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Abstract: Biomimetic cross-reactive sensor arrays (B-CRSAs) have been used to detect and diagnose
a wide variety of diseases including metabolic disorders, mental health diseases, and cancer by
analyzing both vapor and liquid patient samples. Technological advancements over the past decade
have made these systems selective, sensitive, and affordable. To date, devices for non-invasive and
accurate disease diagnosis have seen rapid improvement, suggesting a feasible alternative to current
standards for medical diagnostics. This review provides an overview of the most recent B-CRSAs for
diagnostics (also referred to electronic noses and tongues in the literature) and an outlook for future
technological development.

Keywords: electronic nose; electronic tongue; biomimetic sensors; cross-reactivity; volatile organic
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1. Introduction

1.1. Current Diagnostic Methods and Motivation

In the last few decades, research in the medical field has provided tools to help doctors reach
medical diagnoses. While these tools have been successfully used and implemented to detect and
identify certain diseases, many conditions are diagnosed using methods that can be costly, painful
to the patient, and/or inaccurate, especially in the early stages of their development [1,2]. Thus,
there remains a need for the devices that target these facets to provide early diagnosis and analysis for
each patient that is altogether more cost effective, accurate, and non-invasive.

For example, cancer detection and treatment remain significant challenges that affect many
Americans. In 2017 alone, the American Cancer Society estimates that there were 222,500 new diagnoses
of lung cancer, and 155,870 deaths due to lung cancer [3]. Though it is not as prevalent as lung cancer,
colorectal cancer is the third leading type of cancer, with a projected 135,430 individuals newly
diagnosed in the United States (U.S.) in 2017 and carrying a high mortality rate of 17.7% for men and
12.4% for women [4]. Furthermore, colorectal cancer diagnosis requires a colonoscopy and polyp
biopsy, which is both invasive and costly. For these and all other types of cancer, treatment and
maintenance costs are high. In 2014, the national cost of cancer was estimated to be $87.8 billion [5].
Recent research has shown, however, that early diagnosis is a key factor for cancer survival and
treatment cost, with the five year survival rate increasing for local, regional, and distant stage disease,
and the overall cost of cancer is decreasing for those treated in the early stages [6].

For chronic airway diseases, such as chronic obstructive pulmonary disease (COPD) and
obstructive sleep apnea (OSA), early diagnosis is imperative to improve quality of life and enact
preventative measures to reduce adverse health effects and comorbid pathologies. In 2017, the COPD
Foundation estimated that 6.3% (20.3 million) of U.S. citizens had been diagnosed with COPD,
and in most cases, diagnosis did not take place until 50% of lung function was lost to the disease [5].
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Regarding OSA, studies from 2008 to 2013 reported a mean prevalence of OSA of 37% in men and
50% in women, indicating a drastic increase from studies performed during the 1990s and early 2000s.
Related to age and obesity, OSA significantly increases the risk of early death and cardiovascular
diseases, including strokes [7]. Furthermore, OSA diagnosis methods are lengthy and uncomfortable
for the subject, requiring an in-patient sleep study with expensive and specialized equipment.

Concerning the accuracy of diagnosis, there remains a need for analytical tools for patients with
neurodegenerative diseases, such as Alzheimer’s Disease and Parkinson’s Disease, and mental illnesses
resulting from chronic stress and anxiety. Mental illness is a widespread issue in the United States.
In 2015, the National Institutes of Health (NIH) reported that 43.4 million adults (17.9%) suffered from
a mental illness [5]. In 2013, costs associated with mental health services totaled $201 billion, topping
the list of the most costly conditions [8]. The cause of many of these illnesses remains unknown.
Treatment is administered on a trial-and-error basis, which reduces effectiveness and raises the risk of
serious side effects.

Finally, pathologies that are considered metabolic disorders, such as diabetes and inflammatory
bowel disease (IBD) including Crohn’s disease (CD) and ulcerative colitis (UC), and chronic kidney
disease would benefit greatly from a device that can not only diagnose the disease, but can also monitor
disease progression. The National Diabetes Statistics Report estimated that 29.1 million people (9.3%) in
the U.S. have some form of diabetes, with 27.8% of those with diabetes still undiagnosed and untreated,
increasing the risk of adverse health effects [9]. For IBD, incidence rates have increased steadily over
time worldwide, with highest incidence in Europe and the USA (2.5 million and >1 million affected,
respectively) [10]. Moreover, it was reported that of the countries studied, the U.S. had the highest rate
of hospitalizations for IBD-related illness [11].

Over the past decade, advances in molecular technologies have demonstrated that identification
of cellular changes at the molecular level may be a promising approach to early disease detection [12].
Further, being able to measure cellular changes at an early phase of the development of diseases
may enable the identification of the pathophysiological processes underlying these conditions,
thus informing treatment development. An accurate device that can provide a unique patient profile
would contribute significantly to the development of a specific treatment method based on the
individual’s needs, and could act as a tool to understanding the physiological processes that are
involved for each illness.

1.2. “Omics” Profiling and Impact on Personalized Medicine

Technological advances have made it possible to produce highly detailed, patient-specific
molecular profiles of both vapor and liquid samples. By using various “omics” methods including
proteomics, genomics, and metabolomics, researchers and health care professionals have been
able to associate specific biomarkers, i.e., genes, proteins, and molecules with patients’ diseases.
Once identified, these biomarkers serve as reliable indicators for the most beneficial personalized
targeted therapies for the patient. This, in turn, has the potential to improve quality of life, treatment
effectiveness, and reduce undesirable secondary effects and associated treatment costs. Both the
National Institutes of Health (NIH) and the Food and Drug Administration (FDA) have realized the
benefit of a personalized medicine approach. In an article published by the New England Journal of
Medicine, authors M. A. Hamburg and F. S. Collins stressed “the success of personalized medicine
depends on having accurate diagnostic tests that identify patients who can benefit from targeted
therapies” [13].

As diagnostic device development trends toward enhanced portability, ease-of-use, throughput,
and affordability, personalized medicine via patient-specific disease profiling is now a very realizable
goal [14,15]. This review article aims to highlight the potential of devices that employ biomimetic
cross reactive sensor arrays (B-CRSAs) to provide non-invasive disease diagnosis, and to help advance
personalized medicine through biomarker identification. The subsequent sections describe the most
recent methods in B-CRSA diagnostics for a wide variety of pathologies including cancer, airway
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diseases, mental and neurological diseases, and metabolic disorders, explore cutting-edge sensor
technology for these and other diseases, and outline future directions in device development.

2. Electronic Noses and Tongue Devices Background Technology

2.1. Mammalian Olfactory System as a Platform for Cross-Reactive Sensing

Over the past several decades, many research efforts have looked to the mammalian olfactory
system as a model for the development of a medical diagnostic device that meets the necessary
requirements. Overall, there are about 1000 genes that encode olfactory receptors (ORs), and each
OR has multiple sites for odorant binding, enabling detection of more than one odorant for each
OR—a characteristic called cross-reactivity [16,17]. Each combination of activated receptors creates a
unique signaling code for a specific odorant, making it possible to distinguish between thousands of
odorants [17]. In March of 2015, the Guardian newspaper published an article about a dog, named
Frankie, who could detect thyroid cancer with 88% accuracy among patients. Thyroid cancer is
notoriously difficult to detect by conventional methods, and it is hard to tell if the entire tumor has
been removed post-surgery. Frankie, however, was trained to lie down after smelling patients’ urine
samples if he detected metastatic cancer [18].

Inspired by the sensing mechanism of the mammalian olfactory system, medical devices known
as “electronic/artificial noses or tongues” (e-noses, e-tongues), containing biomimetic cross-reactive
sensor arrays (B-CRSAs) have been developed to detect specific olfactory (smell) and gustatory (taste)
elements present in both vapor and liquid samples, respectively. The analyte mixtures represent
specific pathological profiles, and these B-CRSAs have proven to be successful at diagnosing a wide
variety of pathologies, providing cost-effective, minimally invasive, and highly accurate analyte profile
analysis and classification.

The sensors employed in e-Noses fall into three general categories: gravimetric, electrical,
and optical, allowing for characterization of analytes based on mass, electrical properties
(e.g., conductance or impedance), and electron/photon interactive properties, respectively.
Gravimetric sensors are either piezoelectric crystals or microcantilevers, which resonate at a specific
frequency. Upon binding with an analyte, the resonant frequency of the sensor drops in proportion
with the added mass. Electrical e-noses consist of an electronic circuit that is connected to a network of
sensory materials—most commonly to conductive polymers or metal oxides—that provide an electrical
response upon binding with a specific known analyte. This response is characterized by monitoring
sensor conductivity, resistivity, or voltage change during analyte exposure. Finally, optical sensors
work by displaying a shift in emission or absorption of different types of electromagnetic radiations
upon binding with a desired analyte. There are two popular means of detection: fluorescent sensors,
which fluoresce upon analyte binding, and colorimetric sensors, which display a visible color change
upon analyte binding.

2.2. Disease Diagnoses with B-CRSAs

B-CRSAs have great potential to advance personalized medicine. While the devices have
been used in a wide variety of applications from consumer goods analysis [19–25] to explosives
detection [26–29], some of the most pioneering work has been done in medical diagnostics via
vapor and liquid samples from subjects. Many disease pathologies have been identified from the
unique combination of metabolites, or metabolic by-products, produced [15,30–41]. Some of these
metabolites are volatile organic compounds (VOCs), which are small molecules that enter the exhaled
breath through gas exchange at the alveolar-capillary membrane of the respiratory tract [42], or can
even be found in body odor [43,44] or the vapor head space of bacterial [45–47], urine [31,33,45,48],
or fecal samples [49–51]. Others are protein or molecular biomarkers found in liquid samples such as
sweat [34,52–54], urine [35,55,56], and saliva [30,52,57–62]. While the metabolites produced from each
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disease are thought to be primarily from oxidative stress, the subsequent effect of each disease on the
body is unique and leads to the production of disease-specific metabolomic profiles [37,63].

E-noses and e-tongues consist of a CRSA, which is capable of interacting with multiple vapor
or liquid analytes, a signal transduction mechanism, and pattern recognition software to classify the
samples in question (Figure 1) [64]. B-CRSAs are able to differentiate diseases via “fingerprint” (FP)
outputs; that is, each patient’s metabolite profile produces a unique response pattern from the sensor
array, enabling disease differentiation by comparing new patient FPs to two controls: FPs of healthy
patients and FPs of patients for whom a disease diagnosis has been confirmed. B-CRSAs are exposed
to the collected samples, and multivariate data analysis—such as principle component analysis (PCA)
or neural network analysis—is used for pattern recognition and clustering to classify each FP.
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The development of more extensive and selective sensing mechanisms alongside advances in
electronics and signal processing, B-CRSA devices have become smaller, more selective, and more
sensitive, with fast data processing time and facile readout of vapor analysis [65–67]. Recent advances
in research and technology have progressed toward personalized medicine, where large amounts of
data can be analyzed to identify specific biomarkers of a disease in each individual patient. When used
in parallel with methods such as GC-MS and NMR-metabolomics [38,68], a comprehensive breathomics
approach can be successfully developed for disease diagnoses. Such a device could offer clinically
relevant opportunities for objective tracking of symptoms, changes over time, response to treatment,
as well as resilience to future environmental stressors. Overall, e-nose and e-tongue devices offer
promise as a novel area to develop as they offer a potentially highly impactful solution for early
detection of a range of medical and psychiatric diagnoses, as well as the potential for more closely
matching treatment to patient-specific disease pathology and monitoring of treatment response.

