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Abstract: Flowers are rich sources of bioactive antimicrobial, antioxidant, and anticancer components.
This study aimed to determine the constituents of the ethanol extract of Malvaviscus arboreus red
flower (ERF) by GC-MS analysis and HPLC identification of phenolic compounds and flavonoids,
in addition to the 1HNMR fingerprint. The antimicrobial, antioxidant, and cytotoxic activities of
the ERF were investigated. The GC-MS analysis revealed twenty-one components, while HPLC
analysis revealed the presence of phenolic and flavonoid compounds. The ERF showed antifungal
and antibacterial activity. The highest antibacterial activity was found against Vibrio damsela where a
time-kill assay revealed a decline in the amount of viable V. damsela. For fungi, the highest activity was
observed against Aspergillus terreus. Using the SRB test on HepG2, the anti-proliferative efficacy of
the ERF was evaluated. Cell cycle analysis was utilized to determine autophagic cell death. The ERF
prevented the proliferation of the HepG2 cell line with an IC50 of 67.182 µg/µL. The extract primarily
promoted apoptosis in HepG2 cells by accumulating hypodiploid cells in the sub-G0/G1 phase,
increased caspase 3/7 activity, and caused considerable autophagic cell death in apoptosis-deficient
cells. Finally, the observed elevation of cancer cell death indicated that ERF had substantial anticancer
potential against HepG2 cells.

Keywords: Malvaviscus arboreus; GC-MS; HPLC; antimicrobial; antioxidant; HepG2

1. Introduction

Cancer is one of the biggest causes of mortality in the world, accounting for an
estimated 9.9 million lives lost in 2020 [1]. A recent study found that hepatocellular
carcinoma (HCC) was the fourth greatest cause of cancer-related fatalities worldwide [2].
The prognosis for this form of cancer is dismal [3], as it is typically diagnosed late. Unlike
several other cancers, these strike more frequently in developing nations. HCC usually
happens alongside cirrhosis, which can be caused by the hepatitis C virus, hepatitis B virus,
alcoholism, Wilson’s disease, type 2 diabetes, hemochromatosis, and hemophilia. Still, the
hepatitis B virus and hepatitis C virus are the main causes of liver cancer [4]. Previous
studies indicated that oxidative stress plays a role in liver cancer [5], but its mechanisms
and impacts remain unclear. Reactive oxygen species (ROS) such as superoxide anion
(O2

−), hydrogen peroxide (H2O2), and hydroxyl radical (HO), which are mostly made by
breathing, inflammation, or metabolism, can cause mutations or lesions in larger genomic
sites. In addition, H2O2 is a signaling molecule that balances inflammation, separation,
growth, protection, metastasis, autophagy, division, and metabolic pathways. In cancer,
the activity of these pathways is a key determinant of malignancy [6]. Antioxidants
and peroxidants are kept in balance in check within a healthy cell. Oncogenesis and
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tumor growth in HCC are triggered by an imbalance of peroxidants and antioxidants [7].
Chemotherapeutic drugs are currently limited in treating cancer due to side effects and
tumor resistance. New and safe anticancer drugs can be found in natural sources [8].

Antimicrobial resistance is a worldwide problem urging the research for new pipelines
of natural or synthetic sources. Therefore, it is a significant challenge to find innovative
and safe therapeutic choices [9].

Bioactive compounds are abundant in plant extracts. This is due to a range of chemical
ingredients, for example, alkaloids, polyphenols, and flavonoids, all of which play an
essential part in the drug development process [10]. In Africa, many medicinal plants are
utilized to cure different illnesses since they are a viable option, especially in developing
countries. Malvaviscus arboreus Cav. is a tropical and subtropical perennial deciduous
shrub endemic to Central and South America. This plant has multiple common names,
encompassing Wax mallow, Drummond Wax Mallow, Turk’s cap, and Sleeping Hibiscus.
The leaves of M. arboreus contain compounds such as protocatechuic acid, chlorogenic acid,
gallic acid, p-coumaric acid, ferulic acid, and hydroxybenzoic acid [11]. Malvaviscus arboreus
has been used in traditional medicine. The leaf decoction is used for cystitis, diarrhea, fever,
and gastritis [12]. The flower decoction is used as a gargle for sore throat, nursing infants
with cold, bronchitis, diarrhea, thrush, and tonsillitis.

There is no information on the chemical components and the biological effects of the
ethanol extract of red flowers (ERF) of M. arboreus in the literature. The current study inves-
tigated chemical constituents of ERF of M. arboreus, and its antimicrobial and antioxidant
effects, in addition to the cytotoxic action on the HepG2 cell cline.

2. Materials and Methods
2.1. Preparation of the Extract

The Malvaviscus arboreus red flowers were collected from the campus of Minia Univer-
sity in May 2021 and authenticated by Professor Raga A. Taha, Horticulture Department,
Faculty of Agriculture, Minia University. The flowers were washed with distilled water
and kept at room temperature to dry. The dry flowers were ground and soaked in ethanol
(100 mL ethanol for a 10 g dry sample) at room temperature for 24 h, filtered through
Whatman No.4 filter paper (Whatman®Prepleated Qualitative Filter Paper, Grade 4 V,
Sigma-Aldrich Company Ltd. (St. Louis, MO, USA)), and the extract was evaporated using
a rotary evaporator (Büchi Rotavapor R-114 a Waterbath. B-480, Buchi, Switzerland) at
40 ◦C to obtain the crude extract. Then the extract was kept at 4 ◦C until used in the analysis.

2.2. Phytochemical Examination

The presence of coumarins, saponins, tannins, flavonoids, glycosides, phenols, steroids,
terpenoids, emodins, anthocyanins, and alkaloids in the ERF of M. arboreus was investigated
using qualitative assays as previously reported [13].

