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Abstract: This article critically discusses the latest advances in the use of voltammetric, amperometric,
potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show
the advantages of these tools to develop methods capable of detecting very small concentrations
of analytes and provide selective determinations through analytical responses, without significant
interferences from other components of the samples, are presented and discussed, thus stressing the
great versatility and utility of electrochemical biosensors in this growing research field. To illustrate
this, the determination of substances with forensic relevance by using electrochemical biosensors
reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme
or affinity biosensors used to solve analytical problems related to forensic practice, with special
attention to applications in complex samples, are considered. Main prospects, challenges to focus,
such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime
scene, or their widespread use and successful applications to complex samples of interest in forensic
analysis, and future efforts, are also briefly discussed.

Keywords: electrochemical biosensors; forensic analysis; poisons; drugs; toxins; explosives; chemical
and biological weapons

1. Introduction

A broad spectrum of sciences is used in forensic investigations, with the objective of providing
answers to questions of interest related to a crime or a civil action. Among these, forensic analysis,
which currently constitutes a significant branch of modern analytical chemistry, makes use of different
techniques, including liquid and gas chromatography [1,2], spectroscopy [3], and electrochemistry [4] to
obtain information that implies many important social and legal consequences. In this field, biosensors
have become ideal tools not only for rapid initial screening but also for sensitive determination of
suspicious agents due to the biosensors’ great advantages of specificity, rapidity, and little sample
manipulation [5]. A variety of recognition elements such as enzymes, antibodies, and sequences of
nucleic acids, as well as different transduction techniques, mostly optical or electrochemical, to convert
the bio-recognition event into a measurable signal, are available.

Furthermore, biosensing detection is particularly suitable for the quantitative analysis of chemical
or biochemical species, including genetic material, blood, saliva, urine, sweat, or semen, which are
common samples in forensic analysis. At present, electrochemical biosensors have been reported for
the detection and quantification of most target compounds of interest in forensic analysis. However,
despite their advantages, the real applications of biosensors in this field are still scarce [6], and,
in several occasions, the biosensors have not been validated for the analysis of complex samples.
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Electrochemical biosensors exhibit advantageous features inherent to the electrochemical detection,
such as high sensitivity, great precision and accuracy, easy handling, low cost, minimal sample
requirement, simple integration into portable platforms, low power consumption, and multiplexing
capabilities [7], which make them extremely attractive in forensic analysis. In addition, coupling
of electrochemical transduction with the use of nanomaterials and magnetic microcarriers leads to
significant improvements in the conductivity of the sensor and the ability for immobilization of
biomolecules [8]. This article reviews the role of electrochemical biosensors in forensic analysis during
the last five years. The applications to forensic toxicological analysis are classified by the nature of
the target analytes, and the developed methods for the detection of chemical explosives, gunshot
residues, fire accelerants, warfare agents, and biological weapons are reviewed and critically discussed.
Informative tables provide relevant characteristics of the highlighted methodologies.

2. Electrochemical Biosensors Applied to Toxicological Forensic Analysis

2.1. Inorganic Poisons: Arsenic and Cyanide

Arsenic is one of the most abundant elements and is present in various minerals and in combination
with metals of high industrial usefulness. However, inorganic arsenic, especially in the form of As(III) is
highly poisonous and a toxic carcinogen [9,10]. A large number of people across the world is currently
affected by arsenic contamination and at risk of arsenic poisoning due to exposure to polluted drinking
water. The World Health Organization (WHO) and the Environmental Protection Agency (EPA) set the
maximal standards of As(III) level in drinking water at 10 ppb in 2006 [11]. This low concentration
has prompted the development of sensitive analytical methods for As(III) determination. As Table 1
summarizes, among the methods based on the use of biosensors, aptasensors stand out in recent
years [12,13]. Furthermore, similarly to other approaches for the detection of toxic chemicals, electrodes
modified with nanomaterials have been utilized for the specific and selective recognition of arsenic
by immobilizing a specific biorecognition element [14]. Electroanalytical inorganic arsenic speciation,
including the use of biosensors, was reviewed by Antonova and Zakharova [15]. Unfortunately,
the reported biosensors are mostly applied to environmental samples, and no application to biological
samples has been found in recent years.

As it is known, aptamers are single-stranded DNA or RNA oligonucleotides synthesized by
a combinatorial selection process called SELEX (Systematic Evolution of Ligands by EXponential
enrichment) [16]. The development of aptasensors for forensic analysis was revised by Gooch et al. [17].
Important practical advantages of these molecules are high stability and easy modification. A recent
aptamer-based electrochemical biosensor for the determination of As(III) is the one reported by
Baghbaderani and Noorbakhsh [18], involving the use of a chitosan/Nafion-modified glassy carbon
electrode as scaffold for the immobilization through glutaraldehyde cross-linking of a capture DNA
probe complementary to the arsenic-specific aptamer. A nanocomposite using carboxylated carbon
nanotubes was employed for electrochemical impedance spectroscopy (EIS) signal amplification
after hybridization with the specific aptamer, providing a detection limit of 74 pM. Another recently
reported electrochemical aptasensor for the determination of As(III) involves three-dimensional reduced
graphene oxide (3D-rGO) modified with gold nanoparticles (3D-rGO/AuNPs) for the immobilization
of a thiolated aptamer via Au–S covalent binding (Figure 1). Porous 3D-rGO/AuNPs with large
active surface area were prepared by hydrothermal treatment of GO in the presence of HAuCl4 and
glucose. In the presence of As(III), EIS signals of the aptamer/3D-rGO/AuNPs/GCE increased due to
the hindered electron transfer after As(III) binding to the immobilized aptamer. A calibration plot was
constructed, showing linearity between the variations of charge transfer resistance (∆RCT) and the
logarithm value of As(III) concentration over the 3.8 × 10−7–3.0 × 10−4 ng·mL−1 range. The limit of
detection (LOD) value was 1.4 × 10−7 ng·mL−1 [19].
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Table 1. Electrochemical biosensors for the determination of arsenic and cyanide.

Electrode Analyte/Sample Method Transduction
Technique Analytical Characteristics Ref.

GA/SPCE As(III) and
As(V)/waters

Immobilization of AcChE and
AcP; measurements based on

the respective inhibitory
effects on enzymes activity of
As(III) using ATI and TTF, and

As(V) using
2-phospho-l-ascorbic

Amperometry,
150 (III), 250
mV (V) vs.
Ag/AgCl

LR: 0.2–1.6 mM; 35.9–352.9
µM (III); 2.0–19.6 µM; 20–160

µM (V);
LOD: 28.7 µM (III); 1.2 µM (V)

[24]

AuE As(III)/spiked
water

Preparation of
ssDNA/SWCNT conjugates.

Dissociation in presence of As,
assembling of liberated
SWCNTs onto AuE and
increasing conductivity

DPV,
FcCOOH

LR: 5–10 µg·L−1

LOD: 0.5 µg·L−1 [25]

AuNPs/Chit/SPCE As(III)/Waters

Immobilization of As specific
aptamer and adsorption of
PDDA. Measurement of the
conductivity increase in the

presence of As by desorption
of PDDA

DPV,
Ru(NH3)6

3+
LR: 0.2–100 nM
LOD: 0.15 nM [26]

AuE As(III)/Waters

Immobilization of ssDNAcap,
hybridization with As specific
aptamer AptH0, and with H1

and H2 strands.
Measurements of decreasing
RCT by interaction with As

and dissociation of the
dsDNAcap. Amplification by

digestion with RecJf
exonuclease.

EIS,
Fe(CN)6

3−/4−
LR: 0.1–500 µg·L−1

LOD: 0.02 µg·L−1 [20]

3D-rGO/AuNPs/GCE As(III)/Water

Immobilization of a thiolated
aptamer and measurement of
electron transfer hindrance in

presence of the target.
Amplification with GA and

HOOC-CNTs-BSA

EIS,
Fe(CN)6

3−/4−

LR: 3.8 × 10 −7–3.0 × 10−4

ng·mL−1

LOD: 1.4 × 10−7 ng·mL−1
[19]

GA/Nf/Chit/GCE As(III)/Waters

Immobilization of ssDNAcap
and hybridization with the As

specific aptamer.
Measurements of ∆RCT in

presence of different
concentrations of arsenic

EIS,
Fe(CN)6

3−/4−
LR: 0.15–10; 20–100 nM

LOD: 74 pM [18]

HRP/AuSNPs/SNGCE CN−/-

Immobilization of HRP and
measurements based on the

inhibitory effect of cyanide on
the enzyme activity using

caffeic acid as substrate

Amperometry,
–0.15 V vs.
Ag/AgCl

LR: 0.1–58.6 µM
LOD: 0.03 µM [21]

GA/PANI/PtE CN/artificial
waste water

Immobilization of CAT and
measurements based on the

inhibitory effect of cyanide on
the enzyme activity using

H2O2 as substrate

EIS,
Fe(CN)6

3−/4−
LR: 0.0136–0.65 mg·L−1

LOD: 2 µg·L−1 [22]

NH4
+-ISE CN/industrial

wastewater, food

Immobilization of
Flavobacterium indicum whole

cells. Measurement of
ammonium produced by

cyanide dehydratase of the
cells proportional to target

concentration.

