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Abstract: The established role of nematic liquid crystals (NLCs) in the recent rapid development of
displays has motivated researchers to modulate the electro-optical properties of LCs. Furthermore,
adding nanomaterials into NLCs has led to enhancements of the properties of NLCs, like reduced
threshold of the operating voltage, variation in pretilt angle, reduced switching time, etc.
These enhanced properties, due to interfacial dynamics, are enabling wider applications of NLCs
and nanomaterials. The recent literature of nanomaterial-doped NLCs is rich with various kinds of
nanomaterials in a variety of NLCs. The light has been focused on the most widely used and studied
gold nanoparticles in NLCs. The intrinsic inherent property of easy excitation of surface plasmons
polaritons (SPP) is the mediating interaction of NLC electric dipoles and the polarization of charges in
the GNP surface. The concepts and methods for the application of metal nanomaterials as dopants in
NLCs are discussed for future applications, especially biosensors. The biosensing application of NLCs
alone has already been proven in the literature. However, it is always desirable to further enhance
the detection efficiency and selectivity, which have been achieved by the conjugation of GNPs and
nickel nanoparticles with NLCs and their compatibility with biological materials. This aspect of
future application of nanoparticles and NLC makes the point more selective to be included in the
present manuscript.
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1. Introduction

Nematic liquid crystals (NLCs) have a rich literature about their fundamental and practical
applications [1–3]. Adding nanomaterials (metallic and non-metallic) to NLCs has facilitated improving
electro-optical properties and augmenting the functions of NLC [3–7]. A variety of nanoparticles have
been used to further enhance the fundamental properties of NLCs, such as ferroelectric nanoparticles
being used for increasing the dielectric anisotropy [8,9]. Multiferroic bismuth ferrite has been doped to
achieve a superior electro-optic response of NLC devices [6–8]. Nanoparticles (NPs) of metals, such as
Au [4,10] and Ag [11], have also led to a modification in the elastic properties and rotational viscosity
of NLC composites.

The addition of an external agent, particularly particles, has shown the rearrangement of
the NLC molecules around the particles. At the microscopic scale, adding external entities
(spherical microparticles) in NLCs has shown rearrangement in the alignment of NLC molecules
around entities to form various possible structures. Such structures could be like Saturn rings,
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boojams, and hedghogs, which have been studied both theoretically and experimentally, showing
the dependence on their size and shape [12–43]. The anisotropic molecular alignment around
gold nanoparticles (GNPs) has been verified in experimental observations of NLC materials [44].
The addition of GNPs in NLCs has shown a remarkable red shift of the surface plasmon polaritons
(SPP) peak in the absorption spectra of NLC/GNP composite systems due to an increment in the
refractive index of an NLC when light is polarized parallel to the director of the NLC [45]. The shift
in the SPP peak is highly dependent on the dielectric constant close to the interface of the GNP
and NLC. This is due to the fact that the electron cloud in the GNP is highly influenced by the
dielectric environment.

On the other hand, NLCs have attracted attention towards a label-free biological detector
for various biomolecules and viruses. Chemical and biological detection using NLCs is opening
a new dimension for the application of NLCs due to their dynamics of tunable interfacial molecular
alignment [46–50].

Introducing nanoparticles (metallic and non-metallic) in NLCs has created a targeted source of
detection for certain biomolecules/viruses [46,48,51,52]. Nanomaterials like gold, silver, CdS, carbon
nanotubes, quantum dots, etc. have been used as dopants for the purpose of improving the properties
of NLCs. The application of metallic and semiconductor nanoparticles has improved the intrinsic
properties of NLCs for their applications in both displays and non-displays. It should be noted
that in general NLC materials have been applied for sensing of cancer, cholesterol, glucose, gas in
environment, pH, temperature, thrombin, protein, etc. In the present article, we focus on metallic
nanoparticles as dopants and their application in NLCs. Nanoparticle-doped NLCs have shown
potential for detecting the target in biosensing applications.

