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Abstract: In children with cancer, chemotherapy can produce cytotoxic effects, resulting in immuno-
suppression and an augmented risk of febrile neutropenia and bloodstream infections. This has led to
widespread use of antibiotic prophylaxis which, combined with intensive chemotherapy treatment,
could have a long-term effect on the gastrointestinal microbiome. In this review, we aimed to analyze
the current literature about the widespread use of antibiotic prophylaxis in children experiencing
infectious complications induced by chemotherapy and its effects on the gut microbiome. Our review
of the literature shows that antimicrobial prophylaxis in children with cancer is still a trending
topic and, at the moment, there are not enough data to define universal guidelines. Children with
cancer experience long and painful medical treatments and side effects, which are associated with
great economic and social burdens, important psychological consequences, and dysbiosis induced
by antibiotics and also by chemotherapy. Considering the importance of a healthy gut microbiota,
studies are needed to understand the impact of dysbiosis in response to therapy in these children
and to define how to modulate the microbiome to favor a positive therapeutic outcome.
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1. Introduction

Cancer diagnoses in patients younger than 20 years old are rare, representing only
approximately 1% of all new cancer cases every year, and the survival rate increased to
84.8% from 2008 to 2013 in all age groups 0-19 years [1]. The epidemiology of cancer
in children differs from that in adulthood: lymphohematopoietic cancers account for
approximately 40%, central nervous system (CNS) cancers account for approximately 30%,
and embryonal tumors and sarcomas account for approximately 10% of cases. The most
frequent cancer in childhood, in particular, is leukemia (acute lymphoblastic leukemia
[ALL] and acute myeloid leukemia [AML]), with ALL accounting for 26% of all cancers in
children up to 14 years of age and 75% of all pediatric leukemia cases [2]. Children with
cancer undergo a treatment protocol that may include chemotherapy, radiotherapy (RT),
surgery, or hematopoietic cell transplantation (HCT) alone or in combination depending
on the type of cancer, its location, and its stage.

The use of some chemotherapeutics can produce cytotoxic effects, resulting in im-
munosuppression and an augmented risk of febrile neutropenia (i.e., the total number of
blood neutrophils < 500/mm?) and bloodstream infections [2]. This has led to widespread
use of antibiotic prophylaxis, which, combined with intensive chemotherapy treatment,
could have a long-term effect on the gastrointestinal microbiome [3]. The effects of this
alteration have been studied but remain mostly unknown; it has been proven that this
change leads to colonization by opportunistic pathogens, impairs the gastrointestinal bar-
rier, increases vulnerability to Clostridium difficile infections [3], and is also linked to the
development of a variety of diseases. In this review, we aimed to analyze the current
literature about the widespread use of antibiotic prophylaxis in children experiencing
infectious complications induced by chemotherapy and its effects on the gut microbiome.
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A further purpose was to show the current known effects of alterations of the microbiome
on children’s responses to chemotherapy and their future health outcomes. Eventually,
we wanted to focus briefly on probiotics, their actual use, and their possible more routine
application in clinical practice. PubMed was used to search for studies published mainly in
the last 15 years using the key words “cancer”, “microbiome” or “microbiota”, “antibiotic
prophylaxis”, and “children” or “pediatric”. More than 150 articles were found, but only

those written in English were taken into consideration.

2. Overview of Antibiotic Usage in Children with Cancer
2.1. Infectious Complications in Children with Cancer

Infectious complications are among the most common and life-threatening complica-
tions; they are associated with significant morbidity and mortality and lead to treatment
delays and dose reductions of chemotherapy [4]. Their development in children with
cancer mainly occurs during periods of neutropenia [5,6], and is favored by the presence
of skin and mucosal damage, central venous catheters, or the use of immunosuppressant
drugs [5].

Fever is the first and most frequent symptom of bacterial infection, especially during
periods of neutropenia. Castagnola et al. carried out a three-year observational study
showing that the highest frequency of neutropenic periods with primary febrile episodes
was observed after autologous HCT (58%), during induction treatment for ALL or non-
Hodgkin lymphoma (48%), and after allogeneic HCT (44%) [7]. In a study conducted by
Gil et al., 92.3% of patients diagnosed with cancer developed infectious complications
after high-dose chemotherapy or HCT [8]. A more recent observational study by Zaw-
itkowska et al., focusing on children with newly diagnosed ALL, showed that 53.2% of
them had a microbiologically documented bacterial infection during chemotherapy.