3. Cancer Metabolomics

3.1. Lung Cancer

Several studies have been performed that demonstrate the success of lung cancer identification
through e-nose analysis of exhaled breath [32]. Indeed, airways diseases including lung cancer
were some of the first to be identified via profiling of VOCs in exhaled breath. One successful
clinical trial performed by Santonico et al. proposed a more consistent breath sampling technique via
endoscopic probe for the improved discrimination of lung cancer-specific VOC profiles. The B-CRSA
system consisted of eight quartz crystal microbalance (QCM) sensors that were coated with
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various metalloporphyrins to promote chemisorption and increase sensitivity to VOCs of interest
for lung cancer [69,70]. These were first implemented in the Rome ‘Tor Vertega’ e-nose by
D’Amico et al., and are as follows: (1) Ru-meso-TetraPhenylPorphyrin, (2) Rh-[meso-TetraPhenyl
Porphyrin]-Cl, (3) Mn-[meso-TetraPhenylPorphyrin]-Cl, (4) Co-meso-TetraPhenylPorphyrin,
(5) Sn-[meso- TetraPhenyl Porphyrin]-Cl2, (6) Co-meso-TetrapNO2 PhenylPorphyrin, (7) Co-meso-
Tetra-pOCH3 PhenylPorphyrin, and (8) Mn-OctaMethylCorrole [69,70]. These 8 were chosen based
on their good sensitivity (i.e., 100–400 ppb) to aromatic compounds, amines, alcohols, and ketones,
and specifically benzene derivatives and alkanes, which have been indicated as possible biomarkers of
lung cancer [70].

The sensing mechanism for QCMs is gravimetric: upon analyte(s) binding, the resonant
frequencies of the sensors change with respect to the mass of the VOCs present; plotting this
frequency shift versus time produces a breathprint for each unique VOC mixture, like the one shown in
Figure 2 [71]. In general, the high sensitivity of QCM sensors can be attributed to the high acceleration
acting on the deposited film, and the resonant frequency of the crystal is dependent both on the
physical properties of the crystal and those of the medium[72]. Sensing properties (i.e., sensitivity and
selectivity) of each sensor in the Rome Tor Vertega e-nose array are determined by the central metal
and peripheral substituents of the macrocycles in each metalloporphyrin coating. These substituents
can be altered easily to produce a variety of metalloporphyrins such as those mentioned above, thereby
making it possible fabricate an e-nose device that can be easily altered and optimized to detect target
analytes [70].
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the sensing array. The first and the second row refer, respectively, to a negative and a cancer individual.
The first and the second column refer respectively to the bag breath sampling (BBS) and the endoscopic
breath sampling (EBS) sampling techniques. Used with permission from [71].

Subjects in the study included 10 subjects with squamous cell carcinoma (SCC), 10 with
adenocarcinoma (ADK), and 10 healthy subjects as a control. Two different breath sampling techniques
were compared: bag breath sampling (BBS), the standard method, in which subjects breathe into a
Tedlar bag through a device designed to catch only deep lung volume (alveolar) air, and endoscopic
breath sampling (EBS) near the tumor site via a pump that is connected to an endoscopic probe.
A partial least square discriminant analysis (PLS-DA) was then performed for BBS and EBS methods
for sample classification and clustering with two different considerations: discriminating between
cancer and non-cancer, and between ADK and SCC. Overall, the samples obtained via EBS had
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superior classification, sensitivity, and selectivity (83%, 87.5%, and 75%, respectively) than that of the
BBS method (75%, 81%, 62%, respectively), for the models obtained by separating the data into training
and validation sets [71]. While this study presents EBS as an improved alternative to the conventional
BBS method, it does not fill the need for a non-invasive diagnosis method for lung cancer.

QCM sensors in general offer a considerable advantage over conventional gravimetric and
other sensing systems in that they are highly sensitive to analytes (with limits of detection on the
order of parts per million to parts per billion) and provide a label-free, high-throughput, quantitative
approach to analyte detection and vapor analysis; however, they can suffer from instrument drift due to
unstable environmental conditions (such as humidity, pressure and temperature) [67,73]. Fortunately,
researchers have recently developed more stable and robust QCM systems in order to minimize system
inaccuracy while maintaining desired sensitivity including a multi-channel QCM system [73] and a
QCM modified with carbon nanotubes [72].

In 2012, Mazzone et al. developed a portable, inexpensive colorimetric B-CRSA, able to identify
lung cancer from healthy controls. The array consists of 24 chemically responsive dyes, printed on
a disposable cartridge (see Figure 3). Moreover, in contrast to many of the commercially available
e-noses, which can only classify analytes based on a single chemical or physical property, the dyes
chosen for the colorimetric array target diverse chemical properties of the analytes, thereby providing a
more complete and specific VOC profile. The dyes are divided into three categories: dyes with various
metal ions that respond to Lewis basicity, pH indicators that are sensitive to Brønsted acidity/basicity,
and dies with large permanent dipoles that respond to various analyte polarities [74].
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Figure 3. Image of the colorimetric sensor used in this study. Twenty-four chemically reactive colorants
are printed on a disposable cartridge. The reactive colorants used in the studied array are listed as
they appear on the cartridge. Exhaled breath is drawn across the cartridge in the direction shown.
Used with permission from [74].

This study also aimed to elucidate breathprints of patients with different types of lung cancer,
which had previously not been considered. Biopsy-validated lung cancer subjects were divided into
groups according to cancer histology, stage, and survival rate, and their breathprints compared to
individuals at risk for developing lung cancer as well as individuals with indeterminate lung nodules.
Breath samples were then passed over the array, and images of the array were taken at baseline and at
30 s intervals throughout breath collection. While the array consisted of 24 colorimetric sensors, sensor
response was evaluated by converting each image into numerical color change scores for green, red,
and blue values, for a total of 72 data points (24 sensors × 3 color change scores). The 72 breathprint
data points were then used to construct models to distinguish between groups of interest (see Figure 4),
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and accuracy of prediction was calculated using C-statistic for that model [74]. The C-statistic is
the area under the curve (AUC) of a receiver operating characteristic (ROC) curve, which directly
corresponds to the probability of a true positive, accurate prediction, versus a false negative or false
positive, with 1.0 being the ideal model [75]. This method was successful at identifying patients
with lung cancer versus controls, and showed a higher accuracy when considering the breathprints
of specific cancer histologies, rather than global cancer/no cancer response (see Table 1). Overall,
this system has great potential to provide a highly accurate, specific, non-invasive, and cost-effective
method for improved lung cancer diagnosis.Biosensors 2017, 7, 59  7 of 39 
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Table 1. Accuracy of Statistically Validated Breath Biosignature Models. Used with permission from [74].

Groups Compared (n) Model 1 Model 2 Model 3 Model 4

Non-small cell (83) Controls (137) 0.701 0.811 0.761 0.710
Adenocarcinoma (50) Controls (137) 0.784 0.747 0.825 0.695
Squamous cell (23) Controls (137) 0.708 0.841 0.849 0.768
Adenocarcinoma (50) Squamous cell (22) 0.889 0.742 0.864 0.517
Small cell (9) Controls (137) 0.800 0.824 0.890 0.763
Small cell (9) Non-small cell (83) 0.752 0.752 0.781 0.584
Stages I and II (41) Stages III and IV (42) 0.792 0.793 0.784 0.460
Survival Survival
<12 mo (24) >12 mo (68) 0.768 0.761 0.770 0.576

The groups compared for each question are listed. This is followed by the C-statistic (area under the receiver
operating characteristic curve) for the statistically validated models (model 1 = selected sensor parameters only,
model 2 = selected sensor and selected clinical parameters, model 3 = selected sensor parameters and all four clinical
parameters, model 4 = all four clinical parameters only).

3.2. Colorectal Cancer

Though it is a relatively new direction in metabolomics through B-CRSA analysis, many studies
have proposed new, successful methods to non-invasively detect colorectal cancer (CRC). Inspired by
the reported success of some canines to identify other types of cancer in humans through sense of smell,
a Labrador retriever was put to the test to identify colorectal cancer by smelling the head space of human
stool samples [76]. VOCs emitted from feces are a good representation of the types of microbiota present
in the colon, making them excellent candidates for CRC biomarkers [36]. The Labrador could identify
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CRC stool samples from healthy controls with high sensitivity and specificity (91% and 99%, respectively),
with an even higher accuracy in watery stool samples (97% sensitivity and 99% specificity) [76].

As mentioned in Section 1.1, the gold standard for CRC diagnosis is a colonoscopy. To date, the only
alternative clinical method is fecal immunochemical testing (FIT), where fecal samples are screened for
known biomarkers of CRC and adenomas (benign tumors formed from glandular tissue); however,
this method has very low sensitivity for both CRC and adenomas (66–88% and 27–41%, respectively,
depending on the cut-offs used) [49]. CRC exhaled breath VOC profiles have recently been studied through
gas-chromatography mass-spectrometry (GC-MS), showing a significant difference between breath profiles
of those affected with CRC and healthy controls [77]. GC-MS an ideal method for initial VOC profile
analysis to correlate e-nose breathprints with their corresponding VOC profiles for the elucidation of the
pathophysiology and the identification of biomarkers; however, it is an impractical approach to diagnostics
as it requires specialized and costly equipment, and highly trained personnel. Recent efforts have been
directed toward developing e-noses to evaluate CRC in either fecal headspace [49] or urine headspace
samples [77] as a more practical approach to olfactory CRC discrimination.

In 2014, de Meij et al. demonstrated that the commercially available Cyranose 320, an e-nose
consisting of an array of 32 chemical sensors made of carbon black conducting polymers [32],
can successfully distinguish subjects with CRC from those with advanced adenomas and from healthy
controls. To perform the study, fecal samples were collected from 40 CRC patients, 60 patients
with advanced adenomas, and 57 healthy control subjects. Fecal samples were stored at −20 ◦C,
and ca. 2 g of frozen samples were then transferred to a sealed vacutainer and heated to 37 ◦C for
1 h prior to testing. These containers were then connected to the Cyranose 320 with an airtight
closed loop system, including an polyethersulfone syringe water filter and a 3-way stop cock system,
to minimize headspace dilution with ambient air, reduce condensation, and to control for flow rate [49].
Cyranose 320 smellprints were then classified using principle component analysis (PCA), a common
multivariate data analysis method where the variance of the original dataset is recombined into a
set of principle components (PC). Each smellprint is then plotted according to the respective scores
of each PC for that smellprint, creating a visual representation of the similarities between certain
classes of smellprints [78]. The PCs that represent the largest amount of variance in the data are
then used as classifiers, and canonical discriminant analysis (CDA) was performed to calculate the
probability of belonging to either of the diagnostic groups for two out of three cases (training set).
Resulting algorithms were then validated externally using the remaining cases that were left out of the
training set (validation set). This was then repeated with 1000 random distributions of cases for the
training and validation set, and the ROC curve (Section 3.1) was plotted for the cross-validated data
(see Figure 5). Results were compared to FIT results for the same samples. Overall, the Cyranose 320
could distinguish between each class with good sensitivity and specificity [49].

In 2015, Westenbrink et al. were able to distinguish CRC from healthy controls and those with
irritable bowel syndrome (IBS) using an e-nose developed at Warwick University, known as the Warwick
Olfaction System (WOLF). The WOLF contains a B-CRSA of 13 sensors that have a variety of different
signal transduction mechanisms including 8 amperometric electrochemical sensors, two non-dispersive
infrared optical devices, and one photo-ionization detector. The set of sensors was selected such that the
device would be sensitive to both gases known to be affected by the body, such as CO2, O2, and CH4,
as well as those with a known link to lower gastrointestinal pathology, including NH3, SO2, and H2S.
While the B-CRSA is sensitive to these gases, it is also responsive to VOCs with even higher molecular
weights. This setup is ideal for an e-nose system, because it maximizes the amount of information for an
individual’s volatile smellprint, affording optimal disease classification and differentiation. The WOLF
system is housed within a standard-sized PC case, and the results are analyzed and recorded using LabView
software. Each sensor is connected to printed circuit boards (PCBs) that convert the raw detection response
into an analog voltage level, which is then amplified through a separate PCB via an op-amp circuit. Separate
environmental monitors are included to measure flow rate through the machine, as well as temperature
and humidity to reduce any effects that could be potentially caused by variance in environment [45].
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and (C) advanced adenomas when compared with controls. Used with permission from [49].