Since NLCs are very sensitive to electric and magnetic fields, solid surfaces and any other external
agents, they have been used for a variety of applications in the last several decades, as shown in
Figure 1. In this regard, NLCs are suitable materials for displays [53,54], non-displays such as adaptive
lenses and filters [55–60], and sensors, particularly biosensors [51]. There are some basic concepts for
NLC based biosensors. This is interfacial dynamics of NLC molecules with a solid substrate mediated
by anti-body/antigens or simply biomolecules that allow the variation in the signaling of biomolecular
presence. The NLC molecules are well aligned at the interface of reference, but when the surface of
interference is loaded with biomolecules, the molecules show distortions, which result in blurred
transmission under crossed polarizes of a polarizing microscope and reflects the changes in texture.
In other words, the change in the molecular structure due to orientation of molecular director at
biomolecule-NLC interface is the result of the interaction of biomolecules with NLC which triggers the
reorientation of director from one configuration to another. This transition could extend up to a few
micrometers in depth of bulk NLC from the interface. This information of change due to reorientation
of molecular director can be easily transduced by crossed polarizers of polarizing optical microscope
and sometimes by electrical methods as well [61].

This present review is not intended to provide a full overview of the wide rich works of published
literature in the field of nanoparticles and NLCs, since this could be obtained elsewhere in various
review articles [4,62,63]. Rather, we provide an analysis of the current literature on the application of
metallic nanomaterials in NLC and their applications, particularly as biosensors, in regard to futuristic
technology. The metal nanoparticles have the advantage of tuning the SPP if the environment in the
close proximity is changed. Such changes in the SPP are a key method of analysis for any interaction
formed by some kind of assembly of molecules. A gold nanoparticle is a suitable candidate for this
purpose and hence chosen for the analysis in the present review. In the case of NLCs, it has been
observed that the rearrangement of NLC molecules around GNP are defined in the form of defects
but the observation of such a defect at the nanoscale is difficult under the crossed polarizers of optical
polarizing microscope, needing further experiments and analysis at nanoscale. Since the SPP mediated
interaction between GNP and NLC/any other medium leads to the key changes in the properties of
the host medium, GNP and NLC systems could be one of the appropriate ways for the application
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of NLC as a biosensor. The addition of nanoparticles in the NLC increases their applicability for
the selectivity of biomolecules and signal/observation enhancement. However, the biomolecular
sensing by an NLC requires further research, particularly for understanding biomolecular interactions
of the NLC and biomolecules which could give fast and reliable sensing of various biomolecules.
In addition, the mediation of nanoparticles for biosensing between the NLC and biomolecules also
requires rigorous studies.

NLCs have a long history of their development. The schematic diagram in Figure 1 shows the
timeline of the development of LC from the discovery to the present days where LC are also being
commercialized for various applications other than mere displays, optical modulations in optical
communications, optically addressable spatial light modulators (OSLMs), electronically addressable
spatial light modulators (ESLMs), and more. The development of LCs has proven the significance
of intense work of researchers for understanding the science of LC from molecular to physical level
and their possible utilities in various applications. The present review has been categorized into the
following sections: materials and methods, which describe the method of sample cell preparation for
different purposes; and results and discussion, where the results considered under the present review
are analyzed and the bio-sensing using GNP and NLC aspect is discussed.
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of liquid crystals.

2. Materials and Methods

Fabrication of Liquid Crystal Sample Cells
The most important part of NLC-based devices is the sample cell fabrication. A particular

type of sample is necessary for specific displays, fundamental studies with electro-optical and
dielectric spectroscopy, biological detections, etc. Sample cell fabrications for selected purposes
are reviewed below:

a. Sample Cell Preparation for NLC Electro-Optical Studies:

Here the NLC materials are basically studied with polarizing optical microscopy for their
electro-optical properties. The material is sandwiched between two transparent electrodes.
The conducting electrodes are designed using a transparent indium-tin-oxide (ITO) thin film deposited
on a glass substrate. A desired pattern of the ITO electrode can be carved using photolithography
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techniques [44,55–58,64]. In order to achieve alignment of the NLC molecules, one needs to pre-treat
these electrodes with appropriate chemicals. These chemicals could be nylon 6or polyvinyl alcohol
(PVA) for homogeneous alignment and silane, SE 1211 polymer, etc. for vertical alignments of NLC
molecular director [44]. The two electrodes are assembled in the form of a capacitor. The NLC material
is sandwiched at an elevated temperature of NLC so that it can reach in between the electrodes by
means of capillary action.

b. Sample Cell Preparation for Nanoparticle-Doped NLCs:

The nanoparticles are mixed in an NLC first manually, and then kept in an ultrasonic bath
for 30 min to 1 h for their mixing properly by maintaining a suitable temperature of the ultrasonic
bath. If the nanoparticles are in a liquid solvent, then the solvent needs to be evaporated at a fixed
temperature, so that no traces of solvent can be found in the NLC/nanoparticle composite. Then,
the NLC/nanocomposite composite material is sandwiched in the sample cell by means of capillary
action at an elevated temperature for around 30 min, and after that the cell needs to be cooled down
naturally or by controlling the cooling rate to room temperature.

c. Sample Cell Preparation for Biological Detections Using Nanoparticles and NLCs:

The glass substrate is cleaned with an aqueous solution of H2O2, and sometimes with a H2SO4

solution as well [65–68]. As per some reports, the biomolecules are first loaded on well-cleaned glass
substrates which are assembled to form the sample cells, and then the NLC is filled in the sample cell
at the isotropic phase by means of capillary action. The NLC alignment is noticed under a polarizing
optical microscope and by measuring its impedance. The sensor so formed is calibrated with various
concentrations. In another biomolecular sensing mode, the antigen and antibody are dispersed in
the aqueous phase. Then the NLC is arranged to make an interface with this aqueous phase, and the
NLC molecules undergo reorientation at the interface of the NLC and aqueous phase [69], using the
interface of nanoparticles [48].

In order to enhance the sensitivity and selectivity of detection, nanoparticles are added to the
NLC and biological systems in which the homeotropic alignment is achieved by nickel nanoparticles.
Then aptamer functionalized GNPs at the surface cause a disruption of the NLC alignment [70].

In the same manner as the samples are prepared for different purposes, the mode of operation
is also different. In the display mode, the birefringence is changed by applying the electric field,
and the resulting transmission is used for the transfer of information. On the other hand, in biological
detections, the birefringence is changed spontaneously as the NLC molecules are anchored with
biomolecules, and this is detected in the transmission of the sample cell.

3. Results and Discussion

3.1. Nematic Liquid Crystal Molecular Alignment at the Interface of Nanoparticles

Studies of the alignment at the interface of nanoparticles are significant for the properties of
NLC systems, their functioning and characterization. Various topological defects have been proposed
around the colloidal particles (micrometer size) [31,37–43,69–72]. However, visualization of this kind of
alignment around nanoparticles in optical textures under a microscope is challenging. Optical studies
by UV-visible spectroscopy have shown anisotropic shifting of SPP peaks in the absorption spectra
when there is a change in the plane of polarization of light incident on the sample with respect to
the rubbing direction of the NLC sample cell [44,45,73]. As shown in Figure 2, the alignment of the
NLC sample cell is vertical (homeotropic) and does not show any shift in the SPP peak at 0 V with
respect to change in the angle of plane of polarization of incident light. Also, the vertical alignment
was established under crossed polarizers of polarizing microscope by confirming the dark state of the
material. Now in order to analyze whether there is any material or this state is due to non-availability
of NLC, the bright state was achieved by applying the dc bias across the ITO electrode. This confirms
the vertical alignment corresponding to the dark state of NLC cell [44]. But when the alignment is
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switched from vertical to planar by a DC bias voltage of 6 V, one sees a shift in the absorption spectra
due to the anisotropic change in the dielectric constant around GNPs [44]. Pratibha et al. have also
observed a red shift in SPP peak from 0◦ to 90◦ in the polarization [45,73].Biosensors 2018, 8, x FOR PEER REVIEW  5 of 17 
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Alignment around NPs can be varied using external stimuli [74]. The other approach used for
the modification in the alignment is through the self-assembly of GNPs using the Ostwald ripening
process [75–77]. The hyperbolic defects created by alignment of NLC molecules around nanoparticles
make the particles look much bigger than their actual size. Such a hyperbolic defect is sometimes called
a defect dipole due to its arrangement with the defect and particle, analogous to an electric dipole,
as shown in Figure 3. This arrangement of particle and defect exerts a force of attraction between
two such nanoparticles pairs. This is dependent on the size of the particles and the distance between
the particle and defect, along with the separation between the pairs. Also, the force is dependent on
the alignment direction of the sample cell [78]. The NLC molecular arrangement plays a very crucial
role in self-assembly of the nanoparticles and the associated molecular dynamics in nematic colloids
systems. The long-range control of NP over the NLC alignment due to surface interaction of NP leads
to the assembly of stable structures and superstructures of NPs. Such structures have the potential to
be employed in certain applications like periodic photonic structure, biosensing, etc.
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3.2. Self-Assembly of Nanoparticles through Nematic Liquid Crystals