2.2. Etiology of Bacterial Infections

The most common infections during periods of neutropenia are bacterial infections,
and there has been a clear shift in the type of organisms involved during the past three
decades [4]: until the beginning of the 1980s, gram-negative rods (particularly Escherichia
coli, Klebsiella spp., and Pseudomonas aeruginosa) were the most frequent causes of bacterial
infections in cancer patients [5-7,9], but recently, an increase in the frequency of infections
caused by gram-positive organisms in these patients occurred [9]. Gram-negative bacteria
are the main causes of bloodstream infections, whereas gram-positive bacteria cause mainly
central venous catheter (CVC)-related infectious complications. However, infections caused
by gram-negative bacteria are associated with higher morbidity and remain the most
common cause of mortality during periods of myelosuppression [4,10,11].

3. Antibiotic Prophylaxis

The severity of bacterial infections during periods of neutropenia in children with
cancer makes essential the appropriate use of broad-spectrum antibiotics to resolve this
kind of complication and to reduce associated morbidity and mortality. Many different
approaches have been discussed in recent years, particularly concerning the correct classes
of antibiotics to use on these occasions and whether to prevent infectious complications with
systemic antibiotic prophylaxis or to treat them when microbiologically documented [12,13].
In the current literature, there is a lack of clinical guidelines concerning the routine use
of antibacterial prophylaxis. A recent study by Lehrnbecher et al. reviewed the works
on this argument to develop a guideline for the administration of antibiotic prophylaxis
in pediatric clinical practice, proving that there are not enough studies supporting the
routine use of antibiotics in children with cancer or HCT recipients because the benefits
of prophylaxis are balanced by its unknown and potential impacts and resistance [12].
However, antimicrobial prophylaxis for neutropenic patients undergoing cytotoxic therapy
reduces mortality, as supported by a meta-analysis published by Gafter-Gvili et al. [13],
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showing the importance of appropriate administration and selection of the correct class
of antibiotic.

3.1. Beta-Lactam Antibiotics

Beta-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial or-
ganism and are the most widely used group of antibiotics. At first, beta-lactam antibiotics
were mainly active only against gram-positive bacteria, yet the recent development of
broad-spectrum beta-lactam antibiotics active against various gram-negative organisms
has increased their usefulness [5]. The cephalosporin class and amoxicillin/clavulanate
have been widely studied and used, as proven by Castagnola et al., who employed prophy-
laxis with amoxicillin/clavulanate at a dose of 25 mg every 12 h and showed a reduction
in febrile episodes [14]. Feng et al. studied the incidence of infection-related fever in
children with AML and the outcome of prophylactic use of vancomycin/cefepime or
piperacillin/tazobactam versus a control group with no antibiotic prophylaxis: the result
was a significant reduction in infection-related fever in those children undergoing antibiotic
prophylaxis during periods of chemotherapy-induced neutropenia [15]. However, in the
last decade there has been a worldwide increase in multidrug-resistant (MDR) bacteria,
making the oral therapy approach with beta-lactams ineffective in many cases [16-19].

3.2. Fluoroquinolones (FQLSs)

FQLs interfere with DNA replication by preventing bacterial DNA from unwinding
and duplicating. They are effective against both gram-negative and gram-positive bacte-
ria [5]. FQLs were formerly used in the prophylaxis of adult patients with cancer because
of their great efficacy, as proven by two large studies conducted in 2005 [20,21]. Since then,
there has been growing interest concerning the routine use of FQLs in antibiotic prophylaxis
because they have a broad antibacterial spectrum, good bioavailability and bactericidal
activity, are well tolerated, and do not have any myelosuppressive effects. Indeed, a recent
review by Lehrnbecher showed that FQL prophylaxis significantly reduced bacteremia,
fever, and neutropenia; it was not significantly associated with C. difficile infection, inva-
sive fungal disease, or muscle-skeletal toxicities, but it was significantly associated with
more FQL resistance in bacteremia isolates [12]. One of the first works on this topic was
performed by Cruciani et al., who studied the effects of norfloxacin compared with that
of trimethoprim-sulfamethoxazole (TMP-SMX) in 44 neutropenic children with various
malignancies, proving that FQL was superior in preventing febrile episodes, but the mean
number of febrile days was similar in the two groups [5,22].