The study contained three sample groups, 39 suffering from CRC, 35 suffering from IBS, and 18 healthy
controls. Urine samples were collected from subjects as standard spot urine early in the morning,
and “dipstick” tests ruled out the presence of infection, diabetes, or renal disease. A flow of clean
dry air was split into two channels, and one directed to the headspace of a 5 mL sample aliquot, heated
to 40 ◦C for 5 min. A check-valve was incorporated into the sample channel before joining again with
the other “make-up” channel, to ensure stable pressure and flow rate and reduce consequential effects
on sensor response. Mixed air from both channels was then injected into the WOLF system for 5 min to
ensure that the sensors reached equilibrium, and all of the samples were analyzed in triplicate to evaluate
reproducibility. The smellprints of collective sensor responses were constructed by extracting three features
from the raw data: (1) baseline-corrected voltage changes averaged over three points; (2) response integrals
from start of response to maximum response; and (3) times for sensor responses to return from a maximum
to 50% of that value. The smellprints were classified for each sample group via Linear Discriminate
Analysis (LDA), which is a technique to discriminate classes, i.e., “use the information in a learning set of
labeled observations to construct a classifier (or classification rule) that will separate the predefined classes
as much as possible”, and then classify unknown, new samples using “the classifier to predict the class of
that observation” [79]. Figure 6 shows the normalized changes in voltage for each of the 13 sensors for
CRC and IBD subjects, and LDA plots are shown in Figure 7. As the figures suggest, the WOLF system
successfully differentiated these two groups from each other as well as healthy controls, with a sensitivity
of 78% and specificity of 79% [45]. While these numbers are an improvement from previous non-invasive
diagnostic techniques for CRC, there is still room for sensor optimization to increase accuracy of diagnosis.
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3.3. Head and Neck Cancer

Head and neck cancer (HNC) comprises ca. 3% of cancer cases in the U.S., with a projected
63,030 new cases developing in 2017 [5,80]. The most common type of HNC is head and neck
squamous cell carcinoma (HNSCC), which comprises 90% of cases and is usually treated with both
surgery and radiotherapy [81,82]. While technological advances have improved both the treatment
and diagnosis methods in the last twenty years, little improvement has been made in the overall
survival rate [80]. Furthermore, many HNC cases occur in developing countries, with limited
access to specialized equipment and healthcare [83]. Current HNC diagnosis is performed via
panendoscopy, which is a highly invasive procedure including “rigid tracheobronchoscopy, rigid
esophagoscopy, direct laryngoscopy, hypopharyngoscopy, and inspection and palpation of the oral
cavity and the oropharynx—with a subsequent biopsy for histopathological examination under general
anaesthesia” [81]. Thus, there remains a need for a non-invasive HNC diagnosis method that would
afford early detection and intervention while maximizing affordability, ease-of-use, and throughput.

HNC is a great candidate for diagnosis via e-nose exhaled breath analysis because tumors are
in proximity to the oral cavity and airways, and the VOCs released from compromised metabolic
processes of diseased tumor cells mix with breath upon exiting the oral cavity. One study performed
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between 2010 and 2013 examined 36 patients with histopathologically-confirmed HNSCC, including
cancer of the oropharynx, hypopharynx, and supraglottic larynx, with a commercially available e-nose
known as the DiagNose [81]. The DiagNose system B-CRSA consists of 12 metal-oxide sensors of four
types (CH4, CO, NOx, Pt) in triplicate. This system monitors changes of resistance for each of the
sensors upon both adsorption and desorption of the VOC mixture. Samples of air are pumped in from
a sample bag at one inlet, and a second inlet pumps in filtered ambient air for baseline measurement.
Air composition is measured every 20 s via a 32-step sinusoidal modulation of the sensor surface
temperature (correlated to electrical resistance), thereby producing a 32-dimensional vector every 20 s
for each of the 12 sensors. In total, the measurement runs for 10 min: the first 5 min evaluating VOC
adsorption and the second 5 min evaluating VOC desorption characteristics.

HNSCC breath samples (100% smokers) were compared to breath samples of subjects without
cancer, but who were active smokers. Sensor data for each sample was downloaded and processed
as follows: potential pollution was accounted for by deleting the first and last sections of collection,
and data was then normalized to minimize internal sensor differences by Equation 1, where Xnorm
is the normalized data point, xt is the raw measurement at time point t, and T refers to the
observed temperatures.

Xnorm =
xt

∆T − Tmin
(1)

The AUC (Section 3.1) was also calculated for each sensor, and the mean of each of the four
sensor types was taken. A logistic regression was then performed on the resulting 128 values (32 data
points × 4 sensor types) correlating sensor readouts to diseased/healthy samples, and an ROC curve
(Section 3.1) was plotted (Figure 8). Logistic regression analysis showed successful differentiation of
HNSCC for each sensor type, with an overall sensitivity of 90% and specificity of 80% [81]. With such
good results, the DiagNose system certainly offers great potential for an alternative diagnosis method
that is non-invasive, fast, and affordable, though a larger study is needed to confirm results for HNSCC
and other types of HNC before it can be implemented.

Biosensors 2017, 7, 59  11 of 39 

of four types (CH4, CO, NOx, Pt) in triplicate. This system monitors changes of resistance for each of 
the sensors upon both adsorption and desorption of the VOC mixture. Samples of air are pumped in 
from a sample bag at one inlet, and a second inlet pumps in filtered ambient air for baseline 
measurement. Air composition is measured every 20 s via a 32-step sinusoidal modulation of the 
sensor surface temperature (correlated to electrical resistance), thereby producing a 32-dimensional 
vector every 20 s for each of the 12 sensors. In total, the measurement runs for 10 min: the first 5 min 
evaluating VOC adsorption and the second 5 min evaluating VOC desorption characteristics. 

HNSCC breath samples (100% smokers) were compared to breath samples of subjects without 
cancer, but who were active smokers. Sensor data for each sample was downloaded and processed 
as follows: potential pollution was accounted for by deleting the first and last sections of collection, 
and data was then normalized to minimize internal sensor differences by Equation 1, where Xnorm 
is the normalized data point, xt is the raw measurement at time point t, and T refers to the observed 
temperatures. = ∆ −  (1) 

The AUC (Section 3.1) was also calculated for each sensor, and the mean of each of the four 
sensor types was taken. A logistic regression was then performed on the resulting 128 values (32 data 
points × 4 sensor types) correlating sensor readouts to diseased/healthy samples, and an ROC curve 
(Section 3.1) was plotted (Figure 8). Logistic regression analysis showed successful differentiation of 
HNSCC for each sensor type, with an overall sensitivity of 90% and specificity of 80% [81]. With such 
good results, the DiagNose system certainly offers great potential for an alternative diagnosis method 
that is non-invasive, fast, and affordable, though a larger study is needed to confirm results for 
HNSCC and other types of HNC before it can be implemented.  

 
Figure 8. Data points from sensor measurements were used to construct a ROC-curve. Logistic 
regression showed a significant difference (p < 0.05) in VOC resistance patterns between patients 
diagnosed with head and neck squamous cell carcinoma (HNSCC) and the control group, with a 
sensitivity of 90% and a specificity of 80%. HNSCC head and neck squamous cell carcinoma; ROC 
receiver operating characteristic; VOC volatile organic compounds. Commas in axis numbers 
represent decimal places. Used with permission from [81]. 

Figure 8. Data points from sensor measurements were used to construct a ROC-curve.
Logistic regression showed a significant difference (p < 0.05) in VOC resistance patterns between
patients diagnosed with head and neck squamous cell carcinoma (HNSCC) and the control group, with
a sensitivity of 90% and a specificity of 80%. HNSCC head and neck squamous cell carcinoma; ROC
receiver operating characteristic; VOC volatile organic compounds. Commas in axis numbers represent
decimal places. Used with permission from [81].
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3.4. Prostate Cancer

Prostate cancer (PC) is the second most common type of cancer among males, and though tumor
progression is usually slow, it is still associated with a high mortality rate [84]. Additionally, PC is
notoriously difficult to diagnose due to heterogeneity, which also makes it difficult to estimate an
accurate prognosis. Currently, screening and diagnostic methods for PC include digital rectal exam
(DRE) and plasma prostate-specific antigen (PSA), although these methods have limited sensitivity.
The only definitive diagnosis existing today is histological examination of transrectal ultrasound
guided biopsy, which is costly, very uncomfortable for the patient, and carries a risk of infectious
complications [33]. There have been many studies on prostate cancer urine biomarkers to improve
diagnosis accuracy and develop alternative non-invasive methods for detecting the disease; however,
many of these methods still require expensive and specialized equipment or lengthy assays [35].
The implementation of an e-nose (for urine headspace) or e-tongue (for biomarkers in body fluids)
would considerably cut down on the cost and time of analysis. By correlating smellprint or tasteprint
of the devices with known biomarker profiles of patient urine samples determined in preliminary
studies, future studies could be conducted to quickly identify biomarkers for personalized treatment
without the need for in-depth analysis with specialized equipment.

In 2014, Roine et al. performed a study to detect PC with a commercially available e-nose via urine
headspace samples. The study included 50 patients with histologically-confirmed PC and 24 control
samples of 15 subjects with benign protastic hyperplasia (BPH) [33]. The e-nose was a ChemPro®

system, developed in Finland, consisting of 8 electrode strips, each producing a two-channel output
and a MOS cell [85], providing 18 data points for evaluation of each sample. The measurement chamber
was built in-house, and made of a polystyrene cell culture plate, with a parafilm-secured cover in
which 3 holes are drilled. Two of the holes serve to replace air after drawing out headspace air, and the
third hole contains a 16 G cannula with the injection port replaced by a Teflon tube, which acts as the
inlet for the ChemPro e-nose. Each sample (5 mL) was defrosted and deposited in the culture plate,
creating a wide, thin layer of fluid; this increases sample exposure to air and therefore maximizes
headspace VOC concentration [33].

During the 15-min sampling period, maximum absolute values of sensor resistance change were
extracted for further analysis. All but two of the channels had responses, resulting in 16 data points for
each sample. Resulting average smellprints for each group are shown in Figure 9. Sample data was
then scaled by dividing each element (16 channels) with the L2 norm (magnitude) of the entire sample
vector, thereby making the L2 norm of each sample vector 1. LDA (Section 3.2) was then used to
assign samples to one of two classes: PC and BPH, and standard statistical methods were employed to
reduce over-fitting (leave-one-out cross validation) and to correct for bias. Additionally, a multilinear
regression model was constructed to correlate prostate volume with BPH cases and tumor size with
PC cases to predict prostate size and tumor size, respectively, using e-nose data. Finally, an ROC
curve was constructed and the AUC value calculated (Section 3.1) to evaluate e-nose sensitivity and
specificity, as shown in Figure 10 [33].