Self-assembly of nanoparticles in an NLC is an important part of research for nanoparticle-based
LC devices, besides the individual nanostructural properties of the nanoparticles. The self-assembly is
based on the mediator molecules between the NLC and nanoparticles. Such types of molecules are
like thiol ligands that are a common trend to produce vertical alignment of an NLC on the surface of
nanoparticles [4]. Kim et al. [79] observed one-dimensional self-assembly of spherical GNPs in the
NLC system (Figure 4). The gold nanorods show the self-assembly structure in NLC taking advantage
of their anisotropic shape along with the anisotropic nature of NLC materials (Figure 5) [80].
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Figure 5. (a) Synthesis of the LC silane LC2. (b) TEM image obtained for CTAB-stabilized gold nanorods
(GNRs) in water. (c) UV-visible-NIR spectra recorded for CTAB-capped GNRs. (d) Overlapping IR
spectra of the capped GNRs and LC silane. Reproduced with permission from Ref. [80] (WILEY-VCH
Verlag GmbH and Co. KGaA, Weinheim, Germany).

Another aspect of mediating molecules between GNPs and NLC is the coating of a photosensitive
azo dye in large density at the surface, which makes the GNP/NLC system a photo (UV) tunable
system in which the LC structure can be melted, but the LC structure can be recovered by switching
off the UV light. The phase transformation from the LC phase to an isotropic one is interpreted as
isomerization of azo units from the trans to the cis conformations (Figure 6) [81].

On the other hand, the coating of LC molecules via thiol ligands on a GNP exhibits the
3-dimnesional superlattice structure constituted by GNPs, which presents the varying lattice
parameters with an increase in the number of nanoparticles in a cluster, keeping the ligand constant [82].
Such a concept of molecular attachment of an NLC with other NPs needs an investigation of the
anchoring energy that is responsible for various types of self-assemblies of nanomaterials in an NLC
matrix. There are different parameters responsible for the anchoring of NLC molecules on the NPs,
such as the anchoring energy on the surface of an NP and the size of the particles. The anchoring energy
plays a very important role in aligning the NLC molecules as vertical or planar to the surfaces of NPs.
Assuming the anchoring energy w = WR/K = R/a, where K is the elastic constant, W is the surface
anchoring coefficient, R is the radius of the NP, and a is the surface exploration length (K/W) [83,84].
If w > 1, then the alignment is expected to be planar; and if w < 1, then it is perpendicular to the surface
of the NP. This is valid for a large radius ratio of the particle to the NLC molecule. For a particle with
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radius comparable to the size of the molecules, i.e., at the nanoscale, the anchoring energy is w = 1.
W is kept in the range of 10−6–10−4 J/m2 and K around 10−11 J/m. The radius of the particle ranges
from 100 nm to 10 µm. That means if the radius is taken as smaller than 100 nm, w would be smaller
than 1, resulting in a homeotropic alignment of NLC molecules on the surfaces of the NPs [84,85].
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Figure 6. UV-visible spectra for ligand L4 (c = 10−6 M) dissolved in chloroform before UV irradiation
(solid line) and 10 h after the UV light is turned off (dashed line, top graph); and for GNPs AuL4
dissolved in chloroform before irradiation (solid line), 30 s after the UV light is turned off (dashed line),
and 300 s after the UV light is turned off (dotted line, bottom graph). Reproduced with permission
from Ref. [81]. (John Wiley & Sons).