Recent studies focused on ciprofloxacin, whose effects have been widely studied in
children with cancer, and levofloxacin, which seems to be the preferred agent if antibac-
terial prophylaxis is planned [12]. Alexander et al. studied the effects of prophylaxis
with levofloxacin at a prophylactic dosage of 10 mg/kg twice daily (in children aged six
months to five years) or 10 mg/kg once daily (for children aged more than five years) in
624 patients with AML, with relapsed ALL, or who underwent HCT, proving that among
children with acute leukemia receiving intensive chemotherapy, the administration of
levofloxacin prophylaxis compared with no prophylaxis resulted in a significant reduction
in bacteremia; however, there was no significant reduction in bacteremia for levofloxacin
prophylaxis among children undergoing HCT [23]. Ciprofloxacin also has a good efficacy
profile, as proven by Laoprasopwattana et al., who compared his effects with a placebo
group in 95 patients with lymphoma and ALL and observed a reduction in fever and
bacteremia in those receiving FQL [24] during induction but not during the consolidation
phase. Widjajanto et al. conducted a similar study in 110 children with ALL who were
undergoing induction treatment and compared the effects of prophylaxis with ciprofloxacin
with those of placebo; the result was disappointing, with a greater risk of fever and sepsis
and increased mortality among those who received ciprofloxacin [25]. The dosage of
ciprofloxacin has varied among the studies: Yousef et al. used ciprofloxacin at a prophylac-
tic dosage of 25 mg/kg/day [26], Laoprasopwattana at a dosage of 20 mg/kg/day [24],
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Choeyprasert at 20-30 mg/kg/day in two divided doses in combination with penicillin
sodium V 25-50 mg/kg/day in four doses [27], while Al Omar et al. administered it at a
dosage of 10 mg/kg/day divided into two doses every 12 h [28].

3.3. Trimethoprim-Sulfamethoxazole (TMP-SMX)

TMP-SMX, also known as co-trimoxazole, is a combination of two antimicrobial agents
that act synergistically against a wide variety of bacteria. The two components, TMP and
SMX, work sequentially to inhibit enzyme systems involved in the bacterial synthesis of
tetrahydrofolic acid [5]. TMP-SMX prophylaxis is a valid alternative to FQLs that reduces
bacteremia and infection-related mortality, but it increases resistance in bacteremia iso-
lates [12]. It has broad-spectrum activity, including gram-positive bacteria, gram-negative
bacteria, Nocardia, and Pneumocystis jirovecii. Its efficacy profile was supported by some
studies conducted by Goorin et al. [29], which showed fewer fever episodes in children
treated with TMP-SMX than in children treated with the placebo [29], and by Kovatch et al.,
which found a reduction in fever and bacteremia related to its use [30]. However, these posi-
tive aspects are balanced by a series of drawbacks, including the development of hypersensi-
tivity, breakthrough infections due to resistant gram-negative and gram-positive pathogens,
fungal infections, and C. difficile colitis, as evidenced by Gualtieri et al. [29-31]. For the
appropriate prophylactic dose, Schroder et al. used it at a dosage of 10-30 mg/kg/day [32],
Cullen et al. employed a fixed dosage of 20 mg/kg/day [21], Chastagner et al. a prophy-
lactic dosage of 25 mg/kg/day every two days [33], while Al Omar et al. used TMP-SMX
at a dosage of 2.5 mg/kg/day in combination with ciprofloxacin for two consecutive days
per week [28].