2.3. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)

As previously reported [14], total flavonoid content (TFC) in the ERF of M. arboreus was
examined using aluminum chloride (AlCl3) colorimetric test. The flavonoid concentration
was calculated as mg of quercetin equivalent/g extract. The total phenolic content (TPC)
in the ERF of M. arboreus was recorded by the Folin–Ciocalteu assay [14]. The amount of
phenolics was calculated as mg of gallic acid equivalent/g extract.

2.4. Antioxidant Activities (ABTS+, FRAP, DPPH, Metal Chelating Property, and ORAC)

Different assays were utilized to evaluate the antioxidant potential of the ERF of
M. arboreus. The radical scavenging activity of 2,2-azinobis 3-ethylbenzothiazoline-6-
sulfonic acid (ABTS+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), in addition to the ferric
reducing antioxidant power (FRAP) were measured following the procedures published
by Adedapo et al. [15]. The capacity of the extract to chelate iron (II) was evaluated using
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the procedure described by Gülc et al. [16]. For the metal chelating activity test, the ORAC
assay was performed as published by Ou et al. [17].

2.5. GC-MS Analysis

The GC-MS analysis of ERF of M. arboreus was performed following a published
procedure [18] using a Trace GC1310-ISQ mass spectrometer (Thermo Scientific, Austin, TX,
USA) with a direct capillary column TG–5MS (30 mm × 0.25 mm × 0.25 µm film thickness,
Thermo Scientific, Austin, TX, USA). The column’s oven temperature was kept at 50 ◦C;
following that, it was set to reach 200 ◦C at 7 ◦C/min, held for 2 min, and then set to reach
290 ◦C, increased at 15 ◦C /min and maintained for 2 min. The temperature in the injector
was kept at 260 ◦C. At a steady flow rate of 1 mL/min, helium was utilized as the carrier
gas. After a 4-min solvent delay, an AS3000 autosampler and GC in the split mode were
employed to automatically inject 1 µL of the diluted sample. At 70 eV ionization voltages
spanning the m/z 50–650 range, EI mass spectra were acquired in full scan mode. The ion
source and transfer line were adjusted to 270 and 250 degrees, respectively. By contrasting
the components’ mass spectra retention times to the NIST 11 and WILEY 09 mass spectral
databases, the components were identified.

2.6. HPLC Determination of Phenolics and Flavonoids

The phenolic and flavonoid components of the ERF were determined using an injection
volume of 25 µL of the extract as previously reported [19] in an HPLC system (Agilent 1100;
Santa Clara, CA, USA).

The extract phenolic components were identified using an HPLC system (Agilent 1100;
Santa Clara, CA, USA) with a UV/Vis detector at a wavelength of 250 nm using a C18
column (125 × 4.60 mm, particle size 5 µm). The Agilent Chem Station was used to acquire
and analyze chromatograms. To completely separate the components of phenolic acids,
a mobile gradient phase of two solvents methanol [A] and acetic acid in water (1:25) [B]
was used. The gradient program started at 100% B and stayed for the first three min. This
was followed by 5 min of 50% eluent A, 2 min of 80% A, 5 min of 50% A, and the detection
wavelength was at 250 nm.

The same HPLC system was used to identify the flavonoid components in the extract
using a C18 column (Agilent; Santa Clara, CA, USA) (250 × 4.6 mm, 5 µm) and a UV/Vis
detector at a wavelength of 360 nm. Acetonitrile (A) and 0.2% (v/v) aqueous formic acid
(B) were used as the mobile phase with an isocratic elution (70:30) procedure.

2.7. 1HNMR Fingerprint Analysis

The 1HNMR fingerprint was analyzed at 400 MHz using a Bruker Avance 400 spec-
trophotometer (Karlsruh, Germany), using DMSO as a solvent and tetramethylsilane (TMS)
as an internal standard.

2.8. Antibacterial Activity
2.8.1. Test Microorganism

The bacterial strains Enterococcus faecalis, Bacillus subtillus, Bacillus cereus, Staphylococcus
aureus, Vibrio fluvialis, Vibrio damsela, Pseudomonas aeruginosa, and Salmonella typhimurium;
and the fungal strains Aspergillus fumigatus, Aspergillus terreus, Aspergillus niger, Aspergillus
flavus, Aspergillus parasiticus, and Penicillium oxalicum used in this work were provided by
the Department of Microbiology, National Institute of Oceanography and Fishers, Red Sea
branch, Egypt. These strains were isolated from marine sources and identified by Dr. Moaz
M. Hamed. The strains were kept at 2 ◦C on nutrient agar slants for bacteria and Potato
Dextrose Agar (PDA) (Neogen Corporation, Lansing, MI, USA) for fungi slants. The slants
were folded with 25% glycerol to ensure long-term preservation.
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2.8.2. Bacterial Inactivation by ERF

The agar well diffusion assay technique was used to measure antibacterial activity.
Antibacterial susceptibility assay of ERF was performed against the selected pathogens.
In a petri-dish containing 20 mL of Muller Hinton agar media (composed of g/L is: beef
ex-tract 2.0; acid hydrolysate of casein 17.5; Starch 1.5 and agar 17.5), the agar plate surface
was inoculated by spreading a volume of the microbial inoculum (0.1 mL of bacterial
suspension containing 106 CFU/mL) over the entire agar surface. Then, a hole with a
diameter of 8 mm was punched aseptically with a sterile cork borer, and a volume of
ERF (100 µL) was introduced into the well. In agar wells of control plates, we applied
DMSO (0.5%) (Was purchased from R&M Marketing, Essex, UK) as a negative control
and amoxicil-lin/clavulanic acid (20/10 mcg) as a positive control, and then incubated the
plates at 37 ◦C for 24 h [20].