The sputtering technique for dispersion of Au NPs into an NLC has also been developed in which
sputtered Au atoms from the target are evaporated over the surface of the NLC [86]. Since the Au
atoms are smaller than the size of the NLC, the Au NPs penetrate into the NLC without segregation.
As the exposure is continued, segregation starts to form Au at the nanoscale in the NLC. The particles
could attain a particular size of NP due to attachment of NLC molecules around the GNPs.

The two cases of anchoring conditions (strong anchoring W = 10 mJ/m2 and weak anchoring W
= 0.3 mJ/m2) have shown the impact on the molecular alignment of NLCs around NPs. For strong
anchoring, a Saturn ring-type of defect structure situated away from the NP surface has been proposed
based on theoretical studies. For weaker anchoring of NLC on the NP surface, the ring is observed with
a stripe-like region over the surface. When the nanoparticles are well separated, the Saturn rings are
formed about each NP of radius around 25 nm, whereas when they approach each other, a three-ring
structure defect is formed, which could play a crucial role in understanding the dynamics of molecular
structuring in the self-assembly process of NPs in NLCs, as shown in Figure 7 [87]. The saturn ring
structure around the NPs would have different energy than the rest of NLCs, which could play the key
role in binding the external agent close to the NPs and can be helpful in making a device.

There are certain advantages of using metal NPs as discussed in the literature and in the current
review. This can be easily realized through the fact that the metal NPs have improved the properties
of NLCs resulting in the increase in the pretitl angle due to the modification of the elastic properties,
lower operating voltage, reduced Frederick transition threshold, etc. Undoubtedly, the size of NPs is
very significant due to the change in their own properties as compared with the bulk, i.e., quantum
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confinement. The quantum level interaction of NPs with NLC is still unexplored and need rigourous
work to be carried out for understanding the exact interaction between the two elements. Since the
size of the NPs is comparable to the molecular size of NLC, so the tiny distortion in alignment of the
NLCs does not change the optical transmission obviously. On the other hand, the new properties
are also realized, such as striped pattern of GNPs, nano antenna, self-assembled chain of GNPs, etc.,
which could be employed for designing miniature devices at the micro/nano scale.

Along with the advantages, there could be some disadvantages as well. The uncontrolled doping
of NP could disturb the uniform alignment of NLCs. The increase in the conductivity due to the
addition of ions as impurity or charged NPs in excess could lead to the heating effect of the device and
hence o the reduction in the performance of the device.
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Figure 7. Three-dimensional representation of the defect structure and contour plot of the scalar order
parameter S along the horizontal plane passing through the center of two nanoparticles, with R = 25 nm
and strong anchoring with W = 10 mJ/m2. (a) Distance between particles of r = 80 nm, (b) r = 40 nm and
(c) r = 10 nm. Notice that once the separation between particles is the same order of magnitude as the
nematic-coherence length, the defects interact to form a three-ring structure. Reproduced with permission
from Ref. [87]. (American Chemical Society).