In Table 1, we report the main studies on antibiotic prophylaxis performed by the
authors cited above, who administered different agents at different dosages, showing that
there are no official and standard guidelines for antibiotic prophylaxis in children with
cancer. As demonstrated, antibiotic prophylaxis in these patients may have a fundamental
role in preventing and reducing infection-related mortality in children with a high risk of
febrile neutropenia and infectious complications, but more studies are required to define
the best treatment, to ensure a correct balance of positive and adverse effects, to show
the feasibility of all the different molecules available, and to establish a widely accepted
guideline [28,34].

Table 1. Main studies regarding antibiotic administration in children with cancer.

Author, Year Criteria for Prophylaxis Antibiotics Employed
Children with cancer and - FZF(I)\/IP'S/I\EX/; 10-30 mg/kg/die or
N probably long-lasting mg/xg/die i .
Cecinati, 2013 neutropenia, in accordance to the chemotherapics —  CPF— 25mg/kg/die or 20 mg/kg/die
emploved —  Amoxicillin + clavulanic acid — 25 mg twice
ploye . .
daily for 15 days maximum
Chastagner, 2018 Patients .with AML or ALL in order. to prevent —  Oral TMP-SMX 25 mg/kg/die every two
infections related to mortality days
To all HCT recipients on the day on which
conditioning regimens started, until engraftment,and _  Qral Ciprofloxacin 20-30 mg/kg/die in two
Choeyprasert, 2017 discontinuation was indicated when the patients divided doses + Penicillin V sodium
developed fever, clinically documented infection or 25-50 mg/kg/die in four doses

suspected infection
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Table 1. Cont.

Author, Year Criteria for Prophylaxis Antibiotics Employed
To each CT course when the ANC was <1000 Ciprofloxacin — 10 mg/kg/die every 12 h
Al Omar, 2017 cells/mm?3 and continued until AMC was >100 Cotrimoxazole — 2.5 mg/kg/die every 12 h
cells/mm? postnadir for two or consecutive days per week
To all patients aged 6 months to 21 years with acute —  Levofloxacin — 6 months to 5 years:
Alexander, 2018 leukemia (any AML or relapsed ALL) or 10 mg/kg twice daily; >5 years: 10 mg/kg
HCT recipients once daily

4. Dysbiosis and Cancer in Children

The human gut microbiota consists of thousands of different species, each sharing a
symbiotic relationship with the human host [35]. It appears that each person has his or her
own individual suite of microbial strains [36,37]; this bacterial “panel” is acquired in the
early stages of life [38] and can remain unaltered or go through different transitions [39,40].
Dysbiosis, an imbalance in microbial taxa, has been implicated in various aspects of human
health. One of the main factors that can disrupt a healthy gut microbiota is antibiotic
exposure [41]: even short-term antibiotic usage has been linked to the loss of certain
taxa (i.e., a reduction in the diversity of Firmicutes and Bacteroidetes, growth of the family
Enterobacteriaceae) [42,43], impairment of the gastrointestinal barrier [44], and increased
vulnerability to Clostridium difficile [45] and other vancomycin-resistant Enterococci [46].
Even within days of the administration of antibiotics, a significant upregulation of resistance
genes has been shown [41]. In children, it has been shown that a disrupted intestinal
microbiota is linked to the development of a range of diseases (such as inflammatory bowel
diseases [47], Kawasaki syndrome [48], asthma [49], autism [50-52]), and most importantly,
dysbiosis itself plays an important role in cancerogenesis, alongside environmental and
genetic factors [53,54]. Since antibiotics are largely used to prevent infectious complications
in neutropenic children undergoing chemotherapy [55] and represent some of the most
frequently prescribed drugs in pediatric patients [56,57], a better understanding of the
dynamic interaction between gut microbiota dysbiosis and cancer pathogenesis may be
helpful to improve the standard of care in children with cancer. On the other hand,
chemotherapy itself can further worsen the microbiota composition.