2.8.3. Minimum Inhibitory Concentration (MIC)

A tetrazolium microplate assay was used to determine the minimum inhibitory con-
centrations (MICs) of the test organisms [21]. A 96-well clear microtiter plate was used for
the experiment. Each well of the 96-well plate was inoculated with a suspension of freshly
isolated bacteria (0.1 mL) at a concentration of 5 × 105 CFU/mL. Different concentrations,
15 to 0.25 mg/mL, of the test extract were diluted in series with Muller–Hinton broth (Bec-
ton Dickinson, Sparks, MD, USA). A volume of 200 µL of each concentration was added in
triplicate to the wells and the plates were then incubated for 18–24 h at 37 ◦C ± 0.5. After
incubation, in each well, 50 µL of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide (MTT), with a concentration of 0.2 mg/mL, was added and the plate was incu-
bated at 37 ◦C for 30 min. The bacterial suspension without extract served as the positive
control, while the corresponding solvent blank (DMSO) served as the negative control.
The percentage reduction of the dye (representing the inhibition of bacterial growth) was
determined by measuring the absorbance at 570 nm relative to a reference wavelength of
650 nm, which was accomplished by introducing DMSO to the spectrophotometer [22].

2.8.4. Fungal Inactivation by ERF

The minimum inhibitory concentration (MIC) technique employing diffusion discs
was used to evaluate antifungal activity. ERF was diluted to 25% in DMSO, followed by
different concentrations of ERF (0.5–2.0 mg/mL). The strains (0.2 mL spore suspension
(106 spores per mL) of the tested fungal isolate) of A. fumigatus, A. terreus, A. niger, A. flavus,
A. parasiticus, and P. oxalicum were activated for 24 h in a liquid culture medium, Czapek
Dox broth (composition (g/L): Sucrose: 30; NaNO3: 3; KH2PO4: 1; MgSO4·7H2O: 0.5; KCl:
0.5 and FeSO4·7H2O: 0.01), at a temperature of 25 ◦C, and then brought to a concentration
of 0.5 McFarland by spectrophotometric reading. Czapek Dox agar was used to inoculate
petri dishes with the fungal strains that had already been produced. Six-millimeter sterile
discs were set atop the culture medium, and 10 µL of the diluted extract was pipetted onto
each one. The cultures were incubated at 25 ◦C for 72 h. The MIC of ERF was defined as
the lowest concentration that effectively suppressed fungal growth. DMSO was used as a
negative control [23].

2.8.5. Time-Kill Assay

According to the preliminary findings, the ERF of M. arboreus had the highest level
of antimicrobial activity on marine V. damsela. An investigation on the bactericidal effects
of the ERF on V. damsela was carried out utilizing a time-kill test. A bacterial culture
(5 × 106 CFU/mL) was added to Mueller Hinton broth (MHB) containing the extract at
4 × MIC, 2 × MIC, MIC
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2.8.6. Synergistic Activity

The ERF was tested in conjunction with amoxicillin/clavulanic acid using the standard
disc diffusion method against selected marine V. damsela. The antibacterial activity was
evaluated on an agar plate using discs made by combining amoxicillin/clavulanic acid
(20/10 mcg) with different doses of ERF (250, 500, 750, and 1000 µg/mL). The antibacte-
rial effectiveness of the ERF and amoxicillin/clavulanic combination was evaluated by
measuring the size of the zone of inhibition after 24 h of incubation at 37 ◦C [25].

2.9. Cytotoxic Study
2.9.1. Cell Lines

Nawah Scientific Inc. provided HepG2: Hepatocellular carcinoma (Mokatam, Cairo,
Egypt). In a humidified 5% (v/v) CO2 atmosphere, cells were kept at 37 ◦C in Dulbecco’s
Minimum Essential Medium (DMEM, Lonza, Basel, Switzerland) media enriched with
100 units/mL penicillin, 100 mg/mL streptomycin, and 10% heat-inactivated fetal bovine
serum (FBS).

2.9.2. Cytotoxicity Assay

The cell viability was measured utilizing the Sulforhodamine B (SRB) test. One
hundred microliter cell suspension (5 × 103 cells) aliquots were incubated in complete
media for 24 h in 96-well plates. A further aliquot of 100 µL media comprising ERF in
varying amounts was administered to the cells. The cells were fixed after 72 h of ERF
treatment by changing the medium with 150 µL of 10% Trichloroacetic acid (TCA) and
incubated for 1 h at 4 ◦C. The cells were rinsed five times with distilled water after the TCA
solution was removed. Seventy microliters of SRB solution (0.4% w/v) was administrated
in aliquots and incubated for 10 min in the dark at room temperature. Before being
air-dried overnight, plates were washed thrice in 1% acetic acid, then 150 µL of TRIS
(10 mM) was administrated to disperse the protein-bound SRB dye, the absorbance was
observed at 540 nm utilizing the FlUOstar Optima Microplate Reader (BMG LABTECH,
Ortenberg, Germany).

2.9.3. Analysis of Cell Cycle Distribution

A previously published procedure was followed for the analysis of the cell cycle
distribution [26]. One hundred and five cells were trypsinized and rinsed twice with ice-
cold phosphate buffered saline (PBS) after being treated with test drugs for 24 or 48 h and
paclitaxel (1 µM) for 24 h as a positive control (pH 7.4). The cells were fixed by resuspending
them in 2 mL of 60% ice-cold ethanol and incubating them for one h at 4 ◦C. After being
rinsed twice with PBS, the fixed pellet was resuspended in 1 mL of PBS (pH 7.4) with
50 µg/mL RNAase A and 10 µg/mL propidium iodide (PI). An FL2 (λex/em 535/617 nm)
signal detector was used to determine the DNA content of cells after 20 min of incubation
in the dark at 37 ◦C. (ACEA NovocyteTM flow cytometer, ACEA Biosciences Inc., San Diego,
CA, USA). Each specimen was made up of 12,000 events in total. The ACEA NovoExpress
application was used to calculate the cell cycle dispersion (ACEA Biosciences Inc., San
Diego, CA, USA).