The ChemPro could identify prostate cancer with 78% sensitivity and 67% specificity after
cross-validation was performed to reduce overfitting and to more accurately model an actual diagnostic
implementation. While no significant model could be developed to predict tumor size, channel 9 on the
e-nose showed statistically significant correlation (p = 0.02, correlation coefficient of 0.34) with prostate
size for BPH samples [33]. This proof of principle study shows the potential for e-nose diagnosis
of prostate cancer through urine headspace, though there is still room for improvements in both
sensitivity and specificity. Further studies, perhaps with a wider variety of sensors, are needed to
optimize e-nose diagnosis of prostate cancer.
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4. Airway Diseases

Lung diseases were some of the first to be evaluated via exhaled breathprint profiling with
e-nose devices [2,32]. Lung diseases fall into two distinct categories: obstructive and restrictive.
Obstructive diseases are any lung diseases that cause blockage in the airways, including lung damage
and narrowing of airways due to blockage, inflammation or excess mucous. Restrictive diseases are
those that affect the ability of the lung to expand to full capacity, such as stiffening of lung tissue or
reduction of chest cavity volume due to physical conditions such as scoliosis or obesity. While past
studies have successfully profiled and classified a variety of lung diseases, there remains a need for
further discrimination abilities (specificity) using e-noses to determine disease stage and comorbidity.
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4.1. Chronic Obstructive Pulmonary Disease (COPD)

COPD specifically encompasses a group of “progressive, debilitating lung conditions, including
emphysema and chronic bronchitis, characterized by difficulty breathing, lung airflow limitations,
cough, and other symptoms” [86]. The current gold standard for diagnosis is via spirometry,
a measurement of flow volume loop upon a full breath cycle after administration of bronchodilators.
From the flow volume loop, the ratio of forced expiratory volume in the first second (FEV1) to forced
vital capacity (FVC, the maximum total amount of air that can be forcefully expired after maximum
inhalation) is measured, and an FEV1/FVC ratio <0.7 confirms the presence of persistent airflow
limitation, thus confirming COPD diagnosis [87]. While this method is minimally invasive and it is a
good measure for determining COPD severity, it cannot provide information about pathogenesis of
disease nor presence of infection. Distal airway infection diagnosis must be performed by quantitative
culture of protected specimen brush (PSB)—a procedure that is limited by both a lengthy processing
time and invasive sampling procedure [88]. Treatment methods for COPD largely vary depending
on patient response (trial and error), specific disease type, and severity, and there is currently no
treatment that has been effective at reducing the long term decline in lung function [87]. Thus, recent
efforts have been focused on identifying the specific underlying pathophysiological processes in
individual cases [88], evaluating the breathprints of COPD patients with comorbid diseases such as
obstructive sleep apnea (OSA) [89], and within-day and between-day variations in breathprints of
COPD patients [90].

To address the issue of the invasive procedure that is required to confirm distal airway infections,
Sibila et al. have proposed the alternative, non-invasive method of airway infection diagnosis via VOC
breathprint analysis of exhaled breath with the Cyranose 320 (Section 3.2). In this study, breathprints
were obtained from 37 clinically stable COPD patients (10 with confirmed airway bacterial colonization)
and 13 healthy controls. Exhaled breath samples were obtained prior to bronchoscopic procedures.
Individuals breathed into a 10 L Tedlar bag after 3 min of tidal breathing through an inspiratory filter,
and expiratory silica reservoir exposed to dry air. The Cyranose 320 was then connected to the sample
bag and sensors were exposed to breath samples for 5 min [88].

Raw data from the Cyranose 320 sensors was reduced via PCA (Section 3.2) and then processed
using a pattern recognition application in Matlab. PCA plots are shown in Figure 11. The Matlab
software employs LDA (Section 3.2) for patient classification, and verifies classification model accuracy
by leave-one-out cross validation. The ROC curve (Section 3.1) was then constructed to evaluate
sensitivity and specificity of the device for each sample class, and is plotted in Figure 12. The Cyranose
320 could successfully distinguish between all 3 sample classes—non-colonized COPD, colonized
COPD, and healthy controls—with a high degree of sensitivity and specificity as shown in Table 2. It is
important to note that the degree of specificity using the Cyranose 320 is high between colonized and
non-colonized COPD patients (0.96), indicating that this method shows much promise as an alternative,
non-invasive way of detecting bacterial colonization for diagnosing distal airway infections [88].

Table 2. Receiver operating characteristics analyses of breath-prints between colonized COPD patients,
non-colonized COPD patients and healthy controls. Used with permission from [88].

Colonized vs. Non-Colonized
COPD Patients

Colonized COPD Patients
vs. Healthy Controls

Non-colonized COPD
Patients vs. Healthy Controls

Cross-validation accuracy 89% 88% 83%
Sensitivity 0.82 0.80 0.81
Specificity 0.96 0.93 0.86
AUROC 0.922 0.986 0.937
Positive predictive value 0.87 0.89 0.92
Negative predictive value 0.92 0.87 0.72

AUROC: area under the receiver operating characteristic.



Biosensors 2017, 7, 59 15 of 39
Biosensors 2017, 7, 59  15 of 39 

 
Figure 11. Two-dimensional principal component analyses (PCA) plot showing the discrimination of 
breath-prints in (A) colonized chronic obstructive pulmonary disease (COPD) patients and healthy 
controls; (B) Non-colonized COPD patients and healthy controls; and (C) colonized COPD patients 
and non-colonized COPD patients. Used with permission from [88]. 

 
Figure 12. Receiver operating characteristic (ROC) curve of the model predicting the presence of 
bacterial airway colonization in COPD patients. Used with permission from [88]. 

  

C 

Figure 11. Two-dimensional principal component analyses (PCA) plot showing the discrimination of
breath-prints in (A) colonized chronic obstructive pulmonary disease (COPD) patients and healthy
controls; (B) Non-colonized COPD patients and healthy controls; and (C) colonized COPD patients
and non-colonized COPD patients. Used with permission from [88].

Biosensors 2017, 7, 59  15 of 39 

 
Figure 11. Two-dimensional principal component analyses (PCA) plot showing the discrimination of 
breath-prints in (A) colonized chronic obstructive pulmonary disease (COPD) patients and healthy 
controls; (B) Non-colonized COPD patients and healthy controls; and (C) colonized COPD patients 
and non-colonized COPD patients. Used with permission from [88]. 

 
Figure 12. Receiver operating characteristic (ROC) curve of the model predicting the presence of 
bacterial airway colonization in COPD patients. Used with permission from [88]. 

  

C 

Figure 12. Receiver operating characteristic (ROC) curve of the model predicting the presence of
bacterial airway colonization in COPD patients. Used with permission from [88].



Biosensors 2017, 7, 59 16 of 39

4.2. Obstructive Sleep Apnea (OSA)

OSA is characterized by episodes of partial and complete airway obstruction, resulting in multiple
apneas (temporary cessation of breathing) and hypopneas (abnormally slow or shallow breathing). It is
becoming a widespread concern worldwide, with an increased number of cases diagnosed annually
in both men and women [7], and is associated with an increased risk of cardiovascular diseases and
metabolic disorders [41]. Currently, the gold standard for OSA diagnosis is performing multichannel
polysomnography (PSG), which is an in-patient sleep study that requires the monitoring of several
parameters, including “snoring, apneas, nocturnal choking or gasping, restlessness, and excessive
daytime sleepiness” and an extensive review of sleep history [91]. This technique is altogether
uncomfortable for the patient, lengthy, and costly, with limited availability. Some alternative methods
have been proposed to cut down on labor and cost, such as the Epworth Sleepiness Scale, neck
circumference, and comprehensive clinical score; however, these lack both specificity and sensitivity
with a great degree of overlap between those with OSA and healthy controls [92].

Some recent studies have focused on the elucidation of OSA biomarkers that are associated
with oxidative stress and both systemic and airway inflammation [92]. Both oxidative stress and
inflammation have been known to produce VOCs in exhaled breath [32,68]. Based on this principle,
Greulich et al. performed a proof-of-principle study to identify OSA by exhaled VOC profiling, with an
e-nose as an alternative method for OSA diagnosis and as a way of monitoring the effectiveness
of treatment. The study consisted of 20 healthy volunteers and 40 with previously diagnosed OSA.
Those with OSA had not yet received therapy via continuous positive airway pressure (CPAP), which is
prescribed to keep airways open during sleep to normalize breathing, reduce apneas and hypopneas,
and reduce airway inflammation.

Exhaled breath samples were evaluated in triplicate with the Cyranose 320 e-nose. The three data
sets obtained were then averaged, and PCA performed (Section 3.1) to capture the largest variance
between sets before modelling with LDA (Section 3.2). LDA models were verified via leave-one-out
cross validation, and an ROC curve was constructed (Section 3.1) to calculate specificity and sensitivity
for each sample class. To evaluate inflammation levels before and after CPAP therapy, pH, conductivity
of exhaled breath condensate (EBC), and the inflammatory biomarkers matrix metalloproteases
(MMPs), tissue inhibitor of metalloproteases (TIMPs), and α1-antitripsin (α1-AT) were measured
in pharyngeal washing fluid. LDA for e-nose data revealed a statistically significant difference between
healthy controls and patients with OSA, as shown in Figure 13, and a sensitivity of 0.93 and specificity
of 0.70 was calculated with the AUC for the ROC curve [92].
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Figure 13. (a) Linear discriminant analysis of sleep apnoea patients and healthy controls differ 
statistically significantly. (b) The area under the receiver operating characteristic curve equals 0.85, 
resulting in a sensitivity of 0.93 and a specificity of 0.70. OSAS: obstructive sleep apnoea syndrome; 
HC: healthy control. #: p < 0.0001, Mann–Whitney U-test. Used with permission from [92]. 

While most of the inflammatory biomarkers (pH, EBC conductivity, MMP-9, and TIMP-1) did 
not reach statistical significance between healthy controls and OSA patients, there was a statistically 
significant difference of α1-AT levels in pharyngeal washing fluid. Compared with LDA predictive 
models built with e-nose VOC data, the predictive models built using data for inflammatory markers 
were not as accurate; however, 100% accurate prediction was possible by combining e-nose LDA with 
inflammatory marker data. Interestingly, e-nose LDA models for the first 20 OSA patients showed a 
significant difference between pre-therapy and post-therapy VOC profiles evaluated after three 
months of CPAP treatment, as shown in Figure 14, with a sensitivity of 0.80 and specificity of 0.65. 
Regarding inflammatory markers, EBC conductivity was significantly different between pre- and 
post-therapy, and post-therapy levels of α1-AT were significantly lower [92].  

Results from this study show that diagnosis and monitoring of OSA with e-nose technology 
shows much promise as an alternative to PSG. While the current AUC value of 0.85 is not sufficient 
for a definitive, comprehensive diagnosis, the Cyranose 320 could still be used as a valuable screening 
tool for low-risk populations, with a negative predictive value of 99.6% [92]. In higher risk 
populations, such as those with obesity, the results may not be as accurate [41]; however, the 
Cyranose 320 could still be used as a tool for determining the need for PSG testing. As discussed 
previously, the Cyranose 320 system contains a B-CRSA with sensors of one type of signal 
transduction mechanism. Thus, further studies should be conducted with different types of e-nose 
sensors to improve sensitivity and specificity for a more accurate diagnosis.  

Figure 13. (a) Linear discriminant analysis of sleep apnoea patients and healthy controls differ
statistically significantly. (b) The area under the receiver operating characteristic curve equals 0.85,
resulting in a sensitivity of 0.93 and a specificity of 0.70. OSAS: obstructive sleep apnoea syndrome;
HC: healthy control. #: p < 0.0001, Mann–Whitney U-test. Used with permission from [92].

While most of the inflammatory biomarkers (pH, EBC conductivity, MMP-9, and TIMP-1) did
not reach statistical significance between healthy controls and OSA patients, there was a statistically
significant difference of α1-AT levels in pharyngeal washing fluid. Compared with LDA predictive
models built with e-nose VOC data, the predictive models built using data for inflammatory markers
were not as accurate; however, 100% accurate prediction was possible by combining e-nose LDA with
inflammatory marker data. Interestingly, e-nose LDA models for the first 20 OSA patients showed a
significant difference between pre-therapy and post-therapy VOC profiles evaluated after three months
of CPAP treatment, as shown in Figure 14, with a sensitivity of 0.80 and specificity of 0.65. Regarding
inflammatory markers, EBC conductivity was significantly different between pre- and post-therapy,
and post-therapy levels of α1-AT were significantly lower [92].