4.1. Gut Microbiome Alterations in Children with Acute Leukemia

Acute lymphoblastic (ALL) and myeloid (AML) leukemia are the most frequent
childhood blood malignancies [58]; therefore, alterations in the microbiota at the time of
diagnosis and during chemotherapy have been analyzed mostly in children with leukemia.
It has been shown that in both ALL and AML patients, the amount of bacterial flora is
reduced in comparison with that in healthy controls: specifically, a significant decrease
in Bifidobacteria, Lactobacillus, and E. coli has been found in children with leukemia [59,60].
Rajagopala et al. [3] collected stool samples from 51 children, both pediatric and adolescent
patients with ALL and healthy siblings, to identify possible variations in the gut microbiota
before and during chemotherapeutic treatment; Bacteroides, Prevotella, and Faecalibacterium
were found in both groups at the time of diagnosis, but the overall microbial diversity of the
ALL group was lower than that of the healthy sibling group (p < 0.01). Microbial diversity
was not significantly different at the end of chemotherapy but increased significantly at
different visits after the end of chemotherapy (p < 0.01). Van Vliet et al. [60] collected
stool samples from pediatric patients with AML who were undergoing chemotherapy
and receiving antimicrobial prophylaxis against gram-negative bacteria and fungi (oral
colistin, neomycin, and amphotericin B with ciprofloxacin and itraconazole), viridans group
streptococci (oral pheneticillin), and Preumocystis jirovecii (oral cotrimoxazole); they found
a large decrease in anaerobic bacteria, compensated by an increase in potential pathogenic
Enterococci. These studies show that antibiotic-induced dysbiosis could be dangerous in
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critically ill patients but is not solely responsible for such disruption of the gut microbiota;
the interaction between chemotherapy and different factors (genetics, diet) [61] in shaping
dysbiosis may be the key to obtaining a better understanding of the dynamics underlying
cancerogenesis.

4.2. Microbiota and the Patient’s Outcome: Infections, Adverse Effects, and Response to Treatment

Infections are a common and dangerous complication in children with cancer [4,62]. In
addition to bloodstream infections (generally caused by gram-negative bacteria [63]), CVC-
related infectious complications are also a relevant cause of morbidity. It has been estimated
that 14-51% of CVCs implanted in children with malignancies may be complicated by
bacteremia [64]. Galloway et al. [65] collected buccal and fecal specimens twice weekly
from 34 AML patients undergoing induction chemotherapy to define a possible link
between antimicrobial composition and infection outcomes. They observed that a low
baseline a-diversity in stool samples was associated with the development of infections
during chemotherapy; patients before leukemia treatment had a wide range of x-diversity,
indicating that the factors causing this variability are numerous and may include previous
antibiotic exposure, diet, and genetics. Interestingly, it was noted that higher antibiotic
exposure during induction chemotherapy was significantly associated with an increased
risk of infection after treatment.

While early administration of broad-spectrum antibiotics has been shown to reduce
mortality, there is some evidence that prophylactic antibiotic regimens may alter the
human microbiota, thus inducing antibacterial resistance and the proliferation of MDR
bacteria [62]. Two similar nonrandomized studies [66,67] evaluated blood cultures from
pediatric cancer patients presenting with febrile neutropenia; in both studies, some patients
underwent antibiotic prophylaxis with ciprofloxacin (a small portion of the patients in one
study were not treated, but interestingly, all adult patients from the same center received
FQL prophylaxis). The results were similar: in children receiving ciprofloxacin, gram-
negative bacteria found in blood cultures had increased rates of resistance towards multiple
antibiotics. Even children who did not receive ciprofloxacin but were hospitalized in the
same institution where adults underwent FQL prophylaxis had this pattern of resistance,
suggesting that factors in addition to antibiotic exposure must be involved. TMP-SMX
prophylaxis does not seem to cause these alterations, but fewer data are available [68].