2.9.4. Apoptosis Assay

Flow cytometry with two fluorescent channels and an annexin V-FITC apoptosis
detection kit were employed to identify apoptosis and necrosis in cell populations (Abcam
Inc., Cambridge Science Park, Cambridge, UK) using a published procedure [26]. After
24/48 or 72 h of treatment with ERF and doxorubicin (10 µM) as a positive control, cells
(105) were trypsinized and rinsed twice with ice-cold PBS (pH 7.4). The cells were then
maintained at room temperature in the dark for 30 min with Annexin V-FITC/PI solution
0.5 mL, as directed by the manufacturer. After labeling, cells were added to an ACEA
NovocyteTM flow cytometer (ACEA Biosciences Inc., San Diego, CA, USA) and measured
for PI and FTIC fluorescent signals with FL1 and FL2 signal detectors (λex/em 488/530 nm
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for FITC and λex/em 535/617 nm for PI, respectively). ACEA NovoExpressTM software
was used to assess the positive FITC or PI cells for each sample, utilizing quadrant analysis
(ACEA Biosciences Inc., San Diego, CA, USA).

2.9.5. Autophagy Assay

Autophagic cell death was measured by flow cytometry and acridine orange lysosomal
staining. A total of 105 cells were trypsinized and rinsed twice with ice-cold PBS after
treatment with ERF for 24/48 or 72 h and chloroquine (10 µM) as a positive control for
24/48 or 72 h (pH 7.4). The cells were stained with acridine orange (10 µM) and incubated
for 30 min at 37 ◦C in the dark. The acridine orange fluorescence signals using an FL1 signal
detector (λex/em 488/530 nm) in an ACEA NovocyteTM flow cytometer (ACEA Biosciences
Inc., San Diego, CA, USA). The ACEA NovoExpressTM software was used to calculate net
fluorescence intensity (NFI) from 12,000 incidences per specimen (ACEA Biosciences Inc.,
San Diego, CA, USA).

2.9.6. Caspase-Glo 3/7 Activity

The impact of the IC50 of ERF on caspase 3/7 activity in HepG2 cells was evaluated
using the Caspase-Glo 3/7 Assay kit (Promega, Walldorf, Germany), according to the man-
ufacturer’s instructions. Caspase activity was expressed as a proportion of the untreated
control [27].

2.10. Statistical Analysis

The Graphpad Prism 6 software was used to conduct all statistical analyses. A one-
way analysis of variance was utilized to compare the results (ANOVA). The statistical
significance was determined as a p-value < 0.05.

3. Results and Discussion

Plant extracts have substantial therapeutic potential with few negative adverse effects
for treating infectious diseases, making medicinal herbs an appealing source of new medic-
inal components. The therapeutic potentials are related to the phytochemical components.
The phytochemical profile ERF of M. arboreus was investigated.

3.1. Phytochemical Evaluation of ERF of M. arboreus
3.1.1. Phytochemical Screening

The preliminary screening of ERF of M. arboreus showed the presence of many phyto-
constituents, for example flavonoids, tannins, coumarins, saponins, glycosides, phenols,
terpenoids, steroids, emodins, alkaloids, and anthocyanins, which might account for their
medicinal effects (Table 1).

Table 1. Phytochemical screening of ERF of M. arboreus.

Tests Result

Flavonoids +
Tannins +

Coumarins +
Saponins ±
Steroids ±

Glycosides +
Phenols +

Terpenoids +
Emodins +

Anthocyanins +
Alkaloids ±

(+) positive test; (±) faint.
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3.1.2. Total Flavonoid and Phenolic Contents

The ERF of M. arboreus showed TFC and TPC of 23.83 ± 2.9 mg quercetin equivalent/g
extract and 46.25 ± 2.1 mg gallic acid equivalent/g extract, respectively, as well as high
antioxidant activity (Table 2). These phytoconstituents were shown to have a variety of
therapeutic activities and were known to be biologically active compounds [28].

Table 2. Total flavonoid and phenolics contents of ERF of M. arboreus.

Parameters Result

TPC (mg GAE/g extract) 46.25 ± 2.1
TFC (mg QE/g extract) 23.83 ± 2.9

Variables are shown as mean ± SD (standard deviation, n = 3). GAE: gallic acid equivalent; QE:
quercetin equivalent.

3.1.3. GC/MS Analysis

Figure 1 shows a total scan gas chromatogram of the ERF of M. arboreus. It demon-
strated the presence of several bioactive chemicals with varying retention times (RT). Table 3
shows the molecular weight, RT, and percent peak area, as well as chemical formulae of
the identified compounds. Additionally, the biological functions of the identified com-
pounds, as anticipated by Dr. Duke’s phytochemical and ethnobotanical databases (USDA,
Agricultural Research Service, 1992–2016), are also summarized in Table 3.
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Figure 1. GC-MS chromatogram of the ERF of M. arboreus.

Table 3. The identified compounds in the ERF of M. arboreus RF by GC/MS analysis.

