 

two central nervous system projects in the field of neuropathic pain (35 and 46 compounds). The 

objective was to determine if the compounds that were identified as genotoxic (according to at least the 

Human GreenScreen assay [17] or possibly other assays, such as Chinese hamster ovary micronucleus 

assay [5] or the mini Ames test [18]) generated genotoxic profiles. A compound was classified as 

genotoxic according to the impedance measurements when, after compound addition, the cell index 

was higher compared to the control curve, followed by a decrease in cell index that reached at least 

50% mortality within 48 h exposure. A compound was classified as negative when both conditions 

were not met. This rule was set based on cell index profiles that were obtained from reference 

compounds known to be genotoxic or not (preliminary experiments). 

In order to evaluate the performance of the RTCA assay, the sensitivity, specificity and concordance 

(accuracy) were determined. The sensitivity is defined as the ability of a test system to predict the 

positive outcome under evaluation (i.e., genotoxicity). The specificity represents the ability of a test 

system to predict the negative outcome under evaluation (i.e., non-genotoxicity). The concordance or 

accuracy corresponds to the proportion of chemicals correctly identified by a particular test.  

3. Results 

3.1. Example of RTCA Profiles Generated in HepG2 Cells Exposed to Six Compounds 

Figure 1 shows examples of RTCA profiles generated in HepG2 cells exposed to astemizole  

(Figure 1(A)), cerivastatin (Figure 1(B)), amiodarone (Figure 1(C)), chlorpromazine (Figure 1(D)), 

aflatoxin B1 (Figure 1(E)) and tacrine (Figure 1(F)) at four concentrations (i.e., 0.1, 1, 10 and  

100 µM). The rapid decrease in cell index, as shown for astemizole (Figure 1(A)) and chlorpromazine  

(Figure 1(D)) at 100 µM, is not associated to pure cytotoxicity effects.  
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Figure 1. Examples of real-time cell analyzer (RTCA) profiles generated with hepatotoxic 

compounds in HepG2 cells. HepG2 cells were exposed to: 0 (0.5% dimethyl sulfoxide 

(DMSO), red curve), 0.1 (green curve), 1 (purple curve), 10 (dark blue curve) and 100 

(light blue curve) µM with six different compounds. The drugs tested were astemizole (A), 

cerivastatin (B), amiodarone (C), chlorpromazine (D), aflatoxin B1 (E) and tacrine (F). 

Cell indexes were normalized with the last time point before compound addition. The 

normalized time point is indicated by the vertical line. Each data point was calculated from 

triplicate values (except for control cells n = 6). Data represent the average ± standard 

deviation. For more details, please refer to the Materials and Methods section. 

  

(A) Astemizole (B) Cerivastatin 

  

(C) Amiodarone (D) Chlorpromazine 

  

(E) Aflatoxin B1 (F) Tacrine 
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Indeed, such profiles are generally due to compounds modulating calcium and/or targeting 

cytoskeleton proteins. A typical cytotoxicity effect is represented, for instance, in Figure 1(B,C), in 

which HepG2 cells were exposed to cerivastatin and amiodarone, respectively. Indeed, the decrease in 

cell index displays a slope less pronounced than cell index decrease observed in HepG2 exposed to 

100 µM of astemizole or chlorpromazine. Figure 1 shows examples of compounds with varying 

degrees of cytotoxicity. Out of the six compounds presented in Figure 1, the most cytotoxic one is 

cerivastatin (Figure 1(B)) (a severely hepatotoxic drug) with a concentration killing 50% of the cells 

(LC50) of 0.64 µM at 48 h. Tacrine, a moderately hepatotoxic drug, is considered as the least cytotoxic 

drug in HepG2 cells, with a LC50 close to the highest concentration tested (i.e., 100 µM) (Figure 1(F)). 

Finally, aflatoxin B1 generated a genotoxic RTCA profile in HepG2 cells at 100 µM (Figure 1(E)).  

3.2. Examples of Cytotoxicity Data: RTCA Profiles Generated in HepG2, HepaRG, Primary Rat and 

Human Hepatocytes Exposed to Cerivastatin 

The RTCA curves show that the cell index of control cells exposed to 0.5% DMSO increased 

and/or stabilized for all cell types up to five days of treatment except for the primary rat hepatocytes 

(Figure 2). Indeed, for this latter model, the cell index started to decline particularly after two-days‟ 

exposure (Figure 2(D)). Dose response relationships were obtained particularly for HepG2 cells  

(Figure 2(A)) and to a lesser degree for HepaRG cells (Figure 2(B)) exposed to cerivastatin. 