A frequent gastrointestinal complication in children with cancer is diarrhea, which can
seriously impair the patient’s quality of life as it leads to malnutrition and fatigue [69,70].
While chemotherapy and radiation are proven risk factors for mucositis and therefore acute
diarrhea [71,72], the gut microbiota has recently been proposed as a potential factor in the
onset of this complication [73-83]. In a study by Manichanh et al. [73], fecal samples from
10 patients undergoing radiotherapy for abdominal tumors were collected at different times
during treatment; six of them suffered from diarrhea and showed a progressive reduction in
microbial diversity, while the other four had a “stable” gut microbiota compared with that
of a healthy control group. Similar results have been seen in post-chemotherapy diarrhea,
with the gut microbiota changing towards Escherichia coli and Staphylococcus domination
with decreases in lactobacilli, Bifidobacteria, Bacteroides, and Enterococci [74]. Even if very
few data are available concerning the role of microbiota in pediatric patients with cancer
presenting diarrhea [60], probiotics are now taken into consideration in different studies as
a possible tool to prevent chemotherapy- and radiotherapy-related mucositis [75]. Finally,
some authors have suggested a potential interaction between the gut microbiota and
anticancer drugs, thus influencing antineoplastic treatment. In murine models, there
is increasing evidence of this particular interaction. lida et al. [76] showed that mice
with subcutaneous EL4 lymphoma who received an antibiotic cocktail prior to oxaliplatin
treatment had a significant reduction in cancer regression and survivability when compared
with an “antibiotic-free” control group. These findings are replicated in another interesting
study by Gui et al. [77], in which animals with lung cancer receiving a combination of
cisplatin and antibiotics had a decreased survival rate in comparison to mice treated with
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cisplatin alone. On the other hand, the administration of cisplatin and Lactobacillus bacteria
improved the response to therapy.

The mechanism that may underlie the relationship between gut microbiota and
chemotherapy is summarized in Table 2. Several studies on this topic are still ongo-
ing, and with novel drugs coming out every year and the growing usage of monoclonal
antibodies in different stages of cancer, many more relationships are yet to be discovered.

Table 2. Main studies on the gut microbiota and chemotherapy dynamics.

Author, Year Finding

Certain bacteria reside in the tumor tissue and can directly
modulate chemotherapy by producing nucleoside

Huang [78], 2001 analogue-catabolizing enzymes, which can interfere
with antineoplastic drugs.
Lehouritis [81], Escherichia coli nitroreductase activity is able to enhance the
2015 cytotoxicity of the drug CB1954.

Shifts in microbiota decrease the production of ROS and oxidative damage,

lida [76], 2013 key mechanisms in many anticancer drugs.

Gram-positive bacterial decontamination with antibiotics reduces the
Viaud [82], 2013 stimulation of the Th1 and Th17 immune responses, thus
impairing the efficacy of cyclophosphamide.

Methotrexate can induce gastrointestinal toxicity: in murine models, gut
microbiota depletion has been linked to poorer TLR2 activation and
Frank [83], 2015 therefore lower expression of the multidrug resistance pump
ABCB1/MDR1. The TLR2 pathway has been proven to reduce the toxic
effects of methotrexate on the gut epithelium.

4.3. The Gut Microbiota Plays a Key Role as Trigger for Gut Graft Versus Host Disease in the
Context of Hematopoietic Stem Cell Transplantation (HCT)

When cancer or cancer treatments destroy the stem cells, HCT may be the best treat-
ment option. The possible link between gut microbial disruption and HCT has been widely
studied, and it is currently clear that dysbiosis is one of the many actors in the genesis of
graft versus host disease (GvHD), a potentially lethal complication of HCT.

