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Abstract: Bacterial infections represent one of the major causes of mortality worldwide. Therefore,
over the years, several nanomaterials with antibacterial properties have been developed. In this
context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial
agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have
found application as antimicrobial agents in several fields. In this review, we summarize some
examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds
for wound healing and orthopedic implants, fillers for active food packaging, and carriers for
pesticides in food pest control.

Keywords: clay minerals; halloysite nanotubes; antibacterial; wound healing; orