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Abstract: We used the interaction between human serum albumin (HSA) and a high-affinity 

antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis 

technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and 

the mechanism of interaction between the antibody and HSA was investigated. The bivalence 

and heterogeneity of the antibody caused a complex binding mechanism. Three different 

interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, 

and the bivalent analyte model best fit the curves obtained from the assay. This model 

describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ 

LLA). The apparent binding affinity for this model measured 37 pM for the first reaction 

step, and 20 pM for the second step. 
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1. Introduction 

Surface plasmon resonance (SPR) spectroscopy exploits the excitation of surface plasmons to follow 

molecular interactions in real-time without the need for additional molecular labels. A ‘surface plasmon’ 

represents a surface charge density wave at a metal-dielectric interface [1]. Light couples to the surface 

plasmon, and resonance occurs when its propagation constant equals the wave vector of light  

that is parallel to the interface [1–3]. The majority of SPR systems are based on the Kretschmann 

configuration [4,5], in which incident light passes through a prism that has a high refractive index, and 

is totally reflected at the metal-prism interface [2,3]. This generates a penetrating evanescent field which 

decays exponentially into the dielectric if the metal interface (typically gold) is sufficiently thin (less 

than 100 nm for visible and near infrared light) [2,3,6]. A binding-induced change in the dielectric 

refractive index leads to change in one or more light characteristics, such as the angle, phase, wavelength, 

or intensity. This latter change is needed to excite the surface plasmon wave [3]. Most SPR biosensors 

use the angle of the reflected light to monitor binding events. To achieve this, a wedge-shaped beam of 

monochromatic light is directed onto the metal interface to cover numerous angles of incidence [7].  

The intensity of the reflected light reaches its minimum when the surface plasmon gets excited. The 

angle of incidence at which this dip occurs represents the sensor signal which is usually presented in a 

sensorgram as a function of time [3].  

Human serum albumin (HSA) is exclusively synthesized in the liver, and is the most abundant plasma 

protein (60%, 40 mg/mL) [8–10]. The monomer is responsible for the preservation of pH and osmotic 

pressure, as well as for the transport of numerous substances such as metals, fatty acids, amino acids, 

hormones, vitamins and drugs [9–12]. HSA is a heart-shaped, 585 amino acids long protein (66.5 kDa) 

which consists of three homologue domains [12,13]. Due to its 17 disulfide bridges, this  

negatively-charged, single-chain protein has an average half-life of 19 days and remains stable at 

temperatures up to 60 °C as well as in pHs ranging from 7 to 9 [12,14].  

About 20%–30% of the body’s hepatocytes are busy producing HSA at any given moment [15]. 

Therefore, HSA concentrations in plasma can be used as a reliable marker for the diagnosis and 

prognosis of various diseases [16]. For example, liver diseases are probable if the concentration of HSA 

in blood falls below the index value of 40 mg/mL [16,17]. HSA concentrations of approximately  

20 mg/mL can indicate liver cirrhosis. Furthermore, HSA is one of the main nutrients for tumors. As a 

result, HSA levels in cancer patients may be low depending on the size and activity of their tumors [12]. 

Additionally, HSA can be used to test the viability of human hepatocytes cultivated in vitro [18–20]. 

Such cultivated liver tissues are of great interest in pharmacologic research because of their potential for 

predictive substance evaluation [20,21]. 

In this study, we used the liSPR system to investigate the binding mechanism and determine the 

affinity of the HSA-antibody interaction involved. Affinity is normally represented as a dissociation 

constant, KD, which displays the concentration of an analyte at which half of the free ligand will be 
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bound within a complex at equilibrium [22]. Thus, high KD values signify low affinities. The affinities 

of antibody-antigen reactions typically appear in the micromolar to picomolar range [23].  