The first studies on this topic were performed in the 1970s [84,85], when analyses
in mice showed a lower incidence of gut GvhD in germ-free animals. Since then, much
progress has been made, especially thanks to the use of next-generation sequencing. The
work of Holler et al. [86] is particularly relevant: stool specimens from 31 patients receiving
HCT were analyzed before and after the procedure through next-generation sequencing.
Before HCT, all patients showed a similar balance of commensal bacteria. After HCT, a shift
towards Enterococcus domination was observed, which was particularly evident in patients
under antibiotic treatment who developed gut GvHD. This was one of the first studies to
provide evidence that alteration of the microbiota by HCT-related procedures (such as an-
tibiotic exposure) is directly linked to GvHD, as confirmed in more recent analyses [87-90].
Italian researchers have been particularly active in defining how microbiota dysbiosis im-
pacts pediatric patients undergoing HCT. A first work published in 2015 [91] showed that
changes seen in adult patients also occurred in children. Pre- and post-HCT samples were
collected from 26 pediatric patients undergoing HCT and analyzed with next-generation
sequencing to define possible variations in microbiota structure. Interestingly, children
who suffered from GvHD had specific gut microbiota signatures after HCT: overgrowth
of Enterococcus and Clostridiales, decreases in Faecalibacterium and Ruminococcus, and a
substantial decrease in Bacteroides, a group of bacteria associated with the production of
propionate, which might have the ability to activate T helper type 2 cells [92,93]. Moreover,
Biagi et al. [94] tried to determine with more accuracy if these differences in the gut micro-
biota population were already established before HCT. Stool specimens from 36 pediatric
patients undergoing HCT were collected before transplantation, at the time of engraftment
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and after 30 days. Next-generation sequencing showed that children who suffered from
GvHD had dysbiosis before HCT (a lower number of Blautia, a higher abundance of Fu-
sobacterium, and decreased overall diversity), thus implying that the gut microbiota may be
a tool to stratify GvhD risk. Finally, in a recent study by d’Amico et al. [95], the gut resis-
tome, meaning the pattern of antibiotic resistance derived from the gut microbiome, was
taken into consideration. A comparison was made between 8 pediatric patients undergoing
HCT and 10 healthy adults. Interestingly, an amplification of the resistome was noted,
especially in four patients who developed acute GVHD, even though antibiotics were not
routinely administered in the course of transplantation (aminoglycosides, macrolides, and
tetracyclines). All this evidence suggests that microbiota and HCT outcomes are deeply
intertwined, even in pediatric patients, in whom the microbiota is often still taking shape
and in some sense immature. Prebiotics, probiotics, or fecal microbiota transplantations
might be fundamental tools for preventing major damage associated with this procedure.

4.4. Efficacy of Probiotics in Children with Cancer

Probiotics are live microorganisms, which, when administered in adequate amounts,
confer a health benefit on the host [96,97]. Probiotic supplementation has been widely
studied in children presenting various health conditions [98-104], whereas there have been
very few studies regarding gut microbiota dysbiosis in pediatric patients with cancer. The
first one was published in 1980 [105] and was also one of the first works that examined
the concept of intestinal decontamination, that is, a prophylactic strategy that consists
of the administration of antimicrobials with limited anaerobicidal activity in order to
reduce the burden of aerobic gram-negative bacteria and/or yeast in the intestinal tract
and so prevent infections caused by these organisms. In a group of 68 children with
leukemia and solid tumors, 35 neutropenic episodes in 33 children were treated with
framycetin, colymycin, nystatin, and metronidazole, while the other 35 episodes in the
remaining 35 children were cured with TMP-SMX and Lactobacillus preparations [105].
Even if there was no significant difference in the incidence of infections during the period
of neutropenia, the second group had better tolerance to the medication, so the authors
concluded that a TMP-SMX and Lactobacillus preparation may improve quality of life in
neutropenic children and is also relatively inexpensive [105]. Finally, Wada et al. [106]
demonstrated that children with cancer receiving Bifidobacterium breve strain Yakult had
decreased levels of Enterobacteriaceae in their stool and, more importantly, children assigned
to the probiotic group had fewer febrile episodes (0.5 & 0.62, 95% confidence interval [CI]:
0.21-0.79 and 1.06 £ 1.80, 95% CI: 0.19-1.93) than did children assigned to the placebo
group (0.95 & 0.79, 95% CI: 0.62-1.28 and 3.00 £ 3.84, 95% CI: 1.39-4.61), thus indicating
lower usage of antibiotics. Nevertheless, there is much more work to be done, especially
since some researchers have shown concerns about the possibility of administering living
microorganisms to patients with compromised immunity and gut defenses after reports of
sepsis caused by probiotic pathogens [107-109]. Further studies are needed to define the
feasibility and correct duration of probiotic administration, when it should be suspended,
and if it has a real impact in preventing major gut comorbidities in children with solid or
hematological malignancies.