Potentiometry LR. 10−10–0.1 M
LOD: 1 nM

[23]

Abbreviations: 3D-rGO: three-dimensional reduced graphene oxide; ATI: acetylthiocholine; AuNPs: gold nanoparticles;
AuSNPs: gold sononanoparticles; CAT: catalase; Chit: chitosan; EIS: electrochemical impedance spectroscopy; GA:
glutaraldehyde; GCE: glassy carbon electrode; HRP: horseradish peroxidase; ISE: ion selective electrode; Nf: Nafion;
LOD: limit of detection; LR: linear range; PANI: polyaniline; PDDA: poly-diallyl dimethyl ammonium; PtE: platinum
electrode; SNGCE: sonogel carbon electrode; SPCE: screen-printed carbon electrode; TTF: tetrathiafulvalene.
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Figure 1. Scheme of the preparation and functioning of an As(III)/Aptamer/3D-RGO/AuNPs aptasensor.
Reprinted from [19], with permission.

An electrochemical aptasensor involving As(III)-specific aptamer for recognition and signal
amplification mediated by hybridization chain reaction (HCR) and RecJf exonuclease catalyzed reaction
was also reported. DNA assembly was made on a gold electrode surface, provoking a big charge in
RCT. The As(III) triggers the dissociation between the aptamer sequence and DNA. The release of HCR
product significantly decreased RCT, which could be further enhanced by RecJf exonuclease catalyzed
digestion. The electrochemical response originated from the variation of RCT across the modified
electrode. Ultrasensitive detection of As(III) was achieved with an LOD as low as 0.02 parts per billion
(ppb), 500 times below the content limit of 10 µg·L−1 (10 ppb) recommended by WHO for drinking
water [20].

Regarding cyanide, it is known to be an extremely poisonous substance due to its high affinity
toward the iron ions and the suppression of oxygen transport [21]. Accidental cyanide release in
wastewater or rivers may lead rapidly to serious contamination of groundwater and even drinking
water. However, due to its excellent properties, cyanide is widely used in a variety of applications.
A representative example of methods for cyanide determination, involving electrochemical biosensors,
is an amperometric strategy based on cyanide’s inhibitory effect on the activity of catalase. The enzyme
was immobilized onto a platinum electrode, modified by aniline polymerization, to obtain the
conductive PANI polymer, which acts as a redox mediator in the H2O2 detection and blocks
the interferences from reducing agents present in real samples [22]. The amperometric responses
correlated linearly with the cyanide concentration between 16.3 × 10−3 and 0.65 mg·L−1. In addition,
a potentiometric biosensor for cyanide was developed, taking advantage of the dehydratase activity
of whole Flavobacterium indicum cells, which were coupled to an ammonium ion selective electrode.
By using the agar immobilized whole cell as the biocomponent, the potentiometric biosensor detected
a low cyanide concentration of 0.06 ppm, with a response time of 2 min [23].

2.2. Organic Toxics: Alcohol

Alcohol is one of the most common poisonous compounds consumed by human beings that
is closely related to health damages and traffic accidents [27]. Over the years, the need for a fast
and reliable measurement of ethanol in biological samples has become of high importance in clinical
and forensic medicine [28]. Much advancement in the improvement of biosensors for this purpose
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was witnessed in recent decades, until reaching the current wearable biosensors [29]. Currently,
electrochemical biosensors dominate the field which harnesses the synergistic action of specific
enzymes with efficient catalytic properties and nanomaterials for the analysis of ethanol. Recent
insights into amperometric enzyme biosensors for alcohol quantification related to novel electrode
materials and different immobilization strategies were reviewed by Hooda et al. [30].

The two major enzymes involved in catalytic reaction of ethanol for electrochemical measurements
are alcohol oxidase (AOx) and alcohol dehydrogenase (ADH). Among the recent strategies, it is
worth highlighting the application of new nanomaterials that improve the analytical characteristics
of the detection. An example is the use of single-walled carbon nanotubes (SWCNTs), covalently
functionalized with polytyrosine for the construction of an ethanol biosensor through immobilization
of ADH via Nafion entrapment and amperometric detection in the presence of NAD+. The electrode
material exhibited electrocatalytic activity toward NADH oxidation due to the effect of the quinones
generated from the primary oxidation of tyrosine. Therefore, a potential value as low as 0.2 V vs.
Ag/AgCl was applied for the amperometric detection, reaching an LOD of 0.67 mM [31]. In a similar
configuration, Bilgi and Ayranci [32] prepared a SPCE modified with multiwalled carbon nanotubes
(MWCNTs), gold nanoparticles (AuNPs), and polyneutral red (PNR) film for the construction of
a disposable ethanol biosensor with immobilized ADH. Transition metal oxides providing unique
electrocatalytic properties and displaying strong interactions with noble metal nanoparticles were also
employed for the construction of electrochemical platforms for ethanol biosensing. An illustrative
example is the preparation of a mixed molybdenum and manganese oxide film electrode enriched with
platinum nanoparticles for the preparation of a whole cell biosensor by immobilization of the intact
Gluconobacter oxydans biofilm onto PtNPs/MnOx-MoOx/GCE and monitoring of oxygen consumption
as a result of the bacterial metabolism in the presence of the substrate. The linear range found was
0.075–5.0 mM ethanol, with a response time of 63 s [33].

Most of the electrochemical biosensors designed for the determination of ethanol were applied to
the analysis of alcoholic beverages (see Table 2). Applications to the analysis of biological samples
are relatively scarce. An important reason for this is that ethanol itself is only measurable for a few
hours after ethanol intake in biological matrices, including blood, urine, and sweat, these matrices
being only useful to detect recent ethanol exposure. Because of this, since approximately early
2000, the non-oxidative ethanol metabolites have received increasing attention. Among these, ethyl
β-d-6-glucuronide (EtG) stands out. This stable, nonvolatile, and minor direct-ethanol metabolite
can be detected in urine from 6 h to 4 days after the last alcohol intake [34]. In an interesting article,
Selvam et al. reported the detection and quantification of EtG in human sweat by using a label-free
electrochemical chemi-impedance sensing method and designing a flexible and wearable sensor
prototype. Gold or zinc planar electrodes were integrated on flexible polyimide, and monoclonal
antibodies for the target compound were immobilized using thiol-based chemistry. Impedimetric
measurements were made and calibrated for physiologically relevant doses of EtG over 1–104 µg·L−1

(gold) or 0.001–100 µg·L−1 (ZnO) [35].
Other wearable biosensors for ethanol were described, enabling real-time, continuous, and fast

detection, with a similar performance to that mentioned above [36,37]. For example, a wearable
tattoo-based biosensing system was developed by Kim et al. [38] for noninvasive alcohol monitoring
in induced sweat. The skin-monitoring platform (Figure 2) integrated a temporary tattoo system with
an iontophoretic biosensor equipped with flexible wireless electronics. Moreover, transdermal delivery
of pilocarpine drug induces sweat via iontophoresis, which is measured by amperometry, involving
an AOx-coated screen-printed and Prussian blue (PB) electrode transducer. A lancet-free, label-free
biosensor for the simultaneous determination of glucose and alcohol in sweat was prepared by using
zinc oxide thin films integrated into a nanoporous flexible electrode system. Sensing was achieved from
perspired human sweat at low volumes (1–3 µL), without external stimulation. Zinc oxide thin-film
electrodes were surface functionalized with AOx, and alcohol monitoring was made by measuring
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impedance changes onto the sensor interface with a dynamic range between 0.01 and 200 mg·dL−1,
with an LOD value of 0.01 mg·dL−1 ethanol [39].

Table 2. Electrochemical biosensors for ethanol and ethanol metabolites.

Electrode Analyte/Sample Method Transduction
Technique

Analytical
Characteristics Ref.

Fe3O4@AuNPs/MnO2/CPE ethanol/beverages
Immobilization of ADH
and detection of NADH
in the presence of NAD+

Amperometry,
0.1 V vs.
Ag/AgCl

LR: 0.1–2.0 M
LOD: 0.07M [41]

TOA-AuNPs/Azure A-SPCE ethanol/wine

Immobilization of ADH;
covering with chitosan

and voltammetric
measurements in the
presence of NAD+

DPV, NADH LR: 0.001–2.0 mM
LOD: 0.14 mM [42]

PPy-PVS/PtE ethanol/beverages

Immobilization of ADH
and NAD+; NADH

detection with Meldola’s
blue as redox mediator

Amperometry,
−0.072 V vs.