Significant cytotoxic effects were observed for all concentrations tested in primary human hepatocytes 

exposed to cerivastatin (Figure 2(C)). For all the cellular models tested, clear cytotoxic effects were 

already observed after the first exposure period at all cerivastatin concentrations tested. The addition of 

cerivastatin a second time on day two did not induce a more significant decrease in cell index  

(Figure 2) for the four cellular models.  

3.3. Cytotoxicity Data: Comparison of Impedance (RTCA) and Cell Viability (Traditional Assay) 

Readouts 

One of our objectives was to evaluate whether cytotoxicity data generated from RTCA curves were 

comparable to cell viability data measured with the CellTiter-Fluor™ cell viability assay (Promega). 

Primary rat and human hepatocytes, as well as HepG2 and HepaRG cells, were exposed to  

50 compounds, and both parameters (i.e., RTCA and cell viability) were compared after five-days‟ 

exposure. Table 1 gives a summary of the correlation for all the cellular models tested. A satisfactory 

relationship was obtained for HepG2 and cryopreserved HepaRG cells, with a correlation of 88.5 and 

73.3%, respectively. Nevertheless, a lower association was observed with primary human and rat 

hepatocytes, with a correlation of 51.8 and 57.6%, respectively. 

3.4. Generation of Signature Profiles in HepG2 and HepaRG Cells 

In this experiment, three to five compounds known to be either calcium modulators, antimitotics 

agents, DNA damaging compounds or nuclear receptor agents were evaluated for each category in 

HepG2 and fresh HepaRG cells (Table 2).  
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Figure 2. RTCA profiles generated in HepG2, cryopreserved HepaRG, primary rat and 

human hepatocytes exposed to cerivastatin. Cellular models as indicated in the panels A, B, 

C and D. Cells were exposed to: 0 (0.5% DMSO, red curve), 33 (green curve), 66 (purple 

curve), 132 (dark blue curve) and 264 (light blue curve) µM cerivastatin for five days. The 

concentration tested were multiple of the Cmax value (Cmax cerivastatin = 2.64 µM), i.e., 

12.5, 25, 50 and 100 Cmax. Cerivastatin was added on day 0 (close to the vertical line) and 

day two. Cell indexes were normalized with the last time point before compound addition. 

The normalized time point is indicated by the vertical line. Each data point was calculated 

from triplicate values (except for control cells n = 6). Data represent the average ± standard 

deviation. For more details, please refer to the Materials and Methods section. 

  

(A) HepG2 (B) HepaRG 

  

(C) Primary Human hepatocytes (D) Primary rat hepatocytes 

Table 1. Correlation between impedance and cell viability in different cellular models 

exposed to a set of 50 compounds. The cellular models, as indicated in table, were exposed 

to four concentrations of compounds in triplicate. Averages and correlation (%) were 

calculated with Excel software. For more details, please refer to the Materials and  

Methods section.  

Cellular models Origin Correlation (%) 

HepG2 Human 88.5 

Cryopreserved HepaRG Human 73.3 

Primary hepatocytes Human 51.8 

Primary hepatocytes Rat 57.6 

 



Biosensors 2013, 3 143 

 

 

Table 2. Effect of different mechanisms of action on cell index curves (RTCA) generated 

in HepG2 and fresh HepaRG cells. Three to five compounds known to be either calcium 

modulators, antimitotics agents, DNA damaging compounds or nuclear receptor agents 

were evaluated per category. A score of 0 or 1 was given when the RTCA profiles 

generated were comparable or not to those generated in the paper of Abassi et al. [9].  

A global score is given, as well as the % of success to reproduce the signatures published 

in Abassi et al. [9]. HepG2 and HepaRG cells were exposed to a set of 17 compounds for 

at least 72 h to 0 (0.5% DMSO), 0.1, 1, 10 and 100 µM. Cell indexes were normalized with 

the last time point before compound addition. Each data point was calculated from 

triplicate values. For more details, please refer to the Materials and Methods section. 