RT Name of the Compound MF MW Peak
Area (%) Biological Activity **

1 6.07 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl C6H8O4 144 2.85 Antimicrobial,

anti-inflammatory
2 6.26 Octadecanoic acid, ethyl ester C20H40O2 312 1.46 Anti-microbial

3 9.17 3,5-Heptadienal,
2-ethylidene-6-methyl- C10H14O 150 1.14

Anti-inflammatory,
antitumor,
antiviral

4 10.71
4-(3,3-dimethyl-1-butynyl)-4-

hydroxy-2,6,6-trimethyl-2-
cyclohexen-1-one

C15H22O2 234 1.09 Antioxidant,
anti-inflammatory

5 12.33 10,13-Octadecadiynoic acid, methyl
ester C19H30O2 290 0.60 No activity reported

6 12.84 1-(3-Methoxy-5-methylphenyl)-N-
methylpropan-2-amine C12H19NO 193 1.20 No activity reported
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Table 3. Cont.

RT Name of the Compound MF MW Peak
Area (%) Biological Activity **

7 18.72
9,12,15-Octadecatrienoic acid, 2,3-bis
[(trimethylsilyl)oxy] propyl ester, (z, z,

z)-
C27H52O4Si2 496 0.66 Anticancer,

hepatoprotective

8 19.64 Cis-13-Eicosenoic acid C20H38O2 310 0.81 Anti-inflammatory
activity

9 20.01
9-octadecenoic acid,

(2-phenyl-1,3-dioxolan-4-yl) methyl
ester, cis

C28H44O4 444 0.72 Antimicrobial,
anti-inflammatory

10 20.38 Hexadecanoic acid, methyl ester C17H34O2 270 8.88

Antioxidant,
antimicrobial,

antihypercholesterolemic
property

11 21.27 Hexadecanoic acid C16H32O2 256 8.52
Anti-inflammatory,

antioxidant,
antihypercholesterolemic

12 21.47 Hexadecanoic acid, ethyl ester C18H36O2 284 3.66
Antioxidant,

antihypercholesterolemic
antiandrogenic

13 22.99 9,12-Octadecadienoic acid (Z, Z)-,
methyl ester C19H34O2 294 9.46

Hepatoprotective,
antihistamine,

hypocholesterolemia,
anti-eczema

14 23.09 11-Octadecenoic acid, methyl
ester C19H36O2 19.49 Antioxidant,

antimicrobial

15 23.19 16-Octadecenoic acid, methyl ester C19H36O2 296 3.86

Selectively inhibit
eukaryotic

DNA polymerase
activities in vitro

16 23.50 Octadecanoic acid, methyl ester C19H38O2 298 3.03 Antimicrobial

17 23.98
9,12-Octadecadienoic acid (Z, Z)-,

2-hydroxy-1-(hydroxymethyl)ethyl
ester

C21H38O4 354 18.41

Antiarthritic,
hepatoprotective,
antiandrogenic,

anticoronary,
antieczemic, anticancer

18 24.08 Ethyl oleate C18H34O2 282 7.73 Antibacterial,
anticancer

19 24.28 Oleic acid C20H38O2 310 1.25

It is used as a vehicle
for

intramuscular drug
delivery,

progesterone

20 24.41 Linoleic acid ethyl ester C20H36O2 308 0.71

Anti-arthritic,
anti-acne,

hepatoprotective,
anti-histaminic,
anti-coronary

21 24.49 Octadecanoic acid,
2,3-dihydroxypropyl ester C21H42O4 358 1.00 Anticancer,

antimicrobial

** Dr. Duke’s Phytochemical and Ethnobotanical Databases. RT: retention time; MF: molecular formula; MW:
molecular weight.

In the ERF of M. arboreus, 21 components were found. The predominant compounds
were 11-octadecenoic acid methyl ester (19.49%), 9,12-octadecadienoic acid (Z, Z)-2-hydroxy-
1-(hydroxymethyl)ethyl ester (18.41%), 9,12-Octadecadienoic acid (Z, Z)-methyl ester
(9.46%), hexadecanoic acid methyl ester (8.88%), hexadecanoic acid (8.52%), and oleic
acid (7.73%).
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3.1.4. Identification and Quantification of Phenolics and Flavonoids

HPLC examination of the ERF of M. arboreus revealed the identification and quan-
tification of 13 polyphenolic compounds (6 flavonoids and 7 phenolic acids), as shown in
Table 4. The compounds were identified by comparison to authentic samples analyzed
using the same procedures. Hesperidin and luteolin were the major flavonoids identified at
concentrations of 8.78 and 7.55 µg/mg of the ERF. Gallic acid was the predominant phenolic
component identified in the extract (7.39 µg/mg), followed by syringic acid (7.16 µg/mg)
and cinnamic acid (6.44 µg/mg) (Figure 2, Table 4).

Table 4. HPLC analysis of phenolics and flavonoids in the ERF of M. arboreus.

Components RT (min) Conc. (µg/mg)

Flavonoid compounds

Naringin 4.6 2.63
Hesperidin 10.0 8.78
Kaempferol 8.1 1.02

Luteolin 9.0 7.55
Apigenin 15.0 5.14
Catechin 12.0 4.27

Phenolic compounds

Caffeic acid 8.1 4.78
Cinnamic acid 13.0 6.44

Gallic acid 10.0 7.39
Syringic acid 5.2 7.16
Benzoic acid 7.0 3.55
Ellagic acid 15. 6 1.23

Figure 2. HPLC chromatogram showing identified flavonoids (A) and phenolic acids (B) in the ERF.
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3.1.5. 1HNMR Fingerprint of the ERF