The simplest model involves 1:1 binding. This model is based on the assumption that one analyte (A) 

molecule will bind to one ligand (L) molecule (A + L ↔ LA) [24]. However, we used polyclonal 

antibodies, which are a mixture of antibodies with different specificities and affinities for their  

antigen [25]. Thus, a more complex model is a better choice for imitating real binding. The heterogeneous 

analyte model, for example, assumes that two independent analytes will compete to bind to one ligand 

(A1 + L ↔ LA1, A2 + L ↔ LA2). Hence, two affinity constants will be determined. In contrast, the 

bivalent analyte model describes the interaction between a bivalent analyte to one or two ligands. In the 

first step of the binding reaction (A + L ↔ LA), the two ligand binding sites remain equivalent, and in 

the second step (LA + L ↔ LLA), cooperative effects contribute [24]. The second binding step depends 

on the flexibility of the monovalent bound ligand-analyte complex (LA) as well as its proximity to the 

next ligand molecule [26], and leads to stabilization of the resulting complex. The second association 

rate of the bivalent analyte model is reported in the unit Pixel−1s−1 instead of M−1s−1, because the local 

concentration of the analyte is taken into account.  

In the proposed sensor, HSA was covalently attached to the carboxylated self-assembled monolayer 

(SAM) via its lysine residues by amine coupling procedure. The interactions of high-affinity antibodies 

with the immobilized HSA were investigated using the low-cost bench-top liSPR system [7]. A lack of 

appropriate software for evaluating the computation of binding constants by the liSPR system led to the 

implementation and evaluation of different algorithms for modeling the types of binding. To the best of 

our knowledge, this was the first time that kinetics studies of a HSA-antibody interaction were performed 

using SPR. 

2. Experimental Section  

2.1. Materials  

HSA-specific antibodies were purchased from Biomol GmbH (Hamburg, Germany). HSA,  

11-mercaptoundecanoic acid, and running buffer TBST (Tris buffered saline with Tween® 20, pH 8.0) 

were purchased from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). The amine coupling kit was 

purchased from GE Healthcare Europe GmbH (Munich, Germany). The reference ligand BSA (bovine 

serum albumin) was obtained from Merck KGaA (Darmstadt, Germany). All other chemicals were 

analytical grade and obtained from VWR International GmbH (Dresden, Germany). 

2.2. SPR Measurements  

The binding affinity and kinetic parameters of the HSA-antibody complex were investigated using 

the liSPR system (capitalis technology GmbH, Berlin, Germany). The experiments were performed at  

30 °C, with a flow rate of 5 µL/s. Levels of protein bound to the surface were measured in pixels, where 

1 pixel roughly corresponded to 41 pg/mm2 [27]. 

Algorithms for fitting the binding models were implemented using the R software for statistical 

computing (www.r-project.org). The rate constants of the binding models were fitted locally and 
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globally. In the case of local fitting, the rate constants were computed for each binding curve (antibody 

concentration). The global parameters applied to the whole data set (all binding curves).  

2.2.1. Preparation of the Gold Surface and SAM 

The bare gold surfaces of the sensor chips (capitalis technology GmbH, Berlin, Germany) were first 

treated with UV/Ozone (UV/Ozone ProCleaner, NanoAndMore GmbH, Wetzlar, Germany) for 30 min 

and, afterwards, rinsed with pure ethanol.  

The clean gold surfaces were immersed in 10 mM 11-mercaptoundecanoic acid overnight at 30 °C, 

after which they were thoroughly rinsed, sequentially, with ddH2O, ethanol, ddH2O, 100 mM HCl,  

50 mM NaOH, 0.5% (v/v) SDS, and ddH2O, and then dried under a stream of nitrogen.  

2.2.2. Immobilization of HSA 

For immobilization purpose, 10 mM sodium acetate (pH 4.5) was used as the running dielectric as 

well as for dilution of the molecules. The HSA molecules were immobilized covalently onto the sensor 

chip by the way of amine coupling of constituent lysine residues. To achieve this, solutions of 1.5 µM 

HSA were incubated for one hour in the presence of the previously-activated carboxylated surface.  

The remaining active groups on the carboxylated surface were then blocked with ethanolamine-HCl for  

30 min. BSA was immobilized on the reference channel using the same strategy. 