3.3. Concept of Biosensing Using Nematic Liquid Crystalsvia Nanoparticles

In recent trends, the expanding applications of NLCs in various disciplines other than displays
include photonics and biological detections. The application of NLCs in biological detection is through
the observation of various parameters like impedance, capacitance and change in optical texture
of the sample via spontaneous change in transmission and detected through crossed polarizers of
a polarizing microscope caused by reorientation of NLC molecules, as represented in the schematic
Figure 8. In recent years, the biological sensing utilizing NLCs has become an interesting topic for
applied and basic research on the understanding of molecular interactions of biomolecules with an
NLC matrix [88–90]. The interfacial functionality of NLC has made it a feasible material for detection
of biological molecules, such as proteins, oligopeptides and nucleic acids, displayed on the surfaces
of solids [91–94]. The NPs could be used for biosening by either deposition on the substrate before
NLC interaction or by insertion into the NLC system or both for signal enhancement. Correspondingly,
in one type of biosensor, NPs are deposited on the substrate along with specific biomolecules before the
filling of the NLC in the sample cell, and in another type, the mixture of the NPs and the biomolecules
is inserted into the NLC [53,70,95,96].

In order to enhance the output signal, continuous efforts are being made by employing metallic
nanoparticles as mediator for the interaction of biomolecules and LC molecules, so that the detection
could be transduced efficiently and reproducibly for the reliable device fabrication [48,70,95–98].

It is well known that there are certain parameters that are capable of shifting the SPP peak [99].
The resonance frequency of SPP in metal NPs is well known to be dependent on their shape, size,
material properties (dielectric, optical, etc.), and surrounding medium. The SPP is a wave of oscillation
of electron cloud near the particle surface. This wave of electron cloud originates from a strong electric
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dipole having a strong electric field close to the surface of the NPs and then in the bulk. This dipole is
supposed to interact with other entities also, which make the metal NPs different from non-conducting
NPs. The surface plasmons are well known for nickel NPs and other metal NPs which can be utilized
for better biosensing with high signal-to-noise ratio [100]. Recently, Nickel NPs have been employed
along with NLCs for biosensing applications [70,96]. The defect formation around the NPs in the
form of elastic dipoles could be capable of binding the biological entities through NLC molecules for
biosensing [78].
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Figure 8. Schematic diagram of one of the concepts used in the biosensing by NLCs. (a) Only the
receptor on the substrate is able to induce the homeotropic alignment of NLCs, (b) The NPs are
introduced along with the receptor with required specification that disrupts the molecular alignment
of the NLCs and change in transmission is observed under polarizing microscope.

3.4. Influence of Nanoparticles on the Biological Detection of Nematic Liquid Ccrystals

Recently in 2015, the use of spherical silver nanoparticle-doped LC biosensors have shown the
potential to detect the biomolecule thrombin as shown in Figure 9 [70]. The GNPs along with the
NLC are used to detect the acetylcholinesterase inhibitor and amplified detection of acetylcholine [48].
The key lies in the induced change in the alignment of the NLC sample cell for a particular interaction
of the NLC molecule and target molecules. However, the biomolecules have also been detected by
using the polyelectrolyte and a phospholipid monolayer at the aqueous/LC interface utilizing the
same concept of reorientation of NLC molecules at the interface of NLC and aqueous solution [95].

Nickel nanoparticles are used to compensate for the requirement of an alignment layer, where
detection could be made without using any polymeric alignment layer, as nickel nanoparticles
have been reported to induce uniform homeotropic alignment of NLC molecules (Figure 10) [70].
A sandwich system of nickel aptamer/thrombin is fabricated to get vertical alignment, and then the
functionalized gold nanoparticles are used to produce the detection signal of planar alignment by
disruption of NLC molecules when functionalized gold nanoparticles interact with thrombin. This has
been found to be almost linear from a 10 to 100 nM concentration of thrombin. However, the large slope
has also been observed at lower concentrations, with a transition between the two slopes resulting in
the two stages of detection, which should further be explored.