Compounds tested 

Signatures 

Reproduced in 
Types Description 

HepG2 HepaRG 

Celecoxib 0 0 

Calcium 

modulators 
Rapid CI decrease  

Tamoxifen 1 1 

Fluphenazine 1 1 

Methiothepin 1 1 

Perphenazine 1 1 

Colchicine 1 1 

Antimitotic Wavy and flat CI Nocodazole 1 1 

Noscapine 0 1 

Teniposide 1 1 

DNA 

damaging 

Increase in CI compared to control 

followed by CI decrease (apoptosis) 

Camptothecin 1 0 

Strophanthidin 0 1 

Etoposide 1 0 

Benzo(a)pyrene 0 1 

Budesonide 1 1 

Nuclear 

receptor 
CI higher than control CI 

Hydralazine 1 1 

Hydrocortisone 1 1 

Methylprednisolone 1 1 

Total score/17 13 14 

 

% of success 76.5 82.4 

Total score/17 

HepG2 + HepaRG 
16 

% of success 

HepG2 + HepaRG 
94.1 

The objective was to determine if similar RTCA profiles could be generated with compounds 

sharing the same mechanism of action in these two cellular models. A score of 1 or 0 was given when 

the profile (produced in HepG2 and fresh HepaRG cells) was comparable or not, respectively, to those 

generated in A549 cells (non-small lung cancer cells) reported in the paper of Abassi et al. [9].  

We have decided to use the profiles generated in A549 cells, because the publication [9] gives access 

to profiles generated with a large number of compounds (Figures 1–5). Please refer to the discussion 

for more details. Twenty µM was tested in the paper of Abassi et al. [9], whereas a range of 
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concentrations (0.1, 1, 10 and 100 µM) was used in the present manuscript. Indeed, these 

concentrations in the range 0.1–100 µM are commonly tested to populate our internal databases. 

Overall, 76.5 and 82.4% of signatures were reproduced in HepG2 and HepaRG cells, respectively, 

compared to A549 cells. Interestingly, when the HepG2 and HepaRG results were combined, the % of 

success reached 94.1% (i.e., only 1/17 compound was not detected in both models i.e., celecoxib). 

Similar results were obtained in both cellular models with calcium modulators and nuclear receptor 

compounds. All four compounds targeting nuclear receptors produced specific profiles in both cellular 

models (Table 2). Four out of five compounds known to be calcium modulators also generated typical 

RTCA profiles in both models. Nevertheless, different responses were also obtained in both models for 

5/17 compounds tested. For instance, noscapine gave an antimitotic specific RTCA profile in HepaRG 

cells, but not in HepG2 cells, whereas camptothecin generated a DNA damaging profile in HepG2 

cells, but not in HepaRG cells (Table 2). 

The specific RTCA patterns obtained in HepG2, fresh HepaRG and A549 cells exposed to one of 

the compounds belonging to each of the four mechanisms of action (i.e., tamoxifen, nocodazole, 

strophanthidin and methylprednisolone) are presented in Figures 3–6, respectively. It is noteworthy 

that for the fresh HepaRG cells, the background reading was done on the E-plates seeded with the 

cells. The background reading is normally done in absence of the cells, but since the E-plates were sent 

to Biopredic, to avoid any contamination problems, we decided not to perform the background reading 

in absence of cells. Consequently, as the reference index value is zero (in presence of the cells), 

negative values can be obtained in case of cytotoxic effects or specific signatures, such as calcium 

modulators. For the HepG2 cells, the lowest cell index value was zero (in case of 100% cell mortality), 

as the plates were prepared in house and the background measurement was performed with 100 µL 

medium in absence of cells. Typically, compounds that control calcium efflux induce a decrease in cell 

index immediately after compound addition. This effect was observed in A549 cells exposed to 20 µM 

tamoxifen (Figure 3(C)), as well as in HepG2 (Figure 3(A)) and HepaRG (Figure 3(B)) cells at 100 µM. 

It takes generally a few hours (e.g., 5–10 h) for the cell index to reach its minimum value, which can 

last for a few days (Figure 3). Antimitotic compounds produce a flat and/or wavy cell index kinetic, 

due to the inhibition of the cell division. In other words, cells stay alive, but do not proliferate. This 

signature was detected in HepG2 cells exposed to all concentrations of nocodazole (0.1–100 µM; 

Figure 4(A)), in HepaRG cells at 10 and 100 µM (Figure 4(B)) and in A549 cells at 20 µM  