Ag/AgCl

LR: 1.0–10.0 µM;
0.01–0.1 mM; LOD:

0.1 µM
[43]

PtNPs/MnOx-MoOx/GCE ethanol/beverages

Immobilization of
Gluconobacter oxydans.
Monitoring of oxygen

consumption

Amperometry,
0.0 V vs.
Ag/AgCl

LR: 0.075–5.0 mM [33]

wearable tattoo with PB
carbon ink ethanol/sweat

Sweat induction with
pilocarpine and

iontophoretic biosensing
with AOx

Amperometry,
−0.2 V vs.
Ag/AgCl

LR: up to 36 mM [38]

PNR/AuNPs/MWCNTs/SPCE ethanol/beverages
Immobilization of ADH

and detection of NADH in
the presence of NAD+

Amperometry,
0.2 V vs.
Ag/AgCl

LR: 0.32–1.0 mM
LOD: 0.096 mM [32]

polyTyr/SWCNTs/GCE ethanol/beverages

Immobilization of ADH by
entrapment with Nafion
and NADH detection in
the presence of NAD+

Amperometry,
0.2 V vs.
Ag/AgCl

LR: 0.01–0.15 mM
LOD: 0.67 mM [31]

wearable Au or ZnO
electrodes onto glass or

polyimide
EtG/sweat

Immobilization of EtG
antibody using thiol-based
chemistry. Measurement

of impedance changes

EIS
LR: 0.001–100 µg/L

LOD: 1 µg·L−1 (AuE);
0.001 µg·L−1 (ZnO)

[35]

PDA/Fe3O4/GCE ethanol/human
serum

Immobilization of AOx;
detection of H2O2 as

substrate

Amperometry,
−0.1 V vs.
Ag/AgCl

LR: 0.5–3.0 mM
LOD: 130 µM [44]

smartphone-based platform
with PtEs ethanol/blood

Electrodeposition of HRP
and AOx onto calcium

alginate; H2O2 detection
with TMB as redox

mediator

Amperometry,
0.0 V vs. Pt

LR: up to 1.25 g·L−1

LOD: 0.056 g·L−1 [40]

Pt-Ru ethanol/serum,
saliva

ADH immobilized on a
dialysis membrane in the

anode of the fuel cell
Amperometry LR: 0.5–600 mM

LOD: 0.2 mM [45]

ZnO ethanol/sweat
Immobilization of AOx

and measuring of
impedance changes

EIS
LR: 0.01–200

mg·dL−1

LOD: 0.01 mg·dL−1
[39]

ZnO-NFs/Au/pET EtG
Immobilization of EtG

antibody via electrostatic
interaction

CV, EIS
[Fe(CN)6]3−/4-

LR: 1 ng·mL−1-100
µg·mL−1

LOD: <1 ng·mL−1
[46]

Abbreviations: CPE: carbon paste electrode; EtG: ethyl glucuronide; LOD: limit of detection; LR: linear range;
NFs: nanoflakes; PB: Prussian blue; PDA: polydopamine; pET: polyethylene terephthalate; PNR: polyneutral red;
PPy-PVS: polypyrrole-polyvinyl sulfonate; TMB: 3,3′,5,5′-tetramethylbenzidine; TOA: thioctic acid.

Electrochemical instruments for health monitoring using smartphones or similar devices have
arisen in recent years. Portability, real-time monitoring, and inexpensive measurements using techniques
such as chronoamperometry, cyclic voltammetry, or EIS are the main features of these analytical tools.
For instance, a smartphone-based µPotentiostat, combining sensor readout digitalization with a
reusable lab-on-a-chip concept was developed for the determination of ethanol in whole blood [40].
According to the authors, direct blood measurements are advantageous compared to those involving
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breath sampling because of the greater immunity to errors, especially in the case of unconscious or
noncollaborative patients. Biosensing was enabled by in situ electrodeposition of a calcium alginate
hydrogel containing horseradish peroxidase (HRP) and AOx for selective ethanol detection. Then,
3,3′,5,5′-Tetramethylbenzidine (TMB) was used as the redox mediator, and amperometric measurements
were performed at 0.0 V (vs. Pt pseudo-reference electrode). A calibration plot for ethanol, with a
linear range up to 1.25 g L−1 and a limit of quantification of 0.056 g L−1 in blood, was obtained using
only 40 µL of sample.
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Figure 2. Alcohol iontophoretic-sensing tattoo device with integrated flexible electronics applied to a
human patient (A); schematic diagram of constituents in the iontophoretic system (left) and processes
involved in the amperometric sensing of ethanol (right) (B); scheme of the wireless operation for
transdermal alcohol sensing (C); amperograms recorded before (a) and after (b) drinking alcohol
beverage (D). BAC (blood alcohol concentration) recorded by a breath analyzer. Potential step to −0.2 V
vs. Ag/AgCl. Reprinted from [38], with permission.

2.3. Illicit Drugs

The abuse of medication or drugs is one of the most frequent causes for criminal and
civil matters concerning addiction liability, personal injury, vehicle accidents, drug overdose,
or murder [47]. Apart from alcohol and tobacco, other drugs of abuse are cannabinoids, cocaine, heroin,
marijuana, amphetamine-related drugs, benzodiazepines, opioids, hallucinogens, such as lysergic acid
diethylamide (LSD), and anesthetics, such as ketamine. These substances have different potential for
abuse and, in some cases, legitimate medical uses. For example, heroin and LSD, as well as opioids,
such as fentanyl, all have high potential for abuse, but opioids have medical but restricted use. Other
drugs such as ketamine are currently accepted for medical use and have a moderate potential for abuse
and low risk of dependence. As reviewed by Shaw and Dennany [48], electrochemical biosensors are a
powerful tool in the forensic field for the analysis of these substances at low concentration in complex
matrixes. Campuzano et al. also revised the use of electrochemical nucleic-acid-based biosensors for
the determination of drugs of abuse and pharmaceuticals [49].

The challenging detection of trace concentrations of illicit drugs in forensic analysis was addressed
in recent years by the use of affinity biosensors as an efficient alternative to more sophisticated
and expensive techniques. Among the drugs of abuse, cocaine has received special attention, as it
can be deduced from the high number of reported electrochemical biosensors, many of which
involving aptamers [50]. A representative example is a label-free aptasensor using SPCEs modified
with three-dimensional magnetic reduced graphene oxide (3D-MRGO)/polyaniline (PANI)/AuNPs
composites for the impedimetric determination of cocaine. A specific thiolated cocaine aptamer was
immobilized onto the modified electrode, and the analytical readout was obtained by measuring
the increase in the RCT in the presence of the target analyte [51]. In addition, immobilization
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of aptamer-functionalized AgNPs onto a nanocomposite prepared with MWCNTs, liquid ionic,
and chitosan, and involving riboflavin as the redox probe, was employed for the construction of
an electrochemical aptasensor for cocaine detection in human serum [52]. Figure 3 shows the steps
involved in the preparation of the aptasensor. In the absence of cocaine (a) in the Figure 3, a well-defined
DPV signal corresponding to the reduction of RF catalyzed by AgNPs was obtained. However, when
introducing the target (b) in the Figure 3, it binds with aptamer in a three-way junction, giving rise to a
steric restriction of the electrochemical reaction of RF, and the subsequent decrease in the peak current.
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The main components of ecstasy tablets are 3,4-methylenedioxyamphetamine (MDA),
3,4-methylene-dioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA).
Monoclonal antibodies for amphetamine and methamphetamine (MA) were used to determine
the respective antigens and methylenedioxy-analogues. Zhang and Qi [53] developed a label-free
amperometric immunosensor using Prussian blue (PB) as an artificial peroxidase to detect MA. A hybrid
of PtNPs and PB was co-deposited onto the electrode, which was further coated with a double-layer
2D-network of 3-mercaptopropyl-trimethoxy-silane (3-MPS) and AuNPs. Then, capture antibodies
were immobilized, and the analytical signal related to the antigen concentration was monitored by the
electrochemical H2O2 reaction catalyzed by PB.

Electrochemical affinity biosensors were reported for the sensitive determination of morphine.
An interesting example is the configuration prepared by Talemi and Mashhadizadeh [54], based
on the intercalative and electrostatic interaction of morphine with ds-DNA immobilized onto
mercapto-benzaldehyde-modified gold electrode. DPV was used as a transduction technique, and the
determination of the alkaloid resulted feasible in a 0.05–500 µM range, as well as the application to urine
and blood plasma. Another alkaloid separated from opium is codeine (3-methylmorphine), whose
effects, although less strong than morphine, can also create a health risk. Among the methods described
for codeine determination, those based on the interactions between codeine and binding aptamers
can be highlighted. SPCEs modified with polyamidoamine dendrimers (PAMAM), glutaraldehyde,
chitosan, and AuNPs (Figure 4A) were employed for the immobilization of the specific aptamer,
and the analytical response was obtained by measuring the electron transfer decrease of [Fe(CN)6]3−/4−

probe by DPV [55]. Another interesting design involves a dually labelled DNA aptamer probe with
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dabcyl as an electrochemical tag and ZnS nanoparticles modified with cyclodextrins (ZnS-CDs), which
interact with the codeine probe modified electrode through the host–guest recognition of CDs to dabcyl
(Figure 4B). The addition of codeine provides aptamer folding, releasing ZnS-CDs into the solution
and provoking an increase of the monitored voltammetric signal [56].
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Tetrahydrocannabinol (THC) is the major component in marijuana affecting mental state and
producing addiction, although, in addition, it has applications for the treatment of some diseases,
such as multiple sclerosis or neurologic disorders [57]. THC can be determined using electrochemical
biosensors, for instance, by preparing a double-layer AuNPs electrochemical immunosensor by
immobilizing anti-THC antibody and using a chitosan/AuNPs/thionine/HRP amplification system.
The amperometric response exhibited a linear correlation with the THC concentration from 0.01 to
103 ng·mL−1, with an LOD of 3.3 pg·mL−1 [58]. Synthetic cannabinoids do not contain cannabis, but they
are also included in the category of psychoactive substances because they produce similar effects
when consumed and provoke several health events. The increase in the occurrence and the chemical
diversity of these substances make it difficult to identify and monitor. Recently, an electrochemical
biosensor for the determination of one of the synthetic cannabinoids, JWH-073 (also known as “Spice”
or “K2”), was reported, using poly(methyl methacrylate) (PMMA) hyperbranched copolymer for
the immobilization of the specific antibody. The calibration plot constructed by measuring the DPV
peak current after addition of the target analyte showed a linear range between 25 and 500 ng·mL−1.
The electrochemical biosensor was successfully applied for the target analyte in human urine [59].