The 1HNMR spectrum of the ERF at 400 MHz (Figure 3) revealed that the extract is
rich in oxygenated saturated and unsaturated hydrocarbon compounds. Signals in the
range 0.0–4.0 ppm are predominant in the spectrum while signals in the aromatic range
6.0–8.0 ppm are weak. In correlation to the GC and HPLC analysis, the extract is rich in
fatty acids (saturated and unsaturated), which explains why the fingerprint pattern as the
characteristic signals for fatty acids are 2.0–2.5 ppm for (CH2), 3.0–4.0 ppm for (-CHOH-,
CH3-CO-, -CH2-CO-), 5.0–6.0 ppm (-CH=CH-) [29].
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3.2. Antioxidant Capacities of ERF of M. arboreus

The equivalent antioxidant capacities of trolox (TE) as compared to the ERF were
716.45 ± 16.12, 99.15 ± 4.96, 1138.11 ± 79.65 µM TE/mg extract in ABTS, FRAP, and
ORAC assays, respectively. ERF exerted high free radical scavenging activity against
DPPH radical (IC50 = 115.6 ± 16.9 µg /mL) and high ability of its metal chelating property
(57.58 ± 3.5 µM EDTA eq/mg extract) (Table 5).

Table 5. Antioxidant capacities of the ERF of M. arboreus.

Parameters Result

DPPH (IC50 µg/mL) 115.6 ± 16.9
ABTS (µM TE/mg extract) 716.45 ± 16.12
FRAP (µM TE/mg extract) 99.15 ± 4.96
ORAC (µM TE/mg extract) 1138.11 ± 79.65

Metal chelating property (µM EDTA eq/mg extract) 57.58 ± 3.5
Variables are shown as mean ± SD (standard deviation, n = 3).

Antioxidant properties are well known in phenolic compounds by acting as reducing
agents, free radical scavengers, or metal chelators [30]. The most abundant plant phenolics
are flavonoids and phenolic acids, which have a substantial antioxidant activity both
in vitro as well as in vivo [31].
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3.3. Antibacterial and Antifungal Activities of Extract

In many regions of the world, there is a great deal of interest in medicinal plants as
therapeutic medications because of the rise in drug-resistant bacteria and the emergence
of more pathogenic bacterial species. Many medicinal plants have been studied in vitro
against bacterial strains, with extracts and pure components of several medicinal plants
being particularly beneficial [32].

Eight different strains of marine pathogenic bacteria were selected in this study, in-
cluding B. subtillus, E. faecalis, B. cereus, S. typhimurium, P. aeruginosa, V. fluvialis, S. aureus,
and V. damsela. The ERF of M. arboreus showed an antibacterial effect against most of the
tested strains with average inhibition zones ranging between 10 and 20 mm compared to
the positive control amoxicillin/clavulanic acid (Table 6). The ERF of M. arboreus exhibited
a strong antibacterial activity against V. damsela with an inhibition zone of 20 ± 0.2 mm,
moderate antibacterial activity against V. fluvialis and S. typhimurium with the inhibition
zones being 16 mm, and showed lower effects against E. faecalis, S. aureus, and P. aeruginosa
with inhibition zones of 10, 12, and 14 mm, respectively. On the other hand, the ERF of
M. arboreus was ineffective against B. subtilus and B. cereus. The negative control (DMSO)
showed no zone of inhibition.

Table 6. Antimicrobial activity of the crude extract of red flower of M. arboreus using well-cut diffusion
method.

Pathogens Inhibition Zone
(mm)

Amoxicillin/Clavulanic
(Positive Control)

DMSO
(Negative Control)

B. subtillus 0.0 14.0 ± 0.5 0.0
S. aureus 12.0 ± 0.6 12.0. ± 0.2 0.0
E. faecalis 10.0 ± 0.1 18.0 ± 0.5 0.0

P. aeruginosa 14.0 ± 0.1 14.0 ± 0.2 0.0
V. fluvialis 16.0 ± 0.4 22.0 ± 0.6 0.0
V. damsela 20.0 ± 0.2 24.0 ± 0.2 0.0
B. cereus 0.0 10.0 ± 0.3 0.0

S. typhimurium 16.0 ± 0.2 20.0 ± 0.3 0.0
The data are represented as mean ± SD in mm of inhibition zone demonstrated, contrasted utilizing ANOVA,
with a significance level (p-value) ≤ 0.05.

In our study, the ERF presented activity against A. terreus, A. fumigatus, and A. flavus
respectively, with no effect on the other strains. The ERF of M. arboreus did not show any
effect on either A. parasiticus and P. oxalicum. To establish the susceptibilities of ERF against
the tested strains, the minimum inhibitory concentration (MIC) values were determined
(Table 7). The ERF of M. arboreus exhibited the lowest MIC for V. damsela (1.5 ± 0.02 mg/mL).
The MIC values for E. faecalis, S. aureus, P. aeruginosa, V. fluvialis, and S. typhimurium were
12.5 ± 0.02, 10.0 ± 0.06, 10.0 ± 0.01, 2.5 ± 0.05, and 5.0 ± 0.01 mg/mL, respectively. On
the other hand, the MIC values against A. fumigatus, A. flavus, A. niger, and A. terreus were
1.0 ± 0.02, 1.25 ± 0.01, 1.75 ± 0.06, and 0.75 ± 0.01 mg/mL, respectively.

Table 7. MIC values of the ERF against selected pathogens.

Pathogens MIC (mg/mL)

S. aureus 10.0 ± 0.06
E. faecalis 12.5 ± 0.02

P. aeruginosa 10.0 ± 0.01
V. fluvialis 2.5 ± 0.05
V. damsela 1.5 ± 0.02

S. typhimurium 5.0 ± 0.01
A. fumigatus 1.0 ± 0.02

A. niger 1.75 ± 0.06
A. flavus 1.25 ± 0.01
A. terreus 0.75 ± 0.01
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3.3.1. Bacterial Killing Kinetics Assay of ERF against Marine V. damsela

A time-kill kinetic assay of the ERF against marine V. damsela was investigated, with
the results demonstrated in Figure 4. As a result, time-kill curve was plotted between
the logarithmic number of CFU/mL and incubation time. At 4 × MIC concentration,
the ERF showed a decrease in the amount of viable V. damsela at 8–24 h. The extent by
which bacteria was inhibited by the plant extract by time varied greatly, as shown by
killing analyses [33]. Therefore, the capacity of plant secondary metabolites to possess
antibacterial characteristics may be taken into consideration, as well as their response to
microbial infection [34].
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3.3.2. Analysis of the Synergistic Impact of ERF

Figure 5 and Table 8 display the findings of an evaluation of the synergistic effect of ERF
and amoxicillin/clavulanic acid against the selected pathogen marine V. damsela. Amoxi-
cillin/clavulanic acid at a concentration of (20/10 mcg) demonstrated moderate effective
action against the V. damsela that were examined. When compared to 250 and 750 µg/mL,
the antibacterial activity displayed by the combined effect of antibiotics and ERF was
significantly stronger against the selected pathogen at a concentration of 1000 µg/mL, with
a zone of inhibition ranging in diameter from 26 ± 0.2 to 28 ± 0.1 mm (Table 6). Due to
the synergistic action of the ERF and amoxicillin/clavulanic, it was hypothesized that this
combination therapy would be successful against the V. damsela that were tested.

The chemical composition of the ERF of M. arboreus revealed the existence of note-
worthy chemicals such as octadecenoic acid methyl ester, hexadecanoic acid, oleic acid,
11-octadecenoic acid, and octadecanoic acid (Table 3). These compounds have proven
antimicrobial activity. Cinnamic acid and its hydroxylated derivatives demonstrated
antifungal properties, reducing antityrosinase enzyme activity and fungal spore germina-
tion [35]. Cinnamic acids suppressed fungal expansion via interacting with the enzyme
benzoate 4-hydroxylase, which is involved in the detoxification of aromatic compounds [36].
Hexadecanoic acid reacted with the lipopolysaccharides’ hydroxyl group, an element of
the bacterial cell wall, causing the lipopolysaccharide membrane structure’s asymmetric
conversion, as per Johannes et al. [37]. Therefore, the lipid structure of the membrane was
disrupted. The cell swelled, the cytoplasm membrane was damaged, and the cell was
distended and lysed due to the alteration in the cell membrane. The hydroxyl group of
hexadecanoic acid has been noticed to be toxic to the cell protoplasm, as the compound
permeates the cell wall and causes damage [38].
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Table 8. Combined activity (Inhibition zone (mm)) of ERF with Amoxicillin/clavulanic against
different V. damsela (10−6 CFU/mL).

Amoxicillin/Clavulanic & ERF Inhibition Zone (mm) of V. damsela
(10−6 CFU/mL)

Amoxicillin/clavulanic (20/10 mcg) 24.0 ± 0.2

ERF (250 µg/mL) 20.0 ± 0.2

ERF (500 µg/mL) +
Amoxicillin/clavulanic (20/10 mcg) 26.0 ± 0.2

ERF (750 µg/mL) +
Amoxicillin/clavulanic (20/10 mcg) 26.9 ± 0.2

ERF (1000 µg/mL) +
Amoxicillin/clavulanic (20/10 mcg) 28.0 ± 0.1

V. damsela is one of the pathogens associated with infections caused by seafood; thus,
the ERF may be an option for treating this infection.

3.4. Cytotoxic Activity

This study aims to examine the impacts of the ERF on liver cancer in vitro, utilizing
the most common cell line for hepatotoxicity and drug metabolism studies, hepatocellular
carcinoma HepG2. HepG2 cells are nontumorigenic, increase rapidly, have an epithelial-like
shape, and are capable of performing a wide variety of differentiated liver activities [39].

After 72 h of incubation, the SRB test was utilized to analyze the cytotoxicity of the
ERF on the hepatocellular carcinoma (HepG2) cell line. The results showed that ERF
significantly reduced HepG2 cell proliferation in a dose-dependent manner, with an IC50
value of 67.182 µg/µL (Figures 6 and 7).
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Hesperidin, a primary flavonoid in the extract under investigation, protected the rat liver
against CCl4-induced oxidative stress and dysfunction linked to its antioxidant proper-
ties [40]. Hesperidin’s impact on the MCF-7 human breast cancer cells and prostate cancer
cell proliferation was studied [41]. Abd El-Azim et al. [42] found that 4-hydroxybenzoic
acid, a phenolic acid in excessive levels in the extract, had substantial cytotoxic action on
both colon (HCT116) and liver (HepG2) cancer cell lines. Polyphenolic substances reduce
mutagenesis and carcinogenesis in humans when consumed in up to 1.0 g per day from a
diet rich in fruits, vegetables, and other plants [43].

3.4.1. Cell Cycle Analysis

To explore the impact of the ERF on cell cycle distribution, HepG2 cells were treated
for 48 h with the pre-determined IC50 of the ERF, and DNA content was measured utilizing
flow cytometry. The results in Figure 8 revealed an apparent change in the distribution
of different phases. In G0/G1-phase cells, ERF did not further increase antiproliferative
effects (38.1 ± 1.19) compared to untreated cells (41.39 ± 0.46%).
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Compared to the untreated cells (50.4 ± 3.2%), the ERF caused S-phase arrest, and thus
increased the cell population (38.0 ± 1.9%). Compared to the untreated cells (0.59 ± 0.03%),
ERF dramatically accelerated cell mortality as observed by an elevation in the sub-G1 phase
cell population (5.31 ± 0.34%). The findings implied HepG2 cell death by exposure to the
study extract.