(Figure 4(C)). Compounds that damage DNA can produce an increase in cell index (more or less 

pronounced) compared to control, followed by a decrease in cell index. This specific pattern was 

observed in HepaRG cells exposed to 10 µM strophanthidin (Figure 5(B)), in A549 cells at 20 µM 

(Figure 5(C)), but not in HepG2 cells in the range 0.1–100 µM (Figure 5(A)). Finally, the compounds 

that target nuclear receptors induce generally an increase in cell index in comparison to control that 

can last for a few days. This signature was observed in HepG2 cells exposed to 1–100 µM 

methylprednisolone (Figure 6(A)), in HepaRG cells at all concentrations tested (0.1–100 µM)  

(Figure 6(B)) and in A549 cells at 20 µM (Figure 6(C)).  
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Figure 3. Effect of tamoxifen (calcium modulator) on cell index curves (RTCA) in HepG2, 

fresh HepaRG and A549 cells. HepG2 (A) and HepaRG (B) cells were exposed for at least 

72 h to 0 (0.5% DMSO, red curve), 0.1 (green curve), 1 (purple curve), 10 (dark blue 

curve) and 100 (light blue curve) µM and A549 cells to 0 (control DMSO, red curve) and 

20 µM (green curve) of tamoxifen (C from Abassi et al. [9]). Cell indexes were normalized 

with the last time point before compound addition. Panels A and B: each data point was 

calculated from triplicate values (except for control cells n = 6). Data represent the  

average ± standard deviation (except for panel C). The normalized time point is indicated 

by the vertical line. For more details, please refer to the Materials and Methods section. 

 
(A) HepG2 

 

(B) HepaRG 

 

(C) A549 
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Figure 4. Effect of nocodazole (antimitotic) on cell index curves (RTCA) in HepG2, fresh 

HepaRG and A549 cells. HepG2 (A) and HepaRG (B) cells were exposed for at least 72 h 

to 0 (0.5% DMSO, red curve), 0.1 (green curve), 1 (dark blue curve), 10 (purple curve) and 

100 (light blue curve) µM and A549 cells to 0 (control DMSO, red curve) and 20 µM 

(green curve) of nocodazole (C from Abassi et al. [9]). Cell indexes were normalized with 

the last time point before compound addition. Panels A and B: each data point was calculated 

from triplicate values (except for control cells n = 6). Data represent the average ± standard 

deviation (except for panel C). The normalized time point is indicated by the vertical line. 

For more details, please refer to the Materials and Methods section. 

 

(A) HepG2 

 
(B) HepaRG 

 

(C) A549 
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Figure 5. Effect of strophanthidin (DNA damaging) on cell index curves (RTCA) in 

HepG2, fresh HepaRG and A549 cells. HepG2 (A) and HepaRG (B) cells were exposed for 

at least 72 h to 0 (0.5% DMSO, red curve), 0.1 (green curve), 1 (purple curve), 10 (dark 

blue curve) and 100 (light blue curve) µM and A549 cells to 0 (control DMSO, red curve) 

and 20 µM (green curve) of nocodazole (C from Abassi et al. [9]). Cell indexes were 

normalized with the last time point before compound addition. Panels A and B: each data 

point was calculated from triplicate values (except for control cells n = 6). Data represent 

average ± standard deviation (except for panel C). The normalized time point is indicated 

by the vertical line. For more details, please refer to the Materials and Methods section.  

A zoom is provided in case of overlapping curves.  

 

(A) HepG2 

 
(B) HepaRG 

 

(C) A549 
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Figure 6. Effect of methylprednisolone (nuclear receptor modulator) on cell index curves 

(RTCA) in HepG2, fresh HepaRG and A549 cells. HepG2 (A) and HepaRG (B) cells were 

exposed for at least 72 h to 0 (0.5% DMSO, red curve), 0.1 (green curve), 1 (dark blue 

curve), 10 (purple curve) and 100 (light blue curve) µM and A549 cells to 0 (control DMSO, 

red curve) and 20 µM (green curve) of methylprednisolone (C from Abassi et al., [9]). Cell 

indexes were normalized with the last time point before compound addition. Panels A and 

B: each data point was calculated from triplicate values (except for control cells n = 6). 

Data represent the average ± standard deviation (except for panel C). The normalized time 

point is indicated by the vertical line. For more details, please refer to the Materials and 

Methods section. 