5. Conclusions

Our review of the literature shows that antimicrobial prophylaxis in children with
cancer is still a trending topic and, at the moment, there are not enough data to define
universal guidelines. The reasons for this challenge are numerous. First, a child is an
“evolving” being: the immune system changes rapidly in pediatric age and drastically
over time, as does its response to certain drugs. Table 3 summarizes the effects of different
antibiotics on intestinal microbiota. Finding a standard prophylaxis for children of all ages
might be hard, especially because most studies take into account the use of FQLs, drugs
not registered for children. Moreover, different factors come into play when discussing
antibiotic prophylaxis. Not only is the right dosage fundamental but also the feasibility
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of the prophylaxis itself is an element that needs to be taken into consideration in future
studies; when we discuss pediatric patients, the number of administrations and the palata-
bility [110] of a drug are key points, as these are among the major factors affecting pediatric
compliance.

Table 3. Effects of different antibiotics on intestinal microbiota.

Antibiotic Effects on Intestinal Microbial

Reduction in bacterial diversity
Increase in abundance of Enterococcus spp. and Enterobacteriaceae
(Citrobacter spp., Klebsiella spp., Proteus spp.)

e  Reduction in Clostridium spp., Bifidobacterium spp., Lactobacillus spp.,
Roseburia spp.

Amoxicillin/
clavulanate acid

Depletion of Enterobacteriaceae spp. and Escherichia coli
Increase in the abundance of Enterococcus, Citrobacter spp., Klebsiella
Cephalosporins spp., Pseudomonas spp.
e  Increase in the colonization of Clostridium difficile for high generation
cephalosporins

) - Increase in abundance of Enterococcus spp. and Escherichia coli
Piperacillin e  Depletion of Bacteroides spp., Bifidobacterium spp., Clostridium spp.,
Lactospirum spp., Lactobacillus spp.

° Reduction in the abundance of Enterobacteriaceae spp. and
Trimethoprim- Escherichia coli
Sulfamethoxazole ¢  Increase of resistant Escherichia coli, Acinetobacter spp. and
Pseudomonas spp.

° Reduction in the abundance of Enterobacteriaceae, Escherichia coli,
Bacillus spp., Corynebacterium spp.

e  Depletion of some anaerobic bacteria (Bacteroides spp., Bifidobacterium
spp., Lactobacillus spp., Peptostreptococcus spp., Veilonella spp.)

e  Increase in the abundance of Citrobacter spp., Enterobacter and
Klebsiella spp.

Fluoroquinolones

In addition to defining the optimal antibiotics needed for prophylaxis, there is still
uncertainty about patients who do not need treatment. With antimicrobial resistance
being a global health security threat [111], more accurate antibiotic prescriptions should
be implemented, especially in patients with cancer, to prevent serious complications and,
as we have described in our review, disruption of the intestinal microbiota, an emerging
player in maintaining human health. Many researchers around the world have focused on
obtaining a better understanding of the influence of the gut microbiota in different health
conditions, but only in recent years has the idea of modulating the microbiome to modify
the outcome of hematological/oncological diseases started to attract attention. Novel
strategies for preventing antibiotic-mediated dysbiosis have been proposed: some authors
have suggested the use of beta lactamase enzymes for the degradation of antibiotics in the
gut [112], while others proposed that changing nutritional strategies in oncological patients,
such as promoting enteral nutrition rather than parenteral nutrition or the administration
of specific molecules (probiotics), might be the key to preventing gut complications [113].
Another approach for the prevention of dysbiosis is the possibility of intervening in the
nutritional state of the patients. Children undergoing chemotherapy exhibit several varia-
tions in their body composition, with a higher percentage of fat mass and a lower body cell
index [114] or a general reduction in bone density [115]. Probiotics may be helpful in these
patients since some of them can regulate protein absorption and utilization [116,117].

In conclusion, children with cancer experience long and painful medical treatments
and side effects, which are associated with great economic and social burdens, important
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psychological consequences, and dysbiosis induced by antibiotics and also by chemother-
apy [118-120]. Considering that a healthy gut microbiota keeps the gut epithelium intact,
studies are needed to understand the impact of dysbiosis in response to therapy in children
with cancer and to define how to modulate the microbiome to favor a positive outcome.
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