2.4. Doping

The use of any illicit substance or method forbidden by the World Anti-Doping Agency (WADA)
for enhancing athletic ability, training, and performance, is known as “doping” [60]. For decades,
professional and elite athletes have widely used substances to improve their sport activities. The most
common classes of doping drugs include not only illicit substances but also products sold as nutritional
supplements. Anabolic steroids, peptide hormones, stimulants such as amphetamine, cocaine,
caffeine, or ephedrine, narcotic analgesics and diuretics, among others [61]. Mass spectrometry
(MS)–chromatographic techniques are currently mostly used for the determination of doping substances.
However, beyond the high selectivity and sensitivity of these techniques, they are costly, time consuming,
and require complex equipment, which is usually limited to laboratories. Therefore, due to the increasing
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need for faster, greener, and accessible point-of-care detection techniques, the use of biosensors is rising
as a screening tool for the detection and quantification of doping substances in biological fluids.

Hormones are the most potent and frequently used doping substances, and they responsible for
approximately 2/3 of the detected violations of anti-doping rules. They occupy a prominent place
in several categories of the WADA Prohibited List (https://www.wada-ama.org/sites/default/files/
wada_2019_english_ prohibited_list.pdf). Among them, the most representative are S1 (anabolic agents,
mainly androgens), S2 (peptide hormones, growth factors, and related substances), S4 (hormone and
metabolic modulators), and S9 (glucocorticoids). At present, the vast majority of positives are due to a
wide variety of androgens, including commercialized and illicit (nutraceutical, designer) synthetic and
exogenous natural androgens. Furthermore, peptide hormones, such as erythropoiesis stimulating
agents, growth hormone, and its secretagogues, remain difficult to detect [62].

Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone 3-sulfate (DHEA S) are androgen
hormones used as doping substances because they can increase muscle mass and enhance strength.
Recently, an electrochemical immunosensor involving gold surfaces modified with cysteamine where
anti-DHEA S was immobilized via glutaraldehyde as a cross-linking agent was reported for DHEA
analysis. Using DPV as the transduction technique, a linear range between 2.5 and 100 ng·mL−1 DHEA
S was obtained. The immunosensor was applied to the analysis of synthetic serum and urine [63].
A sensitive immunosensor for testosterone was prepared using anti-testosterone nanobodies (Nbs) and
electrochemical impedance spectroscopy (EIS). First, an immune Nbs library against testosterone was
constructed, and, after biopanning, the Nb of the highest yield and stability was selected to couple with
biotin in vivo. Then, a label-free immunosensor was implemented by immobilization of Biotin-Nbs
onto a GCE modified with streptavidin. The determination was performed by measuring the charge
transfer resistance variations against testosterone concentration, using [Fe(CN)6]3−/4− as the redox
probe. An LOD value of 45 pg·mL−1 was achieved [64].

Erythropoietin (EPO) is the most important peptide hormone used as a blood-doping agent.
It stimulates the production of new red blood cells, and, therefore, athletes use EPO illicitly to
enhance their performance by boosting the delivery of oxygen to the tissues [65]. Regarding recent
electrochemical biosensors, only one paper was found that deals with EPO monitoring in human serum.
The biosensor is a sandwich-type immunosensor involving the use of fullerene (C60) was functionalized
with PAMAM and gold nanoparticles, AuNPs/PAMAM/C60, as nanocarrier to label detection antibodies
for EPO. Figure 5 shows that the capture antibody was immobilized onto a GCE modified with a thin
layer of nanodendrites and protein A. After the addition of tetraoctyl bromide (TOAB), which acts as a
booster to arouse the inner redox activity of C60 conjugates, the electrochemical response was obtained
by cyclic voltammetry. The resulting immunosensor provided a linear calibration plot over the 0.01 to
80 mIU·mL−1 EPO range [66].

Over the years, the abuse of human growth hormone (hGH) by athletes, leading to
performance-boosting effects, has been reported. An electrochemical immunosensor involving a
GCE modified with flowerlike diphenylalanine peptide nanostructures (FPNSs) was developed for the
determination of this hormone in human serum. Antibodies were covalently immobilized onto the
surface of FPNSs, and the measurement of RCT provided a linear detection range of 1–100 pg·mL−1

hGH [67]. Another approach used for the detection of hGH abuse is the monitoring of hGH biomarkers.
For instance, insulin-like growth factor-I (IGF-I) was reported to be a prominent biomarker of hGH
administration [68], and various electrochemical immunosensors were reported for its determination.
In a simple strategy, a label-free configuration was prepared by immobilizing anti-IGF-1, using
MWCNTs and an ionic liquid. The variation of the RCT was linear with the logarithm of the IGF-1
concentrations between 0.4 and 15 ng·mL−1, with an LOD of 22 pg·mL−1 [69].

https://www.wada-ama.org/sites/default/files/
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The administration of glucocorticoids by oral, intravenous, intramuscular, or rectal routes is
prohibited in sports competitions. Synthetic glucocorticoids are derived from cortisol, the endogenous
glucocorticoid produced in the adrenal glands. A fast and reliable monitoring of cortisol in saliva
was achieved with a high-performance field-effect transistor (FET)-based biosensor constructed from
N-doped multidimensional carbon nanofibers. Anti-cortisol antibodies were immobilized onto the
conductive channels of FET, and changes associated to cortisol concentrations were measured in a wide
range, from 100 aM to 10 nM [70]. A paper-based biosensor chip was also fabricated for the detection
of salivary cortisol. First, spin-coating of a graphene nanoplatelets and amphiphilic polymer composite
was made onto Whatman filter paper, and then micro gold electrodes were deposited. The resulting
platform was incubated with a mixture of dithiobis(succinimidyl propionate) (DTSP) and NaBH4,
to form a self-assembled monolayer (SAM), where the capture antibodies were covalently attached,
followed by blocking of the remaining activated groups by BSA. Using EIS as the electroanalytical
technique, a low LOD value of 0.87 pg·mL−1 was reported [71]. Dexamethasone (DXN) is a synthetic
hormone that belongs to the group of corticosteroids, which is often used as a growth-promoting agent
to increase the body mass. Recently, a high-specificity aptamer-ligand biorecognition and binding
system was reported to monitor DXN. The detection principle was based on a label-free electrochemical
aptasensor, involving immobilization of an aptamer designated as DEX04 onto a gold electrode, making
possible the development of an impedimetric aptasensor based on the measurement of the RCT of the
[Fe(CN)6]4−/3− redox couple. The aptasensor exhibited a linear range from 2.5 to 100 nM, with an LOD
of 2.12 nM [72].

Diuretics were first banned in sport in 1988 due to their use by athletes to eliminate water from
the body, causing a rapid weight loss in order to comply with weight limits in sports, such as boxing,
judo, and weight lifting, as well as to mask the administration of other doping agents by reducing
their concentrations in urine. Acetazolamide (ACTZ), an inhibitor of the carbonic anhydrase enzyme,
is one of the diuretics used by athletes, although it can cause arrhythmia or dehydration, among other
health disorders. A bio-inspired electrochemical sensor using a binuclear oxo manganese complex
exhibiting biomimetic activity, according to the Michaelis–Menten model, and good catalytic properties
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in the oxidation of ACTZ was applied to the detection of the diuretic in real urine samples for doping
control analysis. The characteristics of the complex are similar to the active sites of enzymes involving
manganese cofactor, as these provide the high selectivity and sensitivity. Furthermore, the high stability
was the most important property of this configuration. Indeed, the same electrode surface could be
used for more than 500 separate determinations [73].

2.5. Toxins

Toxin pollution is one of the most important issues for food safety guarantee. It has been stated
that, to some degree, up to 25% of the world’s agricultural commodities become contaminated by
mycotoxins produced by filamentous fungi during crop growth, harvest, storage, or processing [74].
Deoxynivalenol, zearalenone, nivalenol, ochratoxin A (OTA), aflatoxin B1 (AFB1), and fumonisin
B1 (FB1) are some of the most predominant mycotoxins [75]. Among them, AFB1 is listed as group
I carcinogens by the International Agency for Research on Cancer [76] and is claimed as the most
toxic mycotoxin due to its capacity to bind with the DNA of cells increasing the risk of liver cancer in
human beings [77]. The US Food and Drug Administration (FDA) has set the limited level of AFB1
in corn and peanut feeds for finishing beef cattle at 300 ng·mL−1 [78]. In recent years, because of
the need to detect this and other mycotoxins at very low concentration levels, many electrochemical
biosensors involving different configurations and materials were reported. Table 3 summarizes the
main characteristics of some recent methodologies, and, hereinafter, a few relevant examples are used
to illustrate their usefulness.