 
(A) HepG2 

 

(B) HepaRG 

 

(C) A549 
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3.5. Evaluation of Impedance Output to Predict Genotoxicity Potential with Proprietary Compounds 

In this experiment, HepG2 cells were exposed for 72 h to 81 proprietary UCB compounds belonging 

to two central nervous system projects in the field of neuropathic pain (35 and 46 compounds). The 

objective was to determine if the compounds that were identified as genotoxic according to a battery of 

in vitro genotoxicity assays generated genotoxic RTCA profiles. The predictivity data (sensitivity, 

specificity and concordance) are presented in Table 3. Interestingly, in both central nervous system 

(CNS) projects the specificity (i.e., the detection of the negative compounds) was high (minimum 

92.3%). Nevertheless, the detection of the genotoxic compounds was totally different in both projects. 

In the first CNS project, the sensitivity reached 63.6% (i.e., 14/22), whereas none of the seven 

genotoxic compounds were identified as genotoxic based on the RTCA profile in the second CNS 

project. When both projects were taken into account, the sensitivity, specificity and concordance were 

48.3% (14/29), 96.2% (50/52) and 79% (64/81), respectively.  

Table 3. Evaluation of RTCA predictivity to detect genotoxicity with a set of 81 proprietary 

UCB compounds. HepG2 cells were exposed for at least 72 h to 81 proprietary UCB 

compounds belonging to two central nervous system projects (CNS1 and CNS2). The 

concentrations tested were 125, 250, 500 and 1,000 µM (unless solubility problems were 

encountered). The objective was to determine if the compounds that were identified as 

genotoxic by traditional genotoxicity in vitro assays generated RTCA genotoxic profiles.  

A compound was classified as genotoxic according to the impedance measurements when 

after the compound addition, the cell index generated by the compound was higher than the 

control curve followed by a decrease in cell index that reached at least 50% mortality 

within 48 h exposure. A compound was classified as negative when both conditions were 

not met. Examples of typical genotoxicity profiles are presented in Figure 7(A,B) (i.e., 

HepG2 and A549 cells exposed to etoposide, respectively). For more details about the 

definition of the terms (sensitivity, specificity and concordance/accuracy), please refer to 

the Materials and Methods section. 

 CNS project 1 CNS project 2 CNS project 1 & 2 

Number of compounds tested 35 46 81 

Genotoxic compounds 22 7 29 

Non-genotoxic compounds 13 39 52 

Genotoxic signature (RTCA) 14 0 14 

Non-genotoxic signature (RTCA) 12 38 50 

Sensitivity 63.6% 

(14/22) 

0% 

(0/7) 

48.3% 

(14/29) 

Specificity 92.3% 

(12/13)  

97.4% 

(38/39)  

96.2% 

(50/52) 

Concordance (accuracy) 74.3% 

(14 + 12/35) 

82.6% 

(0 + 38/46) 

79.0% 

(14 + 50/81) 
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Figure 7. Example of RTCA profiles generated with etoposide (A549 and HepG2 cells) 

and proprietary UCB compounds (HepG2 cells). (A) HepG2 cells were exposed to:  

0 (0.5% DMSO, red curve), 0.1 (green curve), 1 (purple curve), 10 (dark blue curve) and 

100 (light blue curve) µM of etoposide. (B) A549 cells exposed to 0 (control DMSO, red 

curve) and 20 µM (green curve) of etoposide (Abassi et al. [9]). (C–F): HepG2 cells were 

exposed to 0 (0.5% DMSO, red curve), 125 (green curve), 250 (purple curve), 500 (dark 

blue curve) and 1,000 (light blue curve) µM of compound UCB 1, 2, 3 and 4, respectively. 

Cell indexes were normalized with the last time point before compound addition. The 

normalized time point is indicated by the vertical line. All panels (except B): each data 

point was calculated from triplicate values (except for control cells n = 6). Data represent 

the average ± standard deviation (except for panel B). A zoom is provided in case of 

overlapping curves. For more details, please refer to the Materials and Methods section.  