Results from this study show that diagnosis and monitoring of OSA with e-nose technology
shows much promise as an alternative to PSG. While the current AUC value of 0.85 is not sufficient for
a definitive, comprehensive diagnosis, the Cyranose 320 could still be used as a valuable screening tool
for low-risk populations, with a negative predictive value of 99.6% [92]. In higher risk populations,
such as those with obesity, the results may not be as accurate [41]; however, the Cyranose 320 could
still be used as a tool for determining the need for PSG testing. As discussed previously, the Cyranose
320 system contains a B-CRSA with sensors of one type of signal transduction mechanism. Thus,
further studies should be conducted with different types of e-nose sensors to improve sensitivity and
specificity for a more accurate diagnosis.
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Figure 14. (a) The (paired) values of the linear discriminant analysis of sleep apnoea patients before 
(pre-initiation) and three months after (post-initiation) initiation of continuous positive airway 
pressure therapy differ statistical significantly. (b) The area under the receiver operating characteristic 
curve equals 0.82, resulting in a sensitivity of 0.80 and a specificity of 0.65. ***: p < 0.001, Wilcoxon 
signed-rank test. Used with permission from [92]. 

4.3. Pulmonary Sarcoidosis (PS)  

Falling within the class of restrictive lung diseases, PS is characterized by the formation of 
granulomas within the lung, for which the cause is unknown. These granulomas greatly limit lung 
expansion and airflow, and they have been known to form in both young and middle-aged adults 
worldwide [93]. Not only is the cause of the granulomas unknown, but also the disease progression 
and clinical presentation vary widely among patients, making diagnosis and prognosis difficult. 
Indeed, most cases require invasive methods such as bronchoscopy for definitive diagnosis [94].  

In 2013, a study was conducted by Dragonieri et al. to evaluate e-nose ability to distinguish 
between subjects with treated PS, untreated PS, and healthy controls. The Cyranose 320 was again 
selected as the commercially available e-nose of choice, and data analysis, including PCA, LDA 
predictive modelling, and ROC curve analysis was performed, as described in previous sections. The 
study consisted of 11 patients with untreated PS (recently diagnosed), 20 with treated PS (in various 
stages), and 25 healthy controls, and duplicate samples of each person were evaluated to ensure the 
reproducibility of results. Overall, the Cyranose 320 could distinguish between VOC breathprints of 
patients with untreated PS and healthy controls, with an LDA cross validation accuracy (CVA) of 
83.3%. Breathprints of treated versus untreated PS were barely distinguishable with a CVA of 74.2%, 
and breathprints of treated PS could not accurately be distinguished from healthy controls. The PCA 

Figure 14. (a) The (paired) values of the linear discriminant analysis of sleep apnoea patients before
(pre-initiation) and three months after (post-initiation) initiation of continuous positive airway pressure
therapy differ statistical significantly. (b) The area under the receiver operating characteristic curve
equals 0.82, resulting in a sensitivity of 0.80 and a specificity of 0.65. ***: p < 0.001, Wilcoxon signed-rank
test. Used with permission from [92].

4.3. Pulmonary Sarcoidosis (PS)

Falling within the class of restrictive lung diseases, PS is characterized by the formation of
granulomas within the lung, for which the cause is unknown. These granulomas greatly limit lung
expansion and airflow, and they have been known to form in both young and middle-aged adults
worldwide [93]. Not only is the cause of the granulomas unknown, but also the disease progression and
clinical presentation vary widely among patients, making diagnosis and prognosis difficult. Indeed,
most cases require invasive methods such as bronchoscopy for definitive diagnosis [94].

In 2013, a study was conducted by Dragonieri et al. to evaluate e-nose ability to distinguish
between subjects with treated PS, untreated PS, and healthy controls. The Cyranose 320 was again
selected as the commercially available e-nose of choice, and data analysis, including PCA, LDA
predictive modelling, and ROC curve analysis was performed, as described in previous sections.
The study consisted of 11 patients with untreated PS (recently diagnosed), 20 with treated PS
(in various stages), and 25 healthy controls, and duplicate samples of each person were evaluated
to ensure the reproducibility of results. Overall, the Cyranose 320 could distinguish between VOC
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breathprints of patients with untreated PS and healthy controls, with an LDA cross validation accuracy
(CVA) of 83.3%. Breathprints of treated versus untreated PS were barely distinguishable with a CVA
of 74.2%, and breathprints of treated PS could not accurately be distinguished from healthy controls.
The PCA plot of untreated PS vs. healthy controls, and the corresponding ROC curve is shown in
Figure 15 [94]. The success of the Cyranose 320 to distinguish untreated PS from healthy controls shows
its potential for a quick, non-invasive PS diagnostic method. Furthermore, the inability of the Cyranose
320 to distinguish treated patients from healthy controls suggests that it could be used to monitor the
effectiveness of treatments: if VOCs are largely produced by oxidative stress and inflammation that
causes tissue damage and a lack of function, then the reduced levels of these VOCs in the treated PS
patients’ breath samples implies that the therapy is successful to a certain degree.
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Figure 15. (A) Two-dimensional principal component analysis with two composite factors showing the
discrimination of breathprints between patients with untreated sarcoidosis (blue circles) and controls
(red triangles) and (B) ROC-curve with 95% confidence interval for diagnosis of untreated sarcoidosis
compared to controls. AUC was 0.825. Comma between numbers in (A) represent decimal places.
Used with permission from [94].

5. Neurodegenerative Diseases and Mental Health

5.1. Alzheimer’s Disease (AD) and Parkinson’s Disease (PD)

AD and PD are two of the most common neurodegenerative diseases today. As the population of
people ages 65 and over increases, AD and PD prevalence will also increase. In 2016, an estimated
5.4 million Americans were diagnosed with AD, 200,000 of which had early onset AD and were under
the age of 65. For those over the age of 65, AD prevalence was 1 in 9 people (11%), and 1 in 3 for those
over the age of 85 [95]. PD prevalence also rises with age, from 41 individuals per 100,000 ages 40–49 to
1903 individuals per 100,000 over the age of 80 [96]. While both diseases are neurodegenerative in
nature, AD is largely characterized by a progressive cognitive and behavioral deterioration, and PD
mainly affects motor skills, including resting tremor, bradykinesia, rigidity, and postural instability [37].
Currently, there is no definitive, all-inclusive procedure for AD or PD diagnosis, and methods rely on
collaborative efforts from a physician and neurologist to evaluate family medical history, changes in
thinking and behavior, a series of cognitive and physical tests, blood tests, and brain imaging [95,97].
Recent efforts have been directed toward AD and PD metabolomics to elucidate definitive biomarkers
for each disease [97]; however, these are largely in serum, blood, and cerebrospinal fluid, all of which
require invasive procedures to obtain. Moreover, recent findings suggest that neurodegeneration begins
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several years before the onset of the symptoms on which clinical diagnoses depend [37]. Therefore,
there remains a need for a non-invasive, high throughput, early detection method for diagnosing AD
and PD definitively.

In 2013, Tisch et al. performed a proof-of-principle study with a nanomaterial-based B-CRSA to
detect AD and PD from each other and healthy controls [37]. These sensors were previously successful
at diagnosing multiple sclerosis [98], another debilitating neurodegenerative disease. The study
included a total of 57 non-smoking volunteers that were aged 37–82 years, in which there were 15 AD
patients, 30 PD patients, and 12 healthy controls. Breath samples were collected from each person
after breathing through a filter for 5 min to eliminate ambient inhaled VOCs. Because alveolar air
contains the VOCs of interest, dead space air (the first half of the volume of expired air) was collected
in a separate bag and discarded, while alveolar air was filled into a separate Mylar bag for sampling.
This is a one step process that does not require the volunteer to change the bags while exhaling.
Breath samples were analyzed on the same day of collection both by GC-MS to determine specific
VOCs present and by the B-CRSA to obtain the VOC breath print for each person.

The B-CRSA consisted of an array of 20 organically-functionalized nanomaterial based sensors in
a stainless-steel exposure chamber, which exhibited a rapid and reversible change in resistance upon
VOC binding and absorption. Overall, there were six different types of sensors with different organic
functionalities (described in Table 3) and base materials including random networks of single-walled
carbon nanotubes and gold nanoparticles. The organic functionalities “provided broadly cross-reactive
absorption sites for breath VOCs”, and sensors have rapid response time (within 5 s of exposure) and
high sensitivity, picking up concentrations on the order of parts per billion (ppb). Four parameters
were measured for each sensor: normalized resistance change at the middle (1) and end (2) of exposure
time, and the area under the response curve at the beginning (3) and end (4) of the signal [37].

Table 3. Base materials and organic functionalities of the nanomaterial-based sensors. Used with
permission from [37].

Base
Material

Sensor
No. Organic Functionality DFA

Model 1 1
DFA
Model 2 2

DFA
Model 3 3

DFA
Model 4 4

RN-CNTs 1 α-CD X
1 β-CD X
2 Carboxy-methylated β-CD X
3 Hydroxypropyl-β-CD X X X
4 Heptakis(2,3,6-tri-O-methyl)-β-CD X X

GNPs 5 2-mercapto-benzoxazole X
6 3-mercapto-propionate X X X

The sensors that were selected for the four DFA models are marked with X. 1 Distinction of Alzheimer’s disease
(AD; target group) from healthy (control group); 2 Distinction of Parkinson’s disease (PD; target group) from
healthy (control group); 3 Distinction of AD (target group) from PD (control group); 4 Distinction between AD,
PD, and healthy.CD: cyclodextrin; DFA: Discriminant factor analysis; GNP: Gold nanoparticle; RN-CNT: Random
network of carbon nanotubes

After exposure to breath samples, discriminate factor analysis (DFA) was performed using the
sensor data to select the most suitable set of sensing features to represent a collective array response
and construct breathprints for each sample class that could be easily distinguished from other classes
(maximum variance of sensor responses for each sample class). DFA is like LDA and PCA in that
it is a linear, supervised pattern recognition method that aims to reduce the dimensions of the data
into canonical variables (CVs) that maximize the variance between classes and minimize the variance
within classes [99]. For discrimination between classes, the first and second CVs are usually sufficient
for clustering the data correctly. In this study specifically, DFA was used to select the three most
suitable sensors that represented the optimal separation between classes of breath samples. This was
done to limit over-fitting of the model, and leave-one-out cross validation was performed to ensure
classification accuracy. Three DFA models were built in this way: (1) to distinguish AD from healthy
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controls; (2) to distinguish PD from healthy controls; and, (3) to distinguish AD from PD. The first
model was accurate in identifying AD samples, with a sensitivity, specificity, and accuracy of 93%,
75%, and 83%, respectively. The second model had similar success in identifying PD patients, with a
sensitivity, specificity, and accuracy of 70%, 100%, and 79%, respectively. Finally, the third model
also demonstrated the success of the B-CRSA in separating AD from PD patients, with a sensitivity,
specificity, and accuracy of 80%, 87%, and 84%, respectively. DFA plots of CV1 vs. CV2 are shown in
Figure 16 [37].
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This study greatly demonstrates the success of a B-CRSA in identifying AD and PD from healthy 
controls and each other, suggesting that exhaled breath could be used in the future as a rapid, non-
invasive diagnosis method for these diseases. Moreover, GC-MS results revealed 24 distinct VOCs 
for AD and 7 VOCs for PD with significantly different concentrations than the control breath samples, 
as shown in Figure 17 [37]. Using this data, a library of corresponding breathprints to VOC profiles 
could be constructed for reference in future e-nose diagnostics, thereby eliminating the need for 
specialized and costly GC-MS analysis every time. 