The ERF significantly induced more cell death manifested by an increased pre-G phase
cell population (5.31 ± 0.34%) compared to untreated cells (0.59 ± 0.03%). The results
suggest that HepG2 cells underwent apoptosis upon treatment with the study extract.

A range of processes, including apoptosis and cell cycle arrest, were involved in the
cytotoxic effects of the ERF extract. The ability of anticancer drugs to induce cell cycle arrest
in cancer cells was measured [44]. A significant hypodiploid sub-G0/G1 peak was visible
in the production of apoptotic cells, which was easily observed with substantial damage to
cellular DNA and might be distinguished by flow cytometry [45].

According to these data, the ERF extract could produce substantial DNA loss to cause
apoptosis in the present investigation, as the concentration of hypodiploid cells in the
sub-G0/G1 phase was a sign of apoptotic cell death. Apoptosis would be confirmed by
several intracellular pathways, such as caspase activation and MMP disruption.

3.4.2. Assessing Cell Apoptosis with Annexin V-FITC

The ERF impact on the growth suppression of HepG2 cells was associated with
apoptosis, as determined by apoptotic and necrotic cells’ Annexin V analysis. The cells were
double-labeled with PI, which produced red fluorescence in necrotic cells, and Annexin
V-FITC, which caused cytoplasmic green labeling in apoptotic cells after 24 h of treatment
with the ERF extract’s IC50. In fluorescence microscopy images, viable cells were negative
for Annexin V and PI (Figure 9). A considerable amount of green and red labeling was
observed in ERF, indicating apoptotic and necrotic cells. When cells were treated with ERF,
many apoptotic cells were found, indicating that this extract was primarily responsible
for apoptosis.

Figure 9 demonstrates the HepG2 cells’ distribution in four quadrants (Q1 = necrosis
phase, Q2 = late apoptosis, Q3 = normal intact cells, Q4 = early apoptosis phase) and
represents one of three independent tests carried out. Cells that experienced apoptosis
would shift from the viable quadrant (Q3) to the early apoptosis quadrant (Q4) and finally
end up in the late apoptosis quadrant (Q2). Necrosis, in contrast, caused cells to move
from the viable quadrant (Q3) to the late necrosis quadrant (Q2). Untreated cells had
a proportion of viable cells of 98.07 ± 0.08%, dead cells of 1.93 ± 0.08%, late apoptosis
of 0.37 ± 0.07%, and early apoptosis of 0.32 ± 0.09%. ERF increased the late apoptotic
population to 4.67 ± 0.31%. A noticeable decrease was indicated in necrotic cells, with
proportions of 0.37 ± 0.07% upon treatment, compared to untreated cells at 0.52 ± 0.12.
Lastly, early apoptotic cells, expressed by Q4, demonstrated only a slight elevation in cell
distribution due to treatment with the ERF to 5.05 ± 0.17%.

Phosphatidyl-serine (PS) on the outer layer of the plasma membrane served as a
recognition site for phagocytes during the early stages of apoptosis [46]. Annexin V, a
calcium-dependent protein, could bind to the exposed phosphatidyl-serine on the mem-
brane’s exterior layer (PS) [47]. The percentage of cells going through late apoptosis rose
exponentially in this study, indicating that apoptosis was one of the primary mechanisms
in which the plant extract induced cell death in the four studies.
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3.4.3. Assessment of Autophagy

Autophagy-mediated programmed cell death, such as apoptosis, is a significant issue
in science. Using the Cyto-ID autophagy detection dye and flow cytometry, we studied the
influence of ERF on the autophagy process in HepG2 cells. In comparison to the untreated
cells, ERF treatment significantly boosted autophagic cell death (Figure 10).

Autophagy was another hypothesized cell death route, but its significance in cancer
cell death was convoluted and controversial [48]. ERF caused considerable autophagic cell
death in HepG2 cells, which could be a pro-death mechanism due to poor apoptosis in this
cell type [49].
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3.4.4. Effect of ERF on the Activity of Caspase 3/7

The activation of caspases is required for the last step of apoptosis [50]. Understanding
the stimulation route by cytotoxic substances could help model improved therapeutic
options [51].

The caspase 3/7 activity was evaluated on HepG2 cells treated with the concentration
of IC50 values of the extract for 24 h to determine if the apoptotic effect generated by
the ERF was dependent on caspase activation (Figure 11). The activation of caspase 3/7
was increased by 8.71 ± 0.99-fold in ERF-treated cells compared to 1.28 ± 0.17-fold in
the untreated cells, confirming the effect of this extract on apoptotic cell death formerly
demonstrated in cell cycle studies and Annexin V. The cleavage of several caspases triggered
apoptosis. Understanding the effects of caspase cleavage could help us understand cell
death, as well as other biological processes [52]. The increased caspase-3 activity in the
treated HepG2 suggested that extrinsic and intrinsic caspase-3 activation pathways were
utilized at this dose (IC50). Apoptosis triggered by caspases could activate either the death
receptor (extrinsic) or mitochondrial (intrinsic) pathways or both [53].
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4. Conclusions

This is the first antimicrobial, anticancer evaluation of the ERF of M. arboreus against
hepatocarcinoma cell line HepG2. The ERF of M. arboreus demonstrated anticancer effec-
tiveness against HepG2 and an in vitro growth inhibitory impact against microbiological
growth. Our GC-MS and HLPC analyses showed the existence of many phytochemical
compounds that might influence the antibacterial and anticancer properties of M. arboreus
red flower ethanolic extract. As a result, it is suggested that the antibacterial and anticancer
efficacy of the GC-MS and HLPC found compounds to be evaluated to develop a novel
perspective on antimicrobial and anticancer medicine and assess the mode of action used
to combat anticancer recovery.
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