  

(A) Etoposide (HepG2) (B) Etoposide (A549) 

  

(C) UCB 1 (HepG2) (D) UCB 2 (HepG2) 

  

(E) UCB 3 (HepG2) (F) UCB 4 (HepG2) 

 

 



Biosensors 2013, 3 151 

 

 

Examples of RTCA graphs generated with etoposide and proprietary UCB compounds are 

presented in Figure 7. The effect of etoposide (a reference genotoxic compound) on cell index is 

presented in Figure 7(A,B) in HepG2 and A549 cells [9], respectively. According to our classification 

criteria (see Materials and Methods section for more details), etoposide was classified as positive in 

HepG2 cells (at 10 and 100 µM) and in A549 cells (at 20 µM). The effect of four UCB compounds is 

also presented in Figure 7. Compound 1 was identified as genotoxic at 125, 250 and 500 µM  

(Figure 7(C)), whereas compounds 3 and 4 were classified as genotoxic at 125 (Figure 7(E)) and  

1,000 µM (Figure 7(F)), respectively. Finally, despite the typical genotoxic profile, compound 2 was 

considered to be non-genotoxic, as none of the concentrations tested induced 50% mortality in 

comparison to the control value (Figure 7(D)). Nevertheless, this compound could be considered as 

equivocal, as the 50% mortality was nearly reached for all concentrations tested (Figure 7(D)). 

4. Discussion 

The use of label-free technologies [19] (based on acoustic resonance, electrical impedance, 

microcantilevers, nanowires or differential calorimetry) applied to cell biology and drug discovery is 

receiving more and more attention. The present manuscript focuses on impedance measurement, which 

is used to gather information on diverse cellular processes, including proliferation, migration, 

cytotoxicity and receptor-mediated signaling [20]. Our recent data indicated that the xCELLigence 

platform (based on impedance) was useful to determine the best coating and cellular density conditions 

for four different adherent cellular models, including hepatocytes, cardiomyocytes, fibroblasts and 

hybrid neuroblastoma/neuronal cells [14]. In addition, cell index data were highly reproduced when 

cardiomyocytes and fibroblasts were exposed to 21 compounds in three independent experiments [14]. 

Finally, we have also demonstrated that cytotoxicity data determined by RTCA were comparable to 

cell imaging markers (i.e., number of cells) when HepG2 and HepaRG cells were exposed to  

21 drugs [14]. Nevertheless, despite the widely use of label-free technologies, there is a lack of 

publications looking at the correlation between cellular impedance measurements and classical toxicity 

endpoints, such as ATP, cell number and viability markers. Consequently, one of our objectives was to 

compare cell viability generated with the xCELLigence platform with the CellTiter-Fluor™ Promega 

assay in four different cellular models exposed to 50 compounds. In addition, our intention was also to 

evaluate if compounds with similar mechanisms of action produced similar profiles with a set of  

17 compounds in HepG2 and HepaRG cells and, finally, to assess the predictivity of the RTCA 

genotoxicity signatures with a set of 81 UCB proprietary compounds in HepG2 cells. 

In the drug discovery paradigm, there is a shift from biochemical-based screening to cell-based 

phenotypic screening [21]. This is mainly due to the fact that cell-based phenotypic assays more 

closely recapitulate the complexity of whole organism and can bring information on cellular toxicity. 

Cells have the advantage to be fully functional entities with membrane and intra-cellular connections, 

while they are relatively easy to use. The integration of phenotypic profiling technologies, combined 

with effective experimental and in silico target identification approaches, can improve success rates of 

lead selection and optimization in drug discovery [21]. In addition, the combination of phenotypic 

screening and multi-omics-based target identification and validation approaches will provide an 

effective approach to discover new bioactive small molecules, their target protein and mechanism of 
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actions [22]. In this context, the cell imaging platform, as well as label-free technologies based on 

impedance measurement, represent powerful tools for cell-based phenotypic screening. In a recent 

study, the RTCA signature obtained in neuroblastoma (ND7/23) cells exposed to cytochalasin B  

(a modulator of tubulin polymerization) was compared to cell-imaging data to better understand the 

mechanisms of action at the cellular level [14]. Clearly, the combination of both technologies may 

represent a powerful approach to gain information on mechanisms of action [14]. 

In the present manuscript, primary rat and human hepatocytes, as well as HepG2 and HepaRG cells, 

were exposed to 50 compounds to compare cell index generated by RTCA and cell viability measured 

with a standard, commercially available assay after five days of compound exposure. The commercial 

test refers to the CellTiter-Fluor™ cell viability assay, which is commonly used by the scientific 

community [23]. In our experiments, cellular models were exposed twice (two administrations of 

compounds over five days in total) to compounds to determine if this would allow detecting more 

hepatotoxic compounds in comparison to single exposure. Nevertheless, in general, the double 

exposure approach did not pick up more hepatotoxic compounds (Figure 2 and data not shown).  