Figure 16. Discriminant factor analysis plots. CV1 and CV2 were calculated from the sensing responses
to (A) the Alzheimer’s Disease (AD) patient population and healthy controls; (B) the Parkinson’s
Disease (PD) patient population and healthy controls; (C) the AD and PD patients; and (D) the AD
and PD patients and healthy controls. Each patient is represented by one point in the plot. AD:
Alzheimer’s disease; CV1: First canonical variable; CV2: Second canonical variable; PD: Parkinson’s
disease. Used with permission from [37].

This study greatly demonstrates the success of a B-CRSA in identifying AD and PD from healthy
controls and each other, suggesting that exhaled breath could be used in the future as a rapid,
non-invasive diagnosis method for these diseases. Moreover, GC-MS results revealed 24 distinct
VOCs for AD and 7 VOCs for PD with significantly different concentrations than the control breath
samples, as shown in Figure 17 [37]. Using this data, a library of corresponding breathprints to VOC
profiles could be constructed for reference in future e-nose diagnostics, thereby eliminating the need
for specialized and costly GC-MS analysis every time.
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patients. Abundance of 24 VOCs that were found in the breath of >80% of both the Alzheimer’s disease 
patients and the healthy controls. The symbols represent the average abundance and the error bars 
mark the borders of the 95% CIs. VOC: Volatile organic compound. Used with permission from [37]. 
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Figure 17. Gas chromatography-mass spectrometry analysis of the breath of Alzheimer’s disease
patients. Abundance of 24 VOCs that were found in the breath of >80% of both the Alzheimer’s disease
patients and the healthy controls. The symbols represent the average abundance and the error bars
mark the borders of the 95% CIs. VOC: Volatile organic compound. Used with permission from [37].

5.2. Future Direction: Chronic Stress and Anxiety

Collectively, anxiety disorders are the most common mental health problem in the United States,
affecting approximately 18% of adults in the general population per year, and 29% of adults at some
point during their lifetime [100]. Although anxiety itself is an adaptive and universal human reaction to
stressful situations, in excess it is both distressing and impairing. The descriptive nosology embodied
in the Diagnostic and Statistical Manual (DSM) has provided the field with a common language for
establishing reliable anxiety diagnoses [101]; however, there is widespread consensus that the DSM’s
categorical syndromes have significant limitations. It is likely that underlying biological processes
linked to the persistence and severity of the often overlapping core components of anxiety syndromes
are linked to cross cutting specific features rather than diagnoses. While the next two studies presented
here do not employ B-CRSA technology, they demonstrate that emitted metabolites can be correlated
to emotional and stress response, and provide a rationale for future studies to be performed with
B-CRSA technology to evaluate emotional and stress response of VOCs, while reducing cost of analysis
and the need for specialized equipment.

Recently, many advances have been made in diagnostic identification methodology for a variety
of diseases as technological advances in research have enabled the identification of biomarkers as
targets for detection, diagnosis, and therapy. Mental health research has taken a similar approach; new
findings in mental illness research have shown that current diagnostic methods are insufficient because
many markers of mental illness, such as risk genes and metabolites, are associated with more than one
mental illness [102]. Unlike cancer and cardiovascular diseases, biological findings for mental illness
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suggest that there is not a one-to-one mapping of a specific biomarker to one illness. Thus, recent efforts
have been directed toward targeting a specific category of mental pathophysiology, such as risk genes,
cell morphology, metabolites, and others, whereby a disease profile can be identified by recording
multiple data points within a category. While there are many parallels in biological data associated
with mental illness, the unique combinations of biomarkers for each disease enable classification.
By correlating the obtained biological profile of a specific patient with clinical observations and
reported symptoms, a more specific and accurate diagnosis can be achieved.

Salivary inflammatory biomarkers in response to acute stress have been extensively studied,
and have shown promise as an evaluation tool for determining stress levels and corresponding
systemic inflammation [57]. In 2014, Cohen et al. performed a study in which salivary pH was
measured as a biomarker of exam stress and a predictor of exam performance. The study consisted of
83 first and second-year university nursing students in two specific classes: microbiology for first years
and pharmacology for second years. The exams for which saliva was evaluated were the students’
first term semester exams, and were considered very challenging and stressful due to a mandatory
passing grade of 60 and 65 for microbiology and pharmacology, respectively. One hour before the
exam (T1) students filled out a questionnaire and gave saliva samples. The second time point of
collection (T2) was three months later, during a non-exam period, for which 68 students of the 83
participated. The pH of each saliva sample was taken immediately using a commercially available
sensing device, the CyberScan pH 501, which is comprised of a kit of multipurpose sensors. The pH
sensor connected to the device was dipped into the sample until a beep was heard, indicating the end
of pH measurement [59].

Multiple regression analyses and standard statistical tests (t-tests and Pearson’s correlation) were
then performed to assess correlations between study variables and pH, and pH and exam performance.
Results indicated that salivary pH was higher at T2 (non-stressed) than T1 (prior to exam), and pH
levels could successfully be predicted by the levels of appraised threat of the exam situation and
the experienced stress. Emotionality of the stress exam predicted pH at the exam time only,
as shown in Table 4 [59]. While this study only evaluated one biomarker for stress response,
several studies have highlighted the potential of salivary metabolomics for stress evaluation and
disease detection [57,59–61]. Evaluation of the whole saliva metabolome by e-tongue could potentially
provide a rapid measurement of stress and anxiety, and these devices could be used as an aid in
uncovering the underlying pathologies for a more targeted, personalized treatment.

Table 4. Means (SDs) and range of study variables for Time 1 (T1) and Time 2 (T2). Used with
permission from [59].

T1 T2

M SD M SD t(67)
Threat appraisal 5.93 1.56 4.70 1.61 5.55 **

Challenge appraisal 7.10 1.12 6.95 0.89 0.98
Experienced stress 6.01 1.89 5.72 1.27 2.05 *

Worry 2.28 0.70 2.18 0.75 1.17
Emotionality 2.59 0.68 2.45 0.74 1.70

Text anxiety (total score) 2.53 0.59 2.32 0.63 2.50 *
pH 6.95 0.60 7.41 0.74 −4.33 **

Test performance 69.33 14.11

* p < 0.05; ** p < 0.001.

Though much less extensively studied than saliva, one study conducted by Williams et al. reported
scene-specific emissions of VOCs from human subjects in cinema audiences. Scenes were categorized
according to categories listed in the Internet Movie Database (IMDb). The study was conducted at the
Cinestar Cinema in Mainz, Germany, and conducted in two separate screening rooms (capacity 230) between
December of 2013 and January 2014 [103]. Measurements were taken from circulating air (cycled through
six times per screening) by a proton transfer reaction time-of-flight mass spectrometer (PTR-ToFMS) [104]
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to measure carbon dioxide (CO2), isoprene, acetone, and other VOC concentrations. Overall, scenes labeled
as “Injury” and “Comedy” had the highest overall causal link to measured species, shown by the AUC
plot for predictive models in Figure 18, and both Isoprene and CO2 were predictors of scene intensity,
as demonstrated in the plot for Hunger Games 2, as shown in Figure 19 [103].
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Figure 18. Shown are the results when two thirds of the whole film screening dataset is randomly
selected (15 times) and the resultant model tested on the remaining third. The boxes indicate the
extent of 25% of the data either side of the median (solid line). The dashed vertical line represents
the lowest/highest datapoints that are still in the 1.5 interquartile range while the circles are outliers.
(A) shows AUC which expresses the ratio between true positives (when the model correctly predicted
labels based on mass decision trees) and false positives (backward prediction). A random prediction
produces an AUC value of 0.5; (B) shows the ability of an individual mass to be predicted by the
labels (forward prediction). The performance of this prediction versus the real value for VOC mixing
ratios is given as the Pearson’s correlation coefficient (r). High correlation coefficients indicate the
predictive model was successful for that particular species, and not that all species with high correlation
coefficients are inter-correlated. Used with permission from [103].



Biosensors 2017, 7, 59 25 of 39

Biosensors 2017, 7, 59  25 of 39 

 
Figure 19. Measurements of CO2, isoprene and acetone taken during four separate screenings of 
“Hunger Games 2”. Used with permission from [103]. 

6. Metabolic Disorders 

6.1. Diabetes 

As one of the first metabolic disorders to be evaluated through e-nose analysis of exhaled VOCs, 
much research has been performed to optimize a B-CRSA for the detection and monitoring of 
diabetes and comorbid disorders [31,105–107]. Diabetes Mellitus (DM) is divided into three 
categories: Type 1 (DMT1), characterized by absolute insulin deficiency [108], Type 2 (DMT2), 
characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency 
[109], and gestational (GDM), characterized by insulin resistance during pregnancy [110]. It is widely 
known that all of the types of DM require close monitoring of glucose levels and personalized insulin 
dosage regimen for disease management and prevention of comorbid disorders and long-term 
impairment. While the breath metabolome of DMT1 and DMT2 have been evaluated [105,111,112] 
for diagnosis and glucose monitoring, the most recent studies have been focused on optimizing a 
device to elucidate the specific pathological processes of DM that influence comorbid disorders such 
as obesity, hyperlipidemia, coronary artery disease [113], and cognitive impairment [109]. 

To measure cognitive impairment influenced by DMT2, Mazzatenta et al. recorded breathprints 
of three DMT2 patients and three healthy controls while at rest and while performing a cognitive task 
in the form of Sudoku puzzles. Breath samples were obtained using similar methods to those 
described in previous sections, and breath signals were recorded for 30 s, 5 min prior to the test, while 
taking the test, and 5 min after the test was given. The B-CRSA employed in this study consisted of 
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6. Metabolic Disorders

6.1. Diabetes

As one of the first metabolic disorders to be evaluated through e-nose analysis of exhaled VOCs,
much research has been performed to optimize a B-CRSA for the detection and monitoring of diabetes
and comorbid disorders [31,105–107]. Diabetes Mellitus (DM) is divided into three categories: Type 1
(DMT1), characterized by absolute insulin deficiency [108], Type 2 (DMT2), characterized by high
blood glucose in the context of insulin resistance and relative insulin deficiency [109], and gestational
(GDM), characterized by insulin resistance during pregnancy [110]. It is widely known that all of the
types of DM require close monitoring of glucose levels and personalized insulin dosage regimen for
disease management and prevention of comorbid disorders and long-term impairment. While the
breath metabolome of DMT1 and DMT2 have been evaluated [105,111,112] for diagnosis and glucose
monitoring, the most recent studies have been focused on optimizing a device to elucidate the specific
pathological processes of DM that influence comorbid disorders such as obesity, hyperlipidemia,
coronary artery disease [113], and cognitive impairment [109].

To measure cognitive impairment influenced by DMT2, Mazzatenta et al. recorded breathprints of
three DMT2 patients and three healthy controls while at rest and while performing a cognitive task in
the form of Sudoku puzzles. Breath samples were obtained using similar methods to those described
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in previous sections, and breath signals were recorded for 30 s, 5 min prior to the test, while taking
the test, and 5 min after the test was given. The B-CRSA employed in this study consisted of an
iAQ-2000 that was equipped with a metal oxide semiconductor (MOS) sensor that changes resistance
based on the number of VOCs adsorbed to the surface and provides a measure of VOCs as a ppm
CO2 equivalents, denoted as VOCe. Upon breath exposure and measurement, VOCe amount was
calculated by taking the integral of the signal curve within an established time point. Data from the
sensor was normalized using the following equation:

X =

(
xi − xi,j,min

)(
xi,j,max − xi,j,min

) (2)

where “X is the normalized value obtained from the result of subtraction from a value × the minimal
value in a series of values ranging from i to j divided by the result of subtraction from the maximal
value in the same series the minimal value” [109].