Wang et al. reported a magnetically assembled aptasensing device for label-free determination
of AFB1 by employing a disposable SPCE coated with a designed polydimethylsiloxane (PDMS)
film as a microelectrolytic cell (Figure 6). The determination of AFB1 was performed by EIS upon
aptamer-target biorecognition. The developed method provided a linear calibration extending over
the 20 to 50 ng·mL−1 range, with an LOD of 15 pg·mL−1 (S/N = 3), and was applied to the analysis
of spiked peanuts [79]. Another electrochemical aptasensor was developed for the detection of
aflatoxin M1 (AFM1), using an AFM1 aptamer and AuNPs. The fundamentals of the detection rely on
conformational changes of hairpin structure of the aptamer (Apt), in the presence and absence of AFM1.
Once the Apt is immobilized onto SPAuE, a complementary strand (CS), conjugated with AuNPs,
comes to close proximity of Apt-SPAuE. In the presence of AFM1, the hairpin structure of Apt is lost to
form the Apt-AFM1 complex, and the 5′ end of Apt hybridizes with CS. The addition of methylene
blue (MB) as redox agent provoked its electrostatic accumulation on the electrode surface, with AuNPs
giving rise to a strong current signal. The aptasensor allowed determination of AFM1 with an LOD of
0.9 ng·L−1 and was successfully applied in real samples, including milk and serum [80].

Ochratoxins are dangerous by-products mainly produced by several species of storage fungi,
including the penicillium and aspergillus [81]. OTA was identified as one of the most toxic and
carcinogenic substances for a wide variety of mammalian species [82]. A variety of agricultural
products, including wheat, corn, barley, coffee, fruit, and rice, can be easily contaminated by OTA.
The European Commission established some regulatory limits to control OTA levels and, for example,
the maximum tolerated level for raw cereal grains is 5 ppb [83]. Among the numerous methods for
OTA biosensing, it is worth mentioning the preparation of an electrochemical immunosensor involving
octahedral plasmonic colloidosomes (AuOctPCs) as substrates for the immobilization of specific OTA
antibodies and as labels for signal amplification [84]. Octahedral gold nanoparticles (OctAuNPs),
obtained by the reduction of HAuCl4 in the presence of PDDA (poly(diallyldimethylammonium) and
ethylene glycol, were used to immobilize the capture antibody onto the electrode surface. Furthermore,
AuOctPCs were prepared by natural settlement of OctAuNPs in 1-butanol/water reversed-phase
emulsion (Figure 7). The resulting nanomaterial, with edges and sharp corners, exhibited high specific
surface area and good electron transfer ability, allowing the immobilization of a great amount of
antibodies; it was also able to interact with the redox mediator toluidine blue (TB), acting as a carrier
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tag for current enhancement. Using square wave voltammetry (SWV), the proposed immunosensor
provided a linear calibration range from 0.1 to 104 pg·mL−1 and an LOD value of 39 fg·mL−1.
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In addition to mycotoxins, other products derived from some foods are of interest due to
their possible adverse effects on health at very low concentration levels. An example are toxic
microalgae species, which contaminate shellfish, producing various forms of human poisoning that
is considered a relevant global problem due to the worldwide distribution of these toxins. Saxitoxin
(STX) and its analogous cause paralytic shellfish poisoning (PSP), blocking sodium transport through
sodium-channel receptors. Therefore, sensitive and robust methods for their detection in complex
samples must be developed. The use of electrochemical biosensors for the analysis of marine toxins
was reviewed by Liang et al. [85]. In a relevant paper, a dithiol SAM-based immunoassay was reported,
using gold electrode arrays for the construction of an electrochemical immunosensor for tetrodotoxin
(TTX), yielding an LOD of 2.6 ng·mL−1. The applicability of the method was demonstrated by TTXs
quantification in different tissues of several puffer fish species, at levels as low as 0.07 mg TTX equiv.
kg−1 tissue, well below the Japanese limit value of 2 mg TTX equiv. kg−1 tissue used as a criterion to
consider puffer fish safe for consumption [86]. A miniaturized potentiometric saxitoxin immunosensor
was reported, involving graphene nanosheets with incorporated lipid films and immobilized anti-STX.
The achieved LOD was 1 nM, and the method was tested in lake water and shellfish samples [87].

Okadaic acid (OA) is a marine lipophilic toxin produced by toxicogenic dinoflagellates. OA may
accumulate in the digestive glands of shellfish when they feed on these kinds of microalgae. It is
the major diarrheic shellfish poisoning (DSP) toxin in humans, since OA causes blocking of the
active sites of enzymes and consequently inhibits serine/threonine protein phosphatases type 1 (PP1)
and type 2A (PP2A), resulting in an over-phosphorylation of proteins in cells and gastrointestinal
troubles. The European Commission Regulation EU No 786/2013 establishes a maximum permitted
concentration of 160 µg OA per kg of live bivalve mollusks for human consumption [88]. Based on
the inhibition of protein phosphatase 2A (PP2A) by OA, an electrochemical enzyme biosensor which
involved SPCEs modified with an electropolymerized poly-o-aminophenol (PoAP)/CNTs composite
film for the enzyme immobilization was reported. After incubation of OA standard solutions or the
samples onto PoAP/PP2A/CNTs/SPCE, the addition of p-nitrophenol phosphate (p-NPP) allowed the
DPV quantification of OA within a 1–300 µg·L−1 linear range, with an LOD value of 0.55 µg·L−1 [89].

Another family of toxins causing severe human health problems due to their hepatotoxicity
and tumor-promoting activity are microcystins (MCs) [90]. Among these, microcystin-LR (MC-LR),
produced by cyanobacteria, is one of the most toxic. Because of their sensitivity and relative simplicity,
aptasensing strategies have received great attention for the detection of MC-LR [91]. Gan et al.
reported a multiple amplified enzyme-free biosensor for MC-LR detection using G-quadruplex/hemin
functionalized mesoporous silica with redox-active intercalators [92]. Figure 8 shows the synthesis of
monodisperse core-shell mesoporous silica (SiO2@MSN)-functionalized DNAzyme concatemers to
load hemin and MB as the mimic enzyme. A secondary antibody (Ab2) able to recognize the MC-LR
antibody (Ab1) and a DNA strand as the initiator were immobilized, whereas two auxiliary DNA
strands were used for the in situ propagation to form a double-helix DNA through hybridization chain
reaction (HCR), forming numerous DNAzymes (G-quadruplex/hemin) after the addition of hemin.
The intercalation of MB/DNA improved the catalytic ability of DNAzymes toward the reduction of
H2O2 as electrochemical readout. This configuration could detect MC-LR in a 0.5 to 25 µg·L−1 range,
with an LOD value of 0.3 ng·L−1.
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Table 3. Electrochemical biosensors for the determination of toxins.

Electrode Analyte/Sample Method Transduction
Technique

Analytical
Characteristics Ref.

SPCE AFM1/milk

Label-free aptasensor. Apt
immobilization by

diazonium-coupling.
RCT measurements in the

presence of AFM1

EIS,
[Fe(CN)6]3−/4−

LR: 2–150 ng·L−1

LOD: 1.15 ng·L−1 [93]

SPAuE AFM1/milk,
serum

Apt immobilization onto SPAuE;
Apt CS conjugation with AuNPs.

Disassembled of Apt hairpin
structure in presence of AFM1

and current increasing with MB as
redox agent

DPV,
MB

LR: 2–600 pg·mL−1

LOD: 0.9 pg·mL−1 [80]

Chit/AuNP/disk-ring
AuµE AFB1/wheat

Label-free immunosensor.
Immobilization of anti-AFB1 and

current measurement after
conjugation with the antigen

CV,
[Fe(CN)6]3−/4−

LR: 0.2–2, 2–30 ng·mL−1

LOD: 0.12 ng·mL−1 [94]

PDMS/SPCE AFB1/peanuts

Immobilization of thiolated Apt
onto Fe3O4@Au and assembling
on PDMS/SPCE. Measurement of

impedance changes

EIS,
[Fe(CN)6]3−/4−

LR: 20–5 × 104 pg·mL−1

LOD: 15 pg·mL−1 [79]

SPCE OTA/cocoa beans

Label-free aptasensor. Apt
immobilization by

diazonium-coupling.
RCT measurements in the

presence of OTA

EIS,
[Fe(CN)6]3−/4−

LR: 0.15–2.5 ng·mL−1

LOD: 0.15 ng·mL−1 [95]

Cyst-GCE OTA/soybean

Immobilization of cDNA onto
AuNPs-Cyst-cPC and drop onto
Cyst-GCE to hybridize with the
Apt. RCT measurements in the

presence of OTA

EIS,
[Fe(CN)6]3−/4−

LR: 10−8–0.1 ng·mL−1

LOD: 10−8 ng·mL−1 [96]

SPCE OTA/coffee

Grafting of PT3C or PP3C onto
SPCE and covalent

immobilization of Apt to complex
OTA increasing RCT

EIS,
[Fe(CN)6]3−/4−

LR: 0.125–2.5 ng·mL−1

LOD: 0.125 ng·mL−1 [97]

OctAuNPs/GCE OTA/wine

Immobilization of Ab1 onto
OctAuNPs/GCE. OTA

sandwiched with AuOct
PCs-TB@Ab2 as carrier tag for

signal amplification

SWV,
TB

LR: 0.1–104 pg·mL−1

LOD: 39 fg·mL−1 [84]

AuE OTA/wine

DNA-controlled layer-by-layer
assembly of dual AuNPs

conjugates using capture probes
to hybridize Apt and Fc tagged

SH-signal probe

DPV,
Fc

LR: 0.001–500 ng·mL−1

LOD: 0.001 ng·mL−1 [98]

β-CD-SH-SPAuE OTA/wine

Apt hybridization with cDNA-MB.
Apt-OTA complexation,

cDNA-MB separation. Target
recycling signal amplification by

RecJf exonuclease

DPV,
MB

LR: 10–104 pg·mL−1

LOD: 3 pg·mL−1 [99]

Fe2O3/MCM-41/SPCE ZEA/seeds

Sandwich-type immunoassay.
Immobilization of anti-ZEA onto

Fe2O3/MCM-41/SPCE and
conjugation with HRP-anti-ZEA.