A correlation of 88.5 and 73.3% was obtained with HepG2 and HepaRG cells, respectively. This is 

well in agreement with our previous study, where a high correlation (i.e., 87%) was obtained between 

cell index generated by RTCA and the cell number determined by cell imaging in HepG2 and HepaRG 

cells exposed to 21 compounds after three days of exposure (one administration of compounds over  

three days) [14]. Nevertheless, lower association was observed in primary human and rat hepatocytes 

with a correlation of 51.8 and 57.6%, respectively. With the rat primary hepatocytes, a decrease in cell 

index was observed after two-days‟ treatment, even in control cells. Consequently, the predictivity of 

the rat primary hepatocytes should only be evaluated after two-day and not after five-day exposure. 

Nevertheless, this fact does not explain the low correlation after five-day exposure between impedance 

and the CellTiter-Fluor™ assay. In our hands, lower LC50 values were obtained in primary human and 

rat hepatocytes according to impedance values compared to cell viability measured with the 

fluorescent assay (data not shown). Interestingly, a study stated that impedance measurement is a 

convenient and reliable method for the detection of proliferation and kinetics of cell death in neuronal 

cell lines (e.g., HT-22 cells: immortalized hippocampal neurons) [12]. Nevertheless, the same study 

reported that impedance measurement is less suitable for the assessment of neuronal differentiation and 

viability of primary neurons (e.g., primary cortical cells) [12]. The main reason for this apparently lies 

within the different cellular integrity and adhesion characteristics, which favors a rounding up and 

detachment of intact cellular bodies in HT-22 cells, contrasting to the cellular disintegration and 

leftovers of primary cells remaining after cell death [12]. Another study reported that the proliferation 

of normal human epidermal keratinocytes (NHEK) measured by impedance-based method did not 

correlate with other more traditional approaches [24]. This could be accounted to the specific 

morphological appearance of these cells [24]. Consequently, such data clearly emphasize the need to 

perform quality control experiments before launching any further investigations with different cell 

types. Indeed, strict quality control of cells is required for the standardization and interpretation of 

results in all areas of cell-based research, especially in drug discovery [25].  

One of our objectives was to determine if specific profiles were generated in HepG2 and HepaRG 

cells exposed to reference compounds having different mechanisms of actions (calcium modulators, 

nuclear receptor, antimitotic and DNA damaging agents). The analysis of the signatures was performed 
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by visual inspection, due to the lack of an interpretation/classification algorithm. Nevertheless, we 

consider that the approach is not optimal, as the classification and interpretation of profiles depend on 

the end-user experience, and, thus, are subjected to human approximation (particularly for difficult 

profiles). Clearly, the development of a reliable analysis tool is needed to standardize the interpretation 

of RTCA patterns [14]. Out of the 17 compounds tested, 76.5 (13/17) and 82.4 (14/17)% of specific 

profiles were reproduced in HepG2 and HepaRG cells, respectively. Interestingly, the combination of 

results from both cellular models (i.e., HepG2 and HepaRG cells) allowed to generate specific profiles 

(in at least one cellular model) for 94.1% of the compounds tested (i.e., 16/17). This illustrates the need 

to use different cellular models to better identify potential mechanisms of action, because intracellular 

targets are not necessarily represented and/or expressed in all types of cells. In addition, since we used 

10-fold dilution series (0.1, 1, 10 and 100 µM), it could be argued that the use of a narrower range of 

concentrations could allow generating a higher percentage of signatures with both cell lines.  

Calcium modulators are known to induce a brutal decrease in cell index, whereas cytotoxic 

compounds produce a decrease in cell index, which is less severe. As a consequence, the analysis of 

the slope may allow to easily differentiate between cytotoxic and calcium modulator agents. 

Nevertheless, the effect of weak calcium modulators on impedance may be challenging to predict, due 

to potentially confounding cytotoxicity effects. Recently, 2,000 compounds (50% Food and Drug 

Administration approved, 29% natural products, 18% bioactive compounds, 3% herbicides and 

insecticides) were screened on the xCELLigence platform on A549 non-small lung cancer cells and 

PC3 prostate cancer cell lines [9]. For instance, 160 and 190 compounds led to early changes in 

profiles compared to control in PC3 and A549 cells, respectively, with 75 common hits between both 

cell types [9]. Abassi et al. indicated that some signatures, such as the nuclear receptor-like responses, 

appear to be cell type-specific, as different profiles were obtained with both cell types [9]. Thus, by 

using different cell types for screening and profiling, it may be possible to cover a sufficiently large 

subset of intracellular targets to gain valuable information on target and off target effects. In another 

study, Ke et al. screened ca. 120,000 compounds from a library to generate impedance-based  

time-dependent cell response profiling (TCRP) [7]. This approach allowed to identify novel antimitotic 

compounds with 113/117 hit compounds confirmed as antimitotic, based on independent assays [7].  