2.2.3. Kinetic Measurements 

The antibody samples were diluted in TBST to the desired concentrations and then injected onto the 

HSA-modified surface for 10 min. Dissociation was monitored by replacing the sample solution with 

TBST buffer for about 15 min. The degree of binding was determined by measuring the SPR signal at 

the end of the dissociation phase. Since this resulted in only incomplete dissociation, antibodies were 

finally removed from the HSA by injection of 100 mM glycine-HCl (pH 2.2) for 72 s. 

3. Results and Discussion 

For the kinetic analyses, HSA was attached to a sensor chip by the amine coupling procedure.  

To show the reproducibility of our assay we injected 0.7 µM HSA-specific antibody immediately before 

and after the kinetic measurements (see below) (Figure 1).  

The curves obtained from both injections were quite similar, demonstrating the reliability of the assay. 

Additionally, each tested concentration was analyzed using two sensing and two reference spots.  

For kinetic measurements, antibody solutions ranging in concentration from 3.4 nM to 3.4 µM were 

sequentially injected. Data representing binding of the antibodies to HSA were evaluated using three 

different models. Figures 2–4 show overlaid fits of different binding models, and the parameters are 

presented in Table 1. 
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Figure 1. Sensorgrams showing the binding response of injections of 0.7 µM human serum 

albumin (HSA)-specific antibody before and after the kinetic measurements. Values resulting 

from the average of two sensing spots and the subtraction of reference surface signals from 

raw signal measurements are presented on the graph. 

A decision as to whether the fit is acceptable can be made based on visual inspection of the overlaid 

fit and the residuals. The residuals are the deviation between the experimental data and the modelled 

binding curve and provide an indication if the choice of the binding model is appropriate. The residuals 

should be roughly normally and independently distributed with zero mean. 

The overlays and residuals of the 1:1 binding (Figure 2), heterogeneous analyte (Figure 3) and 

bivalent analyte (Figure 4) models, from local fitting of rate constants, show different results for 

goodness of fit. The main deviation between the models and the experimental data appeared during the 

association phase. Visual inspections of the results indicate that the experimental data were best fitted to 

the heterogeneous analyte binding model. Good results were also obtained with the bivalent analyte 

model whereas, the 1:1 binding model produced the worst fit.  

Another way to measure goodness of fit is the Chi-squared (χ2) value, which reflects the differences 

between measured and expected (modelled) values (the smaller the value, the better the fit). Since the χ2 

value depends on signal intensity, the values for the different immobilization levels should not be 

compared to each other. Nevertheless, the values of the χ2 are shown in Table 1.  

Table 1. Kinetic parameters obtained from local fitting of the interaction between the 

immobilized HSA and HSA-specific antibody for each mathematical model. The average 

rate constant and standard error of the local fit values for each model are reported. 

Interaction Model 
ka1 

[M−1s−1] 

kd1 

[s−1] 

ka2 

[M−1s−1] 

kd2 

[s−1] 

χ2 

[Pixel2] 

1:1 binding 
4 (± 1) 

×104 

2.1 (± 0.2) 

×10−3 
/ / 1.8 

heterogeneous analyte 
2.3 (± 0.9) 

×104 

1.2 (± 0.4) 

×10−2 

5 (± 2) 

×104 

7 (± 4) 

×10−4 
0.1 

bivalent analyte 
3.1 (± 0.7) 

×104 

1.8 (± 0.7) 

×10−4 

1.2 (± 0.7) 

×106  

[Pixel−1s−1] 

9 (± 5) 

×10−3 
0.8 
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Figure 2. Kinetics of HSA-specific antibodies binding to immobilized HSA. Plots generated 

by applying the 1:1 binding model (red lines) overlay the plots associated with each antibody 

concentration (black lines; from top to bottom: 3.4 µM, 0.9 µM, 0.2 µM, 53.9 nM, 13.5 nM, 

3.4 nM). Values resulting from the average of two sensing spots and the subtraction of 

reference surface signals from raw signal measurements are presented on the graph. The graph 

below depicts the residuals of the fits. 