Current measurements by
addition of H2O2/4-TBC

Amperometry,
−0.1 V vs.
Ag/AgCl

LR: 1.88–45 ng·mL−1

LOD: 0.57 ng·mL−1 [100]

AuE ZEA/–

Flow-injection capacitive
immunosensor. Immobilization of
anti-ZEN onto pTYR or 3-MPA or

LA SAMs-modified AuE

Capacitance
current-pulse

FI

LR: 0.01–10 nM (pTYR);
0.02–10 nM (SAMs)
LOD: 0.006 nM (LA

SAM)

[101]

Chit/SWCNT/GCE DON/sorghum,
infant food

Indirect competitive
immunosensor.

Detection with AP-IgG, using
1-NPP as substrate

DPV,
1-NP

LR: 0.01–1000 ng·mL−1

LOD: 5 pg·mL−1 [102]
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Table 3. Cont.

Electrode Analyte/Sample Method Transduction
Technique

Analytical
Characteristics Ref.

AuNPs/PPy/ErGO/SPCE FB1 and DON

Label-free immunosensor.
Immobilization of antitoxin onto
the modified electrode and RCT

measurements

DPV,
[Fe(CN)6]3−/4−

LR: 0.2–4.5 (FB1), 0.05–1
ng·mL−1 (DON); LOD:

4.2 (FB1) 8.6 ng·L−1

(DON)

[103]

PoAP/CNT/SPCE OA/shellfish

Enzyme biosensor based on
inhibition of PP2A and

voltammetric detection after
addition of 1-NPP

DPV,
1-NP

LR: 1–300 µg·L−1

LOD: 0.55 µg·L−1 [89]

Phosphorene-gold/SPCE OA/mussel
Microfluidic biochip of OA.

Immobilization of Apt. Current
decreasing in presence of OA

DPV,
[Fe(CN)6]3−/4−

LR: 10–250 nM
LOD: 8 nM [104]

PDIC/Cyst/AuE BTX-2

Aptasensor. Immobilization of
BTX-2 and competitive assay

between BTX-2 onto electrode and
free BTX-2 in presence of a fixed

amount of Apt

EIS,
[Fe(CN)6]3−/4−

LR: 0.1–100 ng·L−1

LOD: 106 pg·mL−1 [105]

MB-cMWCNTs/ODT/AuE STX/mussel

Label-free aptasensor.
Target-induced conformational

change of Apt with STX binding.
Measurement of current

decreasing in presence of toxin

DPV/
MB

LR: 0.9–30 nM
LOD: 0.38 nM [106]

lipid film/ graphene STX/lake water,
shellfish

Potentiometric immunosensor.
Immobilization of anti-STX onto a

lipid film prepared by
polymerization in a mixture of
DPPC, MA, EGDM and AMPN

Potentiometry,
stopped-flow

LR: 1.3 × 10−9–1.3 × 10−6

M
LOD: 1 nM

[87]

MGE STX/seawater,
shellfish

Sandwich-type
magnetoimmunosensor.

Biotin-Ab2 immobilization onto
Avidin-MBs. Conjugation with

Ab1, STX complexation and
interaction with (g-C3N4-PdNPs).

Current measurements by
addition of H2O2/TMB

Amperometry,
0.2 V vs.
Ag/AgCl

LOD: 1.2 pg·mL−1 [107]

HOOC-PEG6-DTA/SPAuEaTTX/putter fish

TTX immobilization onto
activated carboxylate-dithiol.

Addition of cAb and IgG-HRP.
Current measurements in

presence of TMB

Amperometry,
−0.11 V vs. Ag

LR: 2.6–10.2 ng·mL−1

LOD: 2.6 ng·mL−1 [86]

SPCEa TTX/putter fish

TTX immobilization on
Cyst-maleimide-MBs. Addition of

cAb and IgG-HRP. Current
measurements in presence of TMB

Amperometry,
−0.2 V vs. Ag

LR: 1.2–52.7 ng·mL−1

LOD: 1.2 ng·mL−1 [108]

cSWCNTs/
Chit/AuNPs/ GCE

T-2 toxin/feed,
swine meat

Immunosensor. Competitive
assay between T-2 and

OVA-T-2-cSWCNTs. Detection by
AP-Ab2 and 1-NPP

DPV,
1-NP

LR: 0.01–100 µg·L−1

LOD: 0.13 µg·mL−1 [109]

pDA/AuNRs magnetic
rGO MC-LR/water

Competitive immunosensor.
Immobilization of antibody and
rolling circle DNA amplification

DPV;
H2O2/HQ

LR: 0.01–50 µg·L−1

LOD: 0.007 µg·mL−1 [110]

AuNDs/ITO MC-LR/−

Label-free immunosensor.
Conjugation of Ab and sDNA to

(SiO2@MSN). HCR to form
G-quadruplex/hemin. MB

intercalation.

DPV,
H2O2

LR: 0.5 ng·L−1–25 µg·L−1

LOD: 0.3 ng·L−1 [92]

PET/graphene/Cu MC-LR/waters

Label-free immunosensor
involving covalent immobilization
of MC-LR onto oxidized electrode

and competitive assay between
immobilized and free antigen in

presence of a fixed amount of
antibody

EIS,
[Fe(CN)6]3−/4−

LR: 0.005–10 µg·L−1

LOD: 2.3 ng·mL−1 [111]
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Table 3. Cont.

Electrode Analyte/Sample Method Transduction
Technique

Analytical
Characteristics Ref.

AuE MC-LR/water

Label-free DNA biosensor.
Immobilization of calf thymus
DNA and measurement of RCT
decrease in presence of MC-LR

EIS,
[Fe(CN)6]3−/4−

LR: 4.0–512 ng·L−1

LOD: 1.4 ng·L−1 [112]

Cyst/AuE MC-LR/cyano-bacteria
culture

Microfluidic immunosensor.
Immobilization of MC-LR.

Competitive assay between
immobilized and free antigen

with a fixed amount of antibody

EIS,
[Fe(CN)6]3−/4−

LR: 0.1–330 µg·L−1

LOD: 0.57 ng·L−1 [113]

Abbreviations: AFM1: aflatoxin M1; AMPN: 2,2′-azobis-(2-methylpropionitrile); AP: alkaline phosphatase;
Apt: aptamer; AuNDs: gold nanodendrites; AuNRs: gold nanorods; AuOct PCs: gold octahedron plasmonic
colloidosomes; β-CD: beta-cyclodextrin; Chit: chitosan; cMWCNTs: carboxylated multiwalled carbon nanotubes;
CS: complementary strand; cSWCNTs: carboxylated single-walled carbon nanotubes; DON: deoxyvalenol; DPPC:
dipalmitoyl phosphatidylcholine; DPV: differential pulse voltammetry; EGDM: ethylene glycol dimethacrylate;
Fc: ferrocene; GCE: glassy carbon electrode; HCR: hybridization chain reaction; HQ: hydroquinone; ITO: indium
tin oxide electrode; LA: lipoic acid; LOD: limit of detection; LR: linear range; MA: methylacrylic acid; MB:
methylene blue; MC-LR: microcystin-LR; MCM-41: amino mesoporous silica; MGE: magnetic gold electrode; 3-MPA:
3-mercaptopropionic acid; 1-NP: 1-naphthylphenol; 1-NPP: 1-naphthylphosphate; OA: okadaic acid; OctAuNPs:
octahedral gold nanoparticles; ODT: octadecanethiol; OVA: ovalbumin; pDA:polydopamine; PDIC: 4-phenylene
diisocyanate; PDMS: polydimethylsiloxane; DTA: dithioalkane aromatic; PET: polyethylene terephthalate; PoAP:
poly-o-aminophenol; PP2A: protein phosphatase 2A; pTYR: polytyramine; RCT: charge transfer resistance; rGO:
reduced graphene oxide; SPAuEa: screen-printed gold electrode array; SPCEa: screen-printed carbon electrode
array; STX: saxitoxin; TB: toluidine blue; 4-TBC: 4-terbutylcatechol; ZEA: zearalenone.
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conjugation (A) and the construction of the electrochemical immunosensor for MC-LR (B). Reproduced
from [92], with permission.

2.6. Microorganisms

Infectious agents are responsible for diseases throughout the world caused by contaminated
water, food intoxication, hospital-acquired, and pandemics. Pathogenic bacteria pose serious problems
for public health and provoke significant economic losses. Early detection is difficult because the
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standard analytical methods involve complex handling processes, expensive instruments, and qualified
experts. These drawbacks have led to efforts for the development of sensitive, specific, robust, and fast
methods to facilitate reliable results, and, in this context, electrochemical biosensors can be considered
relevant tools.