In the present study, the sensitivity and specificity of the xCELLigence platform to detect genotoxic 

compounds were evaluated on 81 UCB proprietary compounds (29 genotoxic compounds and  

52 non-genotoxic compounds) from two CNS projects, in the field of neuropathic pain, in HepG2 

cells. Since single exposure is usually performed with genotoxicity screening assays, such as the 

GADD45a-GFP GreenScreen Human Cells assay (GHC) [26] and Ames microplate format  

(AMPF) [27], HepG2 cells were exposed to compounds using single administration. Specificity was 

high in both projects, with a minimum of 92.3% (12/13) in the first project. This suggests that the rate 

of false positive is low and this is particularly important in the context of early screening in drug 

discovery. With regard to the detection of the positive compounds, the sensitivity was 63.6% (14/22) 

in the first CNS project, whereas none of the seven genotoxic compounds were identified as such in 

the second one. When compounds from both projects were considered together, the sensitivity, 

specificity and concordance were 48.3% (14/29), 96.2% (50/52) and 79% (64/81), respectively. 

Despite the modest sensitivity, this is quite interesting for the screening of compounds, considering 

that the xCELLigence platform can give information on cytotoxicity, as well as on potential on target 
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and off target effects. Furthermore, it is noteworthy that we tested UCB proprietary compounds in 

HepG2 cells in absence of the S9 fraction (which contains diverse metabolism enzymes), whereas the 

GHC [26] and AMPF [27] tests are performed in presence and absence of S9. Consequently, 

sensitivity could have been improved by using S9 fraction with the HepG2 cells and/or by testing the 

compounds in HepaRG cells, which are metabolically competent [15]. In addition, more data are 

needed to better evaluate the potential of the xCELLigence platform to efficiently detect genotoxic 

compounds particularly in the drug discovery paradigm. According to the signatures, genotoxic 

compounds induce, in comparison to control, an increase in cell index for approximately 12 h that is 

followed by a rapid decrease in signal. The hypothesis is that, in case of DNA damage, all damaged 

cells are arrested at the DNA damage checkpoint before they enter into the S-phase. In other words, all 

the cells are synchronized at cell cycle stage, where cells are on average bigger than control cells 

(which are a mixture of cells of different sizes at G1, G2, S,…, phases). This would explain why cell 

index generated from the damaged cells is higher than cell index in control cells. In case the damaged 

cells cannot efficiently repair their DNA, apoptosis is induced, and thus, the cells die, which correlates 

with a decrease in cell index. Consequently, the use of dividing cells (e.g., HepG2) is recommended 

for the detection of genotoxic signatures. Finally, the use of primary cells, which do not divide, is not 

recommended to detect genotoxic compounds based on RTCA profiles.  

In conclusion, since cell-based phenotypic assays are starting to be more used in drug discovery, 

label-free technologies based on impedance measurement represent a powerful tool. The present study 

reveals a good correlation (ca. 80%) between cell index generated by RTCA and cell viability 

measured by a standard and traditional assay in HepG2 and HepaRG cells exposed to a set of  

50 compounds. Nevertheless, low correlation (ca. 55%) was observed in primary human and rat 

hepatocytes exposed to the same set of compounds. Specific profiles were generated in HepG2 and 

HepaRG exposed to most of the reference compounds with different mechanisms of action (calcium 

modulators, nuclear receptor modulators, antimitotic and DNA damaging agents). Finally, the 

predictivity of the xCELLigence platform was investigated for the detection of genotoxic and  

non-genotoxic compounds with a set of 81 proprietary UCB compounds. The data indicates a 

sensitivity of ca. 50% and a high specificity (close to 100%), indicating that the label-free technologies 

based on impedance can be used in drug discovery for a first genotoxicity screen. Overall, despite 

some limitations, the RTCA technology is a powerful and reliable tool in drug discovery for toxicity 

and pharmacology studies. 
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