 

Figure 3. Kinetics of HSA-specific antibodies binding to immobilized HSA. Plots generated 

by applying the heterogeneous analyte model (red lines) overlay the plots associated with 

each antibody concentration (black lines; from top to bottom: 3.4 µM, 0.9 µM, 0.2 µM,  

53.9 nM, 13.5 nM, 3.4 nM). Values resulting from the average of two sensing spots and the 

subtraction of reference surface signals from raw signal measurements are presented on the 

graph. The graph below depicts the residuals of the fits. 
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Figure 4. Kinetics of HSA-specific antibodies binding to immobilized HSA. Plots generated 

by applying the bivalent analyte model (red lines) overlay the plots associated with each 

antibody concentration (black lines; from top to bottom: 3.4 µM, 0.9 µM, 0.2 µM, 53.9 nM, 

13.5 nM, 3.4 nM). Values resulting from the average of two sensing spots and the subtraction 

of reference surface signals from raw signal measurements are presented on the graph.  

The graph below depicts the residuals of the fits. 

The 1:1 binding model shows the highest χ2 value (1.8). This is not surprising because 1:1 binding is 

biologically implausible when an antibody is the analyte. In contrast, the heterogeneous analyte model 

best agrees with the experimental data. However, this model assumes that the analyte consists of two 

different HSA-specific species only, which might not be true for polyclonal antibodies. The χ2-value of 

the bivalent analyte model is 0.8, which lies between the values for the 1:1 binding and heterogeneous 

analyte models and represents a good data fit. Since antibodies are bivalent molecules, this model is 

most probable biologically. The resulting rate constants for the three models are summarized in Table 1. 

The average rate constant and the standard error with respect to the local fit (specific for every binding 

curve) are reported for each binding curve. 

In spite of the above, the rate constants should be globally applied to all concentrations to achieve 

reliable results. Thus, global fitting of the rate constants was performed. Rate constants were calculated 

for the whole data set. Only the bivalent analyte model produced an acceptable global fit (Figure 5).  

We observed an affinity (KD) of 37 pM (ka1 = 4.261 (±0.002) × 104 M−1s−1, kd1 = 1.58 (±0.06)  

× 10−6 s−1) for the first (monovalent) binding step, with a χ2 value of 1.4 Pixels2. These values show that 

the global parameters fit the experimental data less accurately than the locally determined parameters. 

The affinity for the second (bivalent) binding step was measured at 20 pM (ka2 = 4.900 (±0.002)  

× 105 RU−1s−1, kd2 = 8.420 (±0.007) × 10−3s−1). In fact, the dissociation rate for the bivalent binding step 

was much faster than for the monovalent binding step. This might be expected because monovalent 

binding occurs with free analytes whereas bivalent binding occurs with monovalently bound analytes [26]. 



Biosensors 2015, 5 34 

 

 

The standard error of the globally determined parameters reflects the degree of uncertainty of the rate 

constants and are a measure for reliability. Considering all these factors, the bivalent analyte model 

seems to best represent the interaction between HSA and the antibody. 

 

Figure 5. Kinetics of HSA-specific antibodies binding to immobilized HSA. Plots generated 

by globally applying the bivalent analyte model (red lines) overlay the plots associated with 

each antibody concentration (black lines; from top to bottom: 3.4 µM, 0.9 µM, 0.2 µM,  

53.9 nM, 13.5 nM, 3.4 nM). Values resulting from the average of two sensing spots and the 

subtraction of reference surface signals from raw signal measurements are presented on the 

graph. The graph below depicts the residuals of the fits. 

4. Conclusions 

In this study, we performed kinetic measurements using our newly developed immunoassay which is 

based on surface plasmon resonance technology. Algorithms for calculating rate constants for sensorgram 

data from the liSPR system were developed. Different binding models were evaluated, and the bivalent 

analyte model gave rise to the best fitting results. In the bivalent binding model, it is assumed that each 

antibody has two binding sites, one of which binds to the HSA molecule. The binding of the antibody’s 

second binding site to the HSA molecule stabilizes the complex.  
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