Among foodborne bacterial pathogens, Escherichia coli (E. coli) serotype O157:H7, causes severe
diseases in humans. An electrochemical biosensor for its detection was constructed by interfacing
graphene nanostructures functionalized with specific antibodies able to immobilize bacteria on the
sensor surface. The developed device provided non-faradaic electrochemical responses related to the
number of cells per mL, with no need for redox probe, and allowed the detection of bacteria to as low
as 10–100 cells mL−1 [114].

Fabrication of flexible electrochemical platforms constitutes, nowadays, a research line of growing
interest for the easy implementation and the variety of applications. Among them, it is worth mentioning
the importance of these systems as point-of-care testing (POCT) devices for the continuous monitoring
of foodborne diseases [115]. An illustrative example is a flexible and highly ordered nanopillar array
prepared with gold and silver electrodes which exhibits an excellent electrochemical performance
to detect the PCR amplified gene from E. coli O157:H7. As Figure 9 shows, thin titanium and gold
layers were prepared by vacuum sputtering on the surface of nanopillar arrays. The as-prepared gold
electrodes were used as working and counter electrodes, and silver was further printed to be used
as the reference electrode. For the electrochemical detection, the amplified gene of E. coli O157:H7
was mixed with the Hoechst electrolyte, which specifically intercalates with dsDNA, and SVW was
employed as the transduction technique. A linear detection range from 10 to 105 colony-forming units
(CFUs) was achieved, and the biosensor was applied to the analysis of milk samples.
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Reprinted from [115], with permission.
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Listeria monocytogenes is transmitted to humans when food comes into contact with contaminated
water or soil. The presence of this microorganism is a persistent problem since it can proliferate under
conditions of low moisture, high salinity, or common freezer temperatures. Hill et al. [116] developed
a sensing strategy for the rapid detection of L. monocytogenes in food samples which involved the
preparation of chitosan-aptamer (or antibody) nanobrush borders immobilized onto Pt/Ir electrodes
modified with reduced graphene oxide and platinum nanoparticles. The selective capture of bacteria
and the detection steps were implemented on the basis of the pH-dependent stimulus-responsive
chitosan nanobrushes decorated with receptors that bind a cell surface target. Cells were captured
onto extended nanobrushes at pH < 6, while impedimetric measurements were made at pH > 6,
where nanobrushes collapsed. The biomimetic material was used to develop a rapid test (17 min) for
selectively detecting L. monocytogenes from 9 to 107 CFU·mL−1, with no preconcentration, and in the
presence of other gram-positive cells.

Integration of sensors and microfluidics constitutes the fundamentals of lab on a chip technology,
which has demonstrated its usefulness in diverse fields, such as food safety monitoring. In this regard,
a miniaturized portable EIS platform was prepared for the detection of L. monocytogenes in milk.
It consisted of a microfluidic device with EIS sensors connected to a portable impedance analyzer for
on-field application. An array of interdigitated microelectrodes functionalized with specific antibodies
was used, providing a linear dependence between the charge transfer resistance and the bacteria
population over the 100 to 2200 CFUs·mL−1 range [117].

Another widespread foodborne pathogen is Salmonella, a gram-negative rods genus belonging to
the Enterobacteriaceae family, for which over 2500 different serotypes or serovars were identified to date.
Salmonella is a ubiquitous and hardy bacterium that can survive several weeks in a dry environment
and several months in water (see https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-
typhoidal)). Furthermore, Salmonella is a ubiquitous and hardy bacterium that survives several
weeks in a dry environment and several months in water. Lu et al. developed an electrochemical
immunosensor for the determination of Salmonella in milk, using a double-layer AuNPs electrode
for immobilization of the plasmid virulence C (SpvC) antibody. The electrochemical response was
amplified by enhancing the number of immobilized antibodies and implementing a system for signal
amplification, involving AuNPs-thionine-chitosan adsorbing HRP. The detection strategy implied that
the amperometric measurement derived from the electrochemical reaction of H2O2 catalyzed by HRP
in the presence of TH as the redox mediator. This scheme allowed determining Salmonella within a
range of 10 to 5 × 104 CFUs mL−1, with an LOD value of 5 CFUs·mL−1 [118].

Clostridium perfringens must also be cited as one of the most common foodborne pathogens.
The predominant pathogen is a spore-forming, rod-shaped, gram-positive bacterium widely found in
different environments and foods types and associated with two kinds of foodborne diseases: diarrhea
and enteritis necroticans [119]. C. perfringens could be detected with a label-free electrochemical DNA
biosensor constructed by immobilization of the DNA probe onto a CeO2/chitosan-modified GCE.
Under optimal experimental conditions, electrochemical impedance measurements were selective
toward target DNA in comparison with base-mismatched and noncomplementary DNA. The dynamic
range for detecting the target oligonucleotide sequence of C. perfringens was 10−14–10−7 mol·L−1 [120].

3. Electrochemical Biosensors for Chemical and Biological Weapons

The detection of explosives, especially 2,4,6-trinitrotoluene (TNT), attracts worldwide interests
because of the threats for public security, as well as for human health, since they have become
pollutants in natural water and other environmental samples. The development of rapid, cost-effective,
and reliable assays for the detection of these molecules in both aqueous and gaseous samples is a high
priority for forensic investigators, counterterrorism agencies, and global de-mining projects. Some
biosensors were described for determining explosives, including electrochemical biosensors because
of their outstanding sensitivity and selectivity using aptamers, peptides, or antibodies. Moreover,
bio-inspired sensors involving the design of bio-mimic-recognized components, such as molecularly

https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal
https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal
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imprinted polymers, are also used for this purpose [121]. An interesting example is an electrochemical
aptasensor for the determination of TNT involving the use of AgNPs and thiol-functionalized graphene
quantum dots nanocomposite onto GCE and rutin as redox probe [122]. The same group prepared other
biosensing surfaces for this nitroaromatic explosive [123]. Aptasensing and molecular imprinting was
combined in an original configuration to prepare a nanohybrid receptor. An amino-aptamer and TNT
were mixed and covalently bound onto an AuNPs@fullerene C60-modified GCE, followed by dopamine
electropolymerization. After TNT removal, the cavity and the aptamer acted synergistically to recognize
the target explosive. This strategy provided a wide linear concentration range by impedimetric
measurements (0.01 fmol·L−1–1.5 µmol·L−1) and a very low LOD value of 3.5 amol·L−1 [124].

Peptide biosensors involve the use of short amino acid chains designed according to the binding
sites of antibodies and are chemically synthesized to mimic specific molecular recognition. Their main
advantage is the stability and possibility of long-term storage. Making use of this strategy, Zhang
et al. [125] developed an impedimetric biosensor for TNT monitoring, using a specific peptide and
combining the resulting platform with a smartphone. Electrodes were functionalized with the peptide,
and the response was collected by a hand-held device and transferred wirelessly to a smartphone
via Bluetooth connection. The method allowed for the displaying of TNT concentrations as low as
10−6 M in real time. Another configuration for the detection of TNT is a label-free peptide aptamer
(peptamer) in which a ternary assembly layer consisting of anti-TNT peptamer, dithiothreitol (DTT),
and 6-mercaptohexanol (MCH), forming Au/peptamer–DTT/MCH, was used. A linear relationship
between the change in RCT and the logarithm of TNT concentration was achieved from 0.44 to
18.92 pmol·L−1, with an LOD of 0.15 pmol·L−1. The ternary assembly layer provided an OH-rich
hydrophilic environment and a highly compact surface layer which reduced the non-covalent binding
(physisorption) of the peptamer and the nonspecific adsorption of TNT onto the electrode surface,
thus leading to a high sensitivity [126].

Ion-selective field effect transistors (ISFET) conjugated to biorecognition molecules were also
proposed for the detection of explosives. An example is a fully depleted silicon-on-insulator-based ISFET
highly sensitive to changes in the gate solution, where E. coli nitroreductase was covalently attached,
as the recognizing element, used for the detection of nitroaromatic explosives. The enzyme-catalyzed
reduction of the analytes was conjugated to the oxidation of NADPH to NADP+ and the drain current
induced by the reaction, which increased in the presence of the explosive, was measured. In the
case of TNT, the dynamic range of the analytical response ranged between 10−7 and 10−5 mol·L−1.
In addition, this biosensor was combined with a microfluidic system for analyte delivery and applied
to the determination of explosives in water samples [127].