Furthermore, protein-coated sodium citrate-stabilized gold nanoparticles are found to interact
with a phospholipid (L-α-dilauroyl phosphatidylcholine, L-DLPC) layer, which in turn disrupts the
NLC molecular alignment. This is observed in the optical imaging of the sample cell under the
the crossed polarizers of optical polarizing microscopic transmission mode [51]. The optical texture
formation of NLC (5CB) is found to depend on two parameters: one is the time of phospholipid
monolayer on the glass, and the other is the concentration of L-DLPC. This is very obvious where
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that in both cases the interaction sites between gold nanoparticles and L-DLPC are supposed to offer
a varying location of interaction to NLC in terms of molecular affinity, which allows the molecules to
change their orientation randomly, so it is natural to get the change in optical contrast of the sample cell.
The concept is again the reorientation of the NLC molecular director which induces the variation in
the optical transmission and colors according to the change in birefringence, as illustrated in Figure 11.Biosensors 2018, 8, x FOR PEER REVIEW  11 of 17 
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Figure 9. Correlations between the area ratio of the bright LC regions to the whole image and
the concentration of thrombin. Inset: Linear relationship between the area ratio and the thrombin
concentration. A = area of the bright LC regions. A0 = area of the whole image. The error bars represent
the standard deviation of four measurements of a sample for each assay. Reproduced with permission
from Ref. [70]. (American Chemical Society).
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Figure 10. Polarized optical microscopic images of 4′-pentyl-4-biphenylcarbonitrile (5CB) doped
with 0.01 wt % NiNSs (nickel nanospheres) in LC cells with substrates assembled with thrombin
and the functionalized Au NPs. Thrombin is at concentrations of (a) 0.0, (b) 0.1, (c) 1, (d) 10,
(e) 50, and (f) 100 nM. The scale bars in all panels are 100 µm. Here the GNP is attached with
immobilized antithrombin aptamer on GPTMS film [(3-glycidoxypropyl)-trimethoxysilane which is an
epoxy-group-rich compound], then the nickel nanoparticles doped 5CB NLC is introduced into the
sample cell. Reproduced with permission from Ref. [70]. (American Chemical Society).
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Figure 11. Interaction of a L-DLPC monolayer self-assembled at the aqueous-LC interface with solutions
containing protein-coated Au NPs. Optical images of 5CB (crossed polarizers) captured (A) within 5 min
after immersion of L-DLPC monolayer into AuNPs, (B) after 40 h contact of the L-DLPC with 50 nM of
BSA-coated Au NPs, (C) after 60 h contact of the L-DLPC with 20 nM of BSA-coated Au NPs, (D) after 90 h
contact of the L-DLPC with 2 nM of BSA-coated Au NPs, (E) after 32 h contact of the L-DLPC with 50 nM
of neutravidin-coated Au NPs, and (F) after 2 h contact of the L-DLPC with 50 nM of fibrinogen-coated
Au NPs. Scale bar = 283 mm. Reproduced with permission from Ref. [51]. (Elsevier).

When working on biosenisng applications, it is very selective to fabricate a particular device
for a particular target. It is important to understand and utilize the elastic dipolar defect around
the NPs for the sensing purposes [78]. The elastic deformation around the NPs could be the key
mediation for the interaction between NPs. Other various defects in the NLC formed by NPs could
be explored for binding the biological entity and be used for the biosensings. Research on NP-based
biosensing applications is in the infant stage and needs to be explored further for conducting and
non-conducting NPs of various shapes and sizes. It is most important to understand the interactions
among the three candidates: biomolecules, NLCs, and NPs. If the self-assembly of the NPs after certain
treatment (e.g., thermal treatment) could be controlled and could generate a periodic pattern [79],
then it would lead to a photonic structure for guiding the electromagnetic waves, which is suitable for
communication devices.

4. Conclusions

We have observed that nanoparticles are a property enhancer for NLCs due to the increment in
the local orientation order parameter in the vicinity of nanoparticles. In the case of metal nanoparticles,
the surface plasmon-like properties and the desired mediating molecules attached to the surface are the
key points for the interaction with an NLC and its further application to biosensors. However, the origin
of the biomolecular interaction is still unclear, and both theoretical quantification of parameters and
experimental design need to be explored for the required device. We have discussed recent trends in
the liquid crystal research arena and the development of metal NPs mediated NLC based biosensors.
It has been found that the use of metal nanoparticles as dopants in an NLC allows the NLC to detect
the presence of biomolecules.
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