For the VOCs picked up by the MOS sensor in both cases, the VOCe levels were predictably
higher in the healthy control subjects prior to the test than that of the patients with DMT2, as shown in
Figure 20. Overall, the breath profiles for both subject classes had the same shape (with a peak in VOCe
levels during the cognitive task), though the mean VOCe levels for healthy controls were ten-fold
higher than those of DMT2 for all three phases, as shown in Figure 21. This study aimed to gain insight
into the effect of DMT2 on cognitive function, measureable from respective VOCe levels. Importantly,
the study found that VOCe levels are significantly lower in DMT2 patients for both resting and testing
phases as compared to healthy controls. The authors postulated that this could indicate impaired
metabolic function caused by a resistance to insulin, carrying serious repercussions for cognitive
memory and function, where insulin carriers and insulin receptors are critical components [109].
The impairment of metabolic processes in DMT2 has repercussions for many other systems in the
body, and carries serious risk of the development of cardiovascular disease [113] and dementia later in
life [109]. An e-nose device that is not only sensitive to DM-specific VOCs, but can also quantify VOCs
in exhaled breath would be a highly beneficial tool for monitoring disease progression.
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Figure 20. Comparison of the averaged volatile organic compounds (VOCs) as a ppm CO2 equivalents
(VOCe), which is a measure of VOCs as ppm CO2 equivalents provided by the MOS sensor, in control
vs. diabetic (T2DM) subjects. Measurements are from the 30-s pre-test interval. Used with permission
from [109].
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6.2. Inflammatory Bowel Disease (IBD) and Irritable Bowel Syndrome (IBS)

IBD and IBS are both chronic conditions that affect the small and large intestines; however,
important differences exist between the etiologies for each disease. IBD is an autoimmune disease
with two main types: ulcerative colitis (UC), which affects the top layers of colonic mucosal tissue,
and Crohn’s disease (CD), which may affect any part of the GI tract from the mouth to the anus,
though it is usually confined to the end of the small intestine and the beginning of the colon [114].
While there are overlapping symptoms for UC and CD, it is important to distinguish between them to
enact patient specific therapies, and to distinguish between active and remissive disease states [48].
To date, endoscopy is required for both the initial diagnosis of IBD and for disease monitoring over
time, and there remains a need for a non-invasive diagnostic tool to reduce the significant burden
on patients, both of the preparation process and for the procedure itself [51]. In contrast, IBS is a
chronic functional disorder of the gastrointestinal system, the cause for which is largely unknown.
To date, no biomarker has yet been found, and diagnosis is therefore based on reported symptoms of
frequent abdominal pain and irregularity, requiring several weeks of symptom monitoring. As a result,
there has been debate over the appropriate diagnostic criteria for IBS, resulting in a large margin of
error for reported cases [115].

Fortunately, recent studies have demonstrated that both CD and UC are detectable through
VOC analysis of either urine [48] or the fecal [51] headspace. It is widely known that IBD results
in an alteration of the gut microbiome, and these bacteria cause a fermentation of the non-starch
polysaccharides (fiber) ingested by the host [116]. The resultant products, also known as the
fermentome, are detectable in both urine and fecal headspace, mainly due to the intestinal permeability
associated with a disease flare-up [116]. In the most recent study with urine headspace, Arasaradnum
et al. analyzed urine samples from 48 patients with IBD (24 with CD and UC, respectively) against
14 healthy control samples. A commercial device known as the Fox4000 (AlphaMOS, Toulouse, France)
was chosen as the e-nose for this study. The Fox4000 B-CRSA consists of 18 metal oxide sensors, each of
which responds to a complex VOC mixture with a unique resistance change. The collective sensor
responses are then used to construct the smellprint of that sample. A field asymmetric ion mobility
spectrometer (FAIMS) was used in conjunction with the e-nose to quantify and identify specific VOCs
in urine samples as a validation of e-nose results. Further explanation is in Reference [48] but briefly,
FAIMS separates chemical components of vapor on the principle of differences in ion mobilities within
an electric field. Ion mobility is quantified after an asynchronous electric field is introduced to the
ionized gas molecules, enabling chemical identity and classification.
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E-nose data was then classified using PCA and discriminant function analysis (DFA) with the
AlphaMOS software, and FAIMS data analyzed using Fisher’s Discriminant Analysis (FDA) with
Matlab software. Overall, samples were separated into five classes: (1) CD no flare; (2) CD flare up;
(3) UC no flare; (4) UC flare up; and, (5) healthy control. First, PCA results showed some separation
between classes; however, because it is a non-classified technique, some overlap existed between
classes. Upon processing with DFA, a pre-classified technique, obvious differences were observed for
each sample class; moreover, accuracy of reclassification with five classes exceeded 70% (88% between
purely disease classes and control, three classes). FDA with FAIMS data yielded similar results,
with accuracy of reclassification between purely disease classes and control (3 classes) exceeding 75%,
with 66% accuracy for distinguishing CD flare and quiescent state, and 74% accuracy for distinguishing
UC flare and quiescent state [48]. The accuracy of the Fox4000 e-nose for detecting UC and CD, coupled
with its ability to distinguish between disease states, shows much promise as a non-invasive diagnosis
and disease-monitoring device for IBD.

As mentioned previously, IBD can also be detected through fecal headspace VOC analysis.
One study conducted between April 2010 and January 2013 by de Meij et al. analyzed fecal headspace
VOCs of 153 samples from 83 children (29 CD, 26 UC, and 28 age-matched controls). The Cyranose 320
was the e-nose of choice, and was exposed to heated samples via a closed-loop system, as described
previously in Section 3.2. PCA was then performed on the Cyranose 320 data and predictive
classification models constructed using CDA and validated by leave-one-out cross validation. An ROC
was then plotted and the AUC calculated to evaluate accuracy. PCA plots and ROC curves for UC
are shown in Figure 22. Overall, patients with UC could be successfully distinguished from healthy
controls for both active cases (AUC ± 95% CI, p-value, sensitivity, specificity: 1.00 ± 0.00; p < 0.001,
100%, 100%) and those in clinical remission (0.94 ± 0.06; p < 0.001, 94%, 94%). Patients with CD could
also be distinguished with confidence for both active cases (0.85 ± 0.05 p < 0.001, 86%, 67%) and those in
clinical remission (0.94 ± 0.06 p < 0.001, 94%, 94%). Moreover, patients with UC differed from patients
with CD for both active and remissive cases with excellent confidence (Active: 0.96 ± 0.03; p < 0.001,
97%, 92%; Remissive: 0.81 ± 0.08, p = 0.004, 88%, 72%), as shown in Figure 23. This demonstrates
that fecal headspace analysis by the Cyranose 320 is a feasible method for both IBD diagnosis and
monitoring [51].
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Figure 22. (A) Scatterplot for the discrimination of patients with ulcerative colitis at presentation
(full triangles) and healthy controls (empty circles), by electronic nose. Axes depict two orthogonal
linear recombinations of the original 32 sensor data by means of principal component analysis;
(B) Receiver operator characteristic curve for the discrimination of ulcerative colitis and healthy
controls at first presentation (solid line) and upon achieving remission (dashed line), by electronic nose.
The areas under the curve ± 95% confidence interval (AUC ± 95% CI) with associated p-value were:
first presentation 1.00 ± 0.00, <0.001; remission 0.94 ± 0.05, <0.001. Used with permission from [51].
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In addition to urine and fecal headspace analysis for IBD detection, alterations in the gut 
microbiome associated with IBD have also been shown to alter VOC profiles of exhaled breath 
[39,117]. One study employed selected ion flow tube mass spectrometry (SIFT-MS) as a VOC analysis 
method, and models were constructed from the data using partial least squares discriminant analysis 
with orthogonal signal correction (OSC PLS-DA) to successfully distinguish between UC patients, 
CD patients, and healthy controls with a good sensitivity and specificity [39]. While this was a good 
pilot study to elucidate VOCs of interest, SIFT-MS is a specialized and costly analysis method that 
requires technician expertise, and it can only detect VOCs that can be ionized by preselected 
precursor ions [118]. Thus, SIFT-MS is impractical for widespread use as a non-invasive diagnosis 
method for IBD. Instead, future studies should be directed toward employing e-nose devices that 
contain B-CRSAs that are optimized to detect IBD-specific VOCs, as previously determined by MS 
analysis.  

In 2013, Gao et al. designed a virtual e-nose to detect H2, CH4, and CO2 in breath for the detection 
of small intestinal bacterial overgrowth (SIBO) as a diagnostic etiological tool for IBS [117]. SIBO is 
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Figure 23. (A) Receiver operator characteristic curve for the discrimination of Crohn’s disease
and healthy controls at first presentation (solid line) and upon achieving remission (dashed line),
by electronic nose. The areas under the curve ± 95% confidence interval (AUC ± 95% CI) with
associated p-value were: first presentation 0.85 ± 0.05, <0.001; remission 0.94 ± 0.06, <0.001; (B) Receiver
operator characteristic curve for the discrimination of ulcerative colitis and Crohn’s disease at first
presentation (solid line) and upon achieving remission (dashed line), by electronic nose. The areas under
the curve ± 95% confidence interval (AUC ± 95% CI) with associated p-value were: first presentation
0.96 ± 0.03, <0.001; remission 0.81 ± 0.08, 0.004. Used with permission from [51].

In addition to urine and fecal headspace analysis for IBD detection, alterations in the gut
microbiome associated with IBD have also been shown to alter VOC profiles of exhaled breath [39,117].
One study employed selected ion flow tube mass spectrometry (SIFT-MS) as a VOC analysis method,
and models were constructed from the data using partial least squares discriminant analysis with
orthogonal signal correction (OSC PLS-DA) to successfully distinguish between UC patients, CD
patients, and healthy controls with a good sensitivity and specificity [39]. While this was a good
pilot study to elucidate VOCs of interest, SIFT-MS is a specialized and costly analysis method that
requires technician expertise, and it can only detect VOCs that can be ionized by preselected precursor
ions [118]. Thus, SIFT-MS is impractical for widespread use as a non-invasive diagnosis method for
IBD. Instead, future studies should be directed toward employing e-nose devices that contain B-CRSAs
that are optimized to detect IBD-specific VOCs, as previously determined by MS analysis.

In 2013, Gao et al. designed a virtual e-nose to detect H2, CH4, and CO2 in breath for the detection
of small intestinal bacterial overgrowth (SIBO) as a diagnostic etiological tool for IBS [117]. SIBO is
bacterial overgrowth with upper respiratory tract flora and with Gram-negative bacteria, caused by
failure of the gastric acid barrier and nutrient malabsorption in the upper intestine. Detection and
evaluation of severity require aspiration and direct culture of the jejunal contents; however, this method
is invasive, has low reproducibility, and is only able to detect the presence of bacteria that can be
cultured (<50%) [119]. Therefore, breath analysis has been employed as an alternative analysis method
to detect gases, including H2 and CH4 from bacterial fermentation of poorly absorbed carbohydrates,
such as glucose, with promising results [120]. The virtual e-nose in the present study used gas
chromatography (GC) to filter breath samples, retaining H2 and CH4 for analysis. Briefly, the sample
is pumped into a sampling loop after filtering out water, and H2 and CH4 are separated from breath
samples using GC columns before being passed over a MOS sensor.