3.1. Chemical Warfare Agents (CWAs)

CWAs are low-molecular-weight synthetic compounds characterized by being fast-acting,
and sometimes lethal, even at low levels [128]. A variety of species belong to this group,
including gaseous blood or chocking agents, volatile nerve and blister agents, nonvolatile vomiting
agents, and nonvolatile lachrymators (tear gases). Recently, a wearable origami-like paper-based
electrochemical biosensor for the determination of sulfur mustard (commonly known as mustard
gas) directly in the aerosol and liquid phase was reported [129]. The electrodes were prepared by
screen-printing onto a filter-paper support, and the detection was based on the inhibitory effects toward
the enzymatic oxidation of choline catalyzed by choline oxidase, followed by detection of the reaction
product, H2O2. Apart from the enzyme, the conductive graphite ink of the working electrode was also
modified with carbon black/PB nanocomposite to electrocatalyze the H2O2 reduction. The resulting
biosensor allowed the fast detection of real sulfur mustard with an LOD value of 0.019 g.min m−3 for
aerosol phase. Inhibition of enzymatic reaction was also employed for the detection of other CWAs,
such as organophosphate derivatives (OP). An interesting example is an electrochemical biosensor
involving MWCNTs and acetylcholinesterase for the determination of paraoxon with an LOD value
of 0.1 nM [130]. A sensitive amperometric acetylcholinesterase biosensor for OPs, using a 4,7-di
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(furan-2-yl) benzo [1,2,5] thiadiazole polymer, AgNPs and amine-functionalized rGO, was recently
reported, as well. A linear range between 0.0206 and 2.06 µg·L−1 trichlorfon and an LOD value of
1 ng·L−1 were reported [131]. Mishra et al. [132] proposed a disposable glove-based sensing platform
to detect toxic chemicals, including nerve agents OP compounds. Figure 10 shows as the flexible and
wearable “lab-on-a-glove” integrated the enzyme immobilized on the index finger (detection finger),
as well as the thumb (sampling finger) used to collect OP residues. The electrochemical reaction was
completed when the thumb was joined with the sensing (index) finger, and a conductive semisolid gel
matrix containing organophosphate hydrolase (OPH) was added. Then, the electrochemical response
was wirelessly transmitted to a smartphone. Various target surfaces contaminated with OP compounds
(methyl paraoxon and methyl parathion) were successfully assayed.
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Figure 10. Scheme of the fabrication and functioning of a flexible glove biosensor to detect nerve
agents OPs. (A) serpentine stencil design printing; (B) biosensing scan index finger (left) with CE,
WE, and Ag/AgCl RE electrodes, and collecting thumb finger with printed carbon pad; (C) biosensing
index finger under 0% and 50% linear stretch; (D) sampling chemical threat residues; (E) on-glove
sensing procedure by joining the index and thumb fingers to complete the electrochemical cell; (F,G)
photographs of the wearable glove biosensor connected to the portable potentiostat with wireless
communication to a smartphone. Reproduced from [132], with permission.

3.2. Biological Weapons

Biological toxins are molecules produced by living organisms that induce harmful effects in other
organisms by inhalation, ingestion, injection, or absorption. These toxins play a relevant role in the
health and the security sectors. Some of these substances can be involved in natural intoxications,
as they are the case of botulinum neurotoxin (BoNT), but the high toxicity and practical absence of
antidotes has led to their classification as potential bioterrorism agents [133]. Worryingly, typical
biological warfare agents (BWAs), such as Bacillus antracis, Brucella sp., Yersinia pestis, and Staphylococcal
enterotoxin B, or the already cited BoNT, can be produced and spread not only by military but also
by terrorist groups [134]. Therefore, the development of analytical tools that provide a means for
the rapid and in situ detection of these toxins or bacteria, is widely claimed and electrochemical
biosensors can be a valuable aid in this field. As a relevant example, a nanocomposite film consisting
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of AuNPs/graphene-chitosan was used to construct an impedimetric immunosensor for detection
of botulinum neurotoxin A (BoNT/A). The specific BoNT/A antibody was immobilized onto the
modified GCE, and the impedance changes due to the restricted electron transfer of redox probe in the
presence of the antigen were employed as analytical readout. The toxin was determined in milk and
human serum across a 0.27–268 pg·mL−1 range, with an LOD of 0.11 pg·mL−1 [135]. Mazzaracchio
et al. [136] also prepared an impedimetric biosensor for Bacillus anthracis spore simulant (B. cereus
spore) determination by immobilizing onto gold screen-printed electrodes a specific ssDNA aptamer
as the recognition element and measuring the increase in RCT after binding B. cereus spores with the
aptamer. The linear range for the determination extended from 104 to 106 cfu·mL−1, and the LOD value
was 3 × 103 cfu·mL−1. A DNA electrochemical biosensor for the detection of Bacillus anthracis, based
on a stem-loop probe, was also described, in which repetitive, fast, and versatile “on-off” signaling was
performed. The DNA molecular beacon probe was immobilized onto a gold electrode, in its folded
state, through an alkanethiol linker at the 5′ end, while methylene blue, as the redox label, was in the
3′ end. In this case, a 22.9–86.0 nM linear detection range was found [137].

Cholera toxin (CT) is a protein enterotoxin that is biologically active and interacts with specific
gangliosides in natural and artificial membranes. Secreted by the bacterium Vibrio cholerae, it causes
epidemic diseases that lead to rapid dehydration and death. Since CT fits the bioterrorism profile, there
is increasing interest in the development of rapid and sensitive methods for its detection. Karapetis et
al. developed a miniaturized potentiometric sensor with immobilized Ganglioside GM1, the natural
cholera toxin receptor, onto stabilized lipid films on graphene nanosheets. The as-prepared biosensor
allowed the detection to be performed over a wide range of toxin concentrations, providing a fast
response time of ca. 5 min, and an LOD of 1 nM [138]. Finally, as an example of a toxin from vegetal
origins, it is worth mentioning ricin, from the plant Ricinus communis, which is a cytotoxic protein
that is considered to be a potential threat agent for terrorist use because of its high toxicity, absence of
curative treatments, and ease of manufacture. Various immunosensors for the determination of this
toxin are reported in the literature. An interesting example implies the use of single-domain antibodies
(nanobodies) as recognition elements. Gold interdigitated electrodes (IDEs) modified with DTSP SAM
were used for antibody immobilization. The immunosensor provided a linear CV current vs. log ricin
concentration over the 1 fg·mL−1 to 1 µg·mL−1 range [139].

4. Conclusions

The unique opportunities provided by electrochemical biosensors to perform reliable
determinations at the point of attention of analytes at different molecular levels and in samples
of a very different nature justify their great potential and usefulness in many relevant fields. Although
forensic analysis is not one of the fields where electrochemical biosensors were widely exploited, the
applications highlighted and discussed in this review article confirm their great versatility and utility
for the determination of a wide variety of toxic substances, including inorganic (arsenic and cyanide),
organic (ethanol), illicit drugs and doping agents, toxins and microorganisms, chemical (explosives and
CWAs), and biological weapons. When applied to the resolution of forensic problems, electrochemical
biosensors reveal important advantages, such as low detection limits, wide linear response range,
and good reproducibility. In addition, the proper modification of the electrode surfaces can improve
these advantages, making it possible to design biosensors with the desired features. For instance,
chemically modified electrodes have gained attention in the development of biosensors for drug
analysis, owing to the simple surface renewal and the wide window of accessible potential.

Enzyme and whole-cell biosensors, as well as affinity sensors, mainly aptasensors, but also
immunosensors and, more scarcely, nucleic acids or peptides biosensors, were used to solve a variety
of analytical problems related to forensic practice. The enzymatic activity of enzymes or whole
cells, and selective enzymatic inhibition phenomena, was exploited for the sensitive and almost
specific determination of inorganic toxics, ethanol, toxins, and CWAs. Enzymatic biosensors involve
mostly amperometric but also potentiometric transduction. It is worth remarking that aptasensors
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are nowadays efficient alternatives for determining toxics, drugs, and doping agents, as well as
toxins and microorganisms. They are usually employed in connection with displacement assays in
label-free approaches, using EIS or DPV transduction in the presence of selected redox probes. So far,
immunosensing strategies in the forensic field were mostly employed for the determination of doping
agents and toxins involving direct or sandwich formats coupled with label-free or label-based detection
approaches, respectively. It is also important to mention that, in order to achieve the required sensitivity,
many of the reported strategies make use of a wide variety of nanomaterials (CNTs, metallic NPs,
and transition metal oxides) as electrode modifiers, both individually and in combination, to improve
the electrocatalytic properties toward the analytes involved in the enzymatic/electrochemical reactions,
as well as advanced labels or carrier tags. Other amplification strategies, such as hybridization chain
reaction (HCR) and exonuclease catalyzed reaction can be profited.

However, despite the demonstrated versatility of design and usefulness, it is necessary to be
aware that the applications of electrochemical biosensors in forensic analysis are less advanced
than in other fields, and proper attention should be paid to show their potential in the analysis of
biological fluids and to perform multiplexed determinations. Indeed, an aspect to reinforce is the
usefulness of electrochemical biosensors for the analysis of the real complex samples that constitutes
the final objective of forensic analysis, with full guarantees of accuracy and precision. Despite the
long way ahead to exploit the full potential of electrochemical biosensors in this amazing field,
recent developments of biodevices involving the use of artificial (molecular imprinted polymers) or
new bioreceptors (nanobodies and DNAzymes), implemented in wearable tattoo-based and flexible
substrates or integrated on smartphone-based µ-potentiostat or microfluidic systems, show fairly well
the progresses of electrochemical biosensors in forensic science. Bearing in mind that the advance of
electrochemical biosensors in forensic science seem to follow a trend similar to that already experienced
in other areas, such as clinical diagnosis, it makes sense to think in a futuristic vision, which includes
the incorporation of these biosensors into portable lateral flow strip-like devices or in exploiting
biochemical computing and logic-gate systems to offer “Sense/Act” operation devices for rapid analysis
of target analytes directly on-site at the crime scene.
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