The output response of the MOS sensor (represented by plotting the change in electrical potential
vs. time) contains two distinct peaks, the first corresponding to H2 concentration and the second
corresponding to CH4 in ppm. Results indicated that the sensor had a detection range of 1–550 ppm
for both gases. Diagnostic modeling was performed for the device using samples from local patients.
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All of the subjects ingested a challenge dose of carbohydrates (e.g., lactose), which would cause the
H2 and CH4 levels to rise significantly in breath within one to two hours, only if the sugar is not
digested and reaches the colon. Concentrations of both H2 and CH4 for the control groups were
much lower than those with SIBO [117]. This virtual e-nose system is small and non-invasive, and has
shown excellent sensitivity to H2 and CH4 with good reproducibility. While this device has shown
potential for the detection of VOCs associated with SIBO, results were only recently presented in the
2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, and larger scale studies
are needed to validate the accuracy and feasibility of the device.

6.3. Chronic Kidney Disease (CKD)

Globally, CKD has the 18th highest mortality rate, and is the third highest in the increase of
number of years of life lost due to disease from 1990 to 2010 [121]. CKD also carries a risk of
comorbid disorders, such as cardiovascular disease, that can further decrease quality and longevity
of life [121,122]. Similar to IBD, CKD is a metabolic disorder that has a marked impact on the
gut microbiome, causing inflammation, oxidative stress, and impaired digestive function [123].
Impaired renal clearance of nitrogenous wastes, including urea, results in a passive diffusion and/or
secretion into the gastrointestinal tract. This waste is then fermented by the gut bacteria, and leads to
emission of VOCs, detectable in both fecal headspace and exhaled breath [50]. Indeed, many studies
have identified ammonia in exhaled breath as a biomarker for CKD detection and disease state [124].
Currently, the gold standard of CKD diagnosis is a calculation of glomerular filtration rate (GFR)
and measurement of albuminuria; however, GFR must be estimated by measuring the creatinine
concentration in plasma, which can be inaccurate as creatinine concentration is influenced by several
other factors [121]. Hence, there remains a need for a non-invasive, accurate method to identify and
monitor CKD.

In 2012, Marom et al. conducted a study to detect and monitor CKD conditions using an
B-CRSA of gold nanoparticle (GNP) sensors, previously successful at detecting colorectal, lung,
breast, and prostate cancer from exhaled breath analysis [125]. The study contained 17 patients with
intermediate CKD (stages 2 and 3), 20 patients with advanced CKD (stages 4 and 5), and healthy
controls. Subjects were aged 22–83 years, and patients were staged according the estimated GFR
from plasma creatinine levels. Breath samples were collected in a similar manner to that described in
previous sections and fully outlined in [126], where VOCs from ambient air were filtered out and only
exhaled alveolar air was collected for analysis. Each of the sensors in the B-CRSA device was made
up of 10 pairs of circular interdigitated gold electrodes, 3 mm in diameter, imbibed with GNPs that
had been previously functionalized with organic ligands, as shown in Figure 24 [127]. The electrodes
operate on the principle of chemiresistance, wherein a change in electrode resistance occurs upon
analyte binding, measureable as a function of time by an Agilent Multifunctional switch. In all,
there were 20 different uniquely functionalized sensors available, and the array was optimized for
CKD detection in breath by selecting the four types of sensors that represented the most distinct and
reproducible response upon calibration with clinically relevant, synthetic VOC vapors, and multivariate
classification techniques [125].

The sampling system delivers pulses of breath to the enclosed sensor chamber, and exposure
response is recorded over a period of 5 min, repeated two to three times to test reproducibility [125].
To measure time-dependent sensor response, four data points were collected for each sensor (S):
(F1) resistance upon exposure, (F2) AUC of the response curve, (F3) sensor response time, and (F4)
relaxation time at the end of exposure. CKD-specific response fingerprints were then determined
using a supervised learning and classification method known as support vector machine (SVM) [128],
which aims to find the best separation line between two data sets made up of the collective sensing
signals, and automatically choose the most descriptive and suitable set of sensing features (i.e., best
types of functionalized sensors to represent CKD breath). PCA was then applied to SVM data and
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plotted to show representation in three-dimensional principle component space. Cross-validation was
performed to evaluate sensitivity and specificity.Biosensors 2017, 7, 59  31 of 39 
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thereby, obtaining nearly uniform inter-particle distances in the composite films. This allows 
achieving controlled signal and noise levels. Used with permission from [125]. 
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sensitivity (75%), specificity (92%), and accuracy (85%).  
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which used different combinations of electron-capture detectors, flame-ionization detectors (FIDs), 
sulfur chemiluminescence detector (SCD), and a quadrupole mass spectrometer detector (MSD). Each 

Figure 24. Schematic representation of the gold nanoparticle (GNP) sensors in this study (not drawn to
scale). The sensors were formed by successively drop casting the solutions of the molecularly modified
GNP solutions onto 10 pairs of pre-prepared Ti/Au-inter-digitated electrodes. The left inset in the
sensor’s schematics shows a tunnelling electron micrograph (TEM) of the NPs, which connects the
electrodes and forms multiple paths between them. The right inset of the sensor’s schematics shows
schematics of films based on molecularly modified GNPs. In these films, the metallic particles provide
the electric conductivity, and the organic film component provides sites for the sorption of analyte
(guest) molecules. In addition to their role as an adsorptive phase, the presence of well- defined organic
spacers (i.e., capping molecules) allows a control over the inter-particle distance, and thereby, obtaining
nearly uniform inter-particle distances in the composite films. This allows achieving controlled signal
and noise levels. Used with permission from [125].

SVM results suggested that breath from CKD patients in stages 2 and 3 was best represented
by feature F1 of sensor S1, and three independent sensing features of sensor S2 (F1, F2, and F4).
From this data, SVM results produced 77% sensitivity, 80% specificity, and 79% accuracy for detecting
early stage CKD. For the monitoring of disease progression for patients from early to late stage and
between stages 4 and 5 (typically when dialysis treatment begins), descriptive sensing features were
also determined using SVM. From early to late stage, only a single sensing feature from sensor S1 was
needed for accurate classification, producing a sensitivity, specificity, and accuracy of 75, 77, and 76%,
respectively. For progression from stage 4 to stage 5, a suitable set of five sensing features was selected
from SVM results S1, S3, and S4: specifically, F2–F4 of S1, F2 of S3, F1 of S4, producing a sensitivity
(75%), specificity (92%), and accuracy (85%).

6.4. Future Direction: Plasma Lipid Measurement through Exhaled Breath

In addition to the commonly measured insulin and blood glucose levels, the measurement of
plasma lipids in patients with diabetes offers significant benefits for the prevention of cardiovascular
disease, longevity, and the improvement of quality of life. As with most diabetes monitoring, plasma
lipid levels are most commonly measured through blood based assays; however, Minh Tdo et al.
proposed that plasma lipids, specifically triglycerides (TG) and free fatty acids (FFA), could be
successfully measured through exhaled VOC profiling. They hypothesized that “by integrating
measurements of multiple exhaled VOCs at several consecutive time points, it is possible to estimate
plasma concentrations of a given variable through multivariate regression analysis” [113]. In this study,
23 healthy volunteers were induced with hyperglycemia or hyperlipidemia through an IV infusion of
insulin, glucose, and lipids in the antecubital vein to avoid any confounding effects from metabolism
and absorption in the GI tract. Blood assays were also performed to measure the correlation between
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breath profiles and blood lipid and glucose levels. Blood, breath, and room air samples were collected
at 12 time points over a period of 4 h to monitor subsequent changes.

Breath was analyzed by an analytical instrument comprised of three gas chromatographs (GCs),
which used different combinations of electron-capture detectors, flame-ionization detectors (FIDs),
sulfur chemiluminescence detector (SCD), and a quadrupole mass spectrometer detector (MSD).
Each of these detectors is sensitive to different types of VOCs, and the recorded data is combined
to construct a comprehensive, quantitative VOC profile. Sample flow was then split between
detectors, and data for each detector recorded by machine software. All of the VOCs are then
quantified by integrating the area under each peak of the chromatogram. Prediction models built
from the chromatograms were highly accurate with an r value of 0.97 and 0.90 for TG and FFA levels,
respectively [113].

7. Future Directions and Remaining Challenges for B-CRSA Diagnostics

7.1. Remaining Technological Challenges

Though gravimetric and electrical sensors have been proven to be successful, there are many
limitations with this device setup. Inaccuracies due to subtle changes in surface coating, humidity,
or temperature necessitate frequent calibrations. The setup, preparation, and calibration process is
unfortunately delicate and time-consuming [67,129]. B-CRSA systems involving optical sensors have
shown much promise as they provide a more facile and cost-effective way of identifying analytes while
maintaining accuracy. Optical sensors offer significant benefits when compared to those mentioned
above since they can provide multiple complex data types simultaneously, including changes in
intensity, fluorescence lifetime, wavelength, and spectral shape [130]. This approach increases the ratio
of recognizable analytes to number of sensors used.

7.2. New Technological Improvements

Though accurate and able to differentiate between several pathologies, the Cyranose 320 is
financially out of reach for the general consumer with a cost of ca. $8000, and requires specialized
training, software, and nanosensor chips for each sample. Within the past five years, researchers
have developed new B-CRSAs that take advantage of current technological advances, including
functionalized carbon nanotube field effect transistor (FET) sensors, and metal oxide semiconductor
(MOS) sensors, proposing devices with improved sensitivity, selectivity, and stability. With the
development of more extensive and selective sensing mechanisms alongside advances in electronics
and signal processing, B-CRSA devices have become smaller, more selective, and more sensitive,
with fast data processing time and facile readout of vapor analysis [54,66,131–134].

Recent advances in science and technology have progressed toward personalized medicine,
where large amounts of data can be analyzed to identify specific biomarkers of a disease in each
individual patient. B-CRSA technology specifically provides a significant contribution to the
personalized medicine approach and recent technological advances have produced devices with
higher disease specificity, sensitivity, and ease-of-use.

7.3. Sampling

As e-nose and e-tongue device implementation continues to grow in breadth, there are certain
limiting factors that must be addressed. For exhaled breath, following the capnogram cycle, which is a
measure of inhaled and exhaled carbon dioxide concentration, exhalation is composed of three phases,
the second of which, alveolar air, contains the VOCs of interest in disease diagnosis. The capnogram
cycle shows that the composition of exhaled air greatly varies between stages of exhale and breathing
velocity affects the rate of mixing between dead space air (phase one) and alveolar air [106].
Breath collection optimization may be a difficult goal to realize when characterizing diseases that
affect patients’ breathing rate and forced vital capacity, such as COPD [90]. When developing a vapor
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sampling method, it is important to optimize the collection method, minimizing VOC interference
from ambient air while capturing air that contains the highest concentrations of VOCs from the patient.
VOC recovery is also affected by the sample storage material and time of storage [32].

While liquid sampling is more straightforward, variance in sample collection methods including
sample storage, dilution/concentration, flow rate, and introduction to the array could still influence
the accuracy of detection and cause heterogeneous results between studies. In addition, precautions
need to be taken to ensure that the sample is not affected by patient factors, such as food and drink
ingested before sampling, medications, and smoking habits. Even after obtaining an ideal sample,
e-nose, and e-tongue performance accuracy may be limited by extrinsic factors, such as humidity
and temperature, and intrinsic factors, such as sensor drift and instrumentation errors. Additionally,
e-nose and e-tongue fingerprint analysis via pattern recognition requires complex data analysis,
which currently limits the widespread implementation of these devices.

Overall, B-CRSA device development and implementation would benefit greatly from an accepted
standard for device performance evaluation and sample collection. While preliminary studies have
been largely successful, rate of reproducibility is limited because methods must be optimized de novo
for each specific application. Standards need to be developed from statistical analysis of device
performance and should include thresholds for success in areas, such as response reproducibility
and disease specificity and sensitivity. In developing these standards, it is also important to consider
the ultimate goal of the device. For example, if the goal is simply to diagnose and classify a disease,
selectivity is more important than sensitivity; however, if the goal is to monitor disease progression,
sensitivity to slight variations in VOC profiles is of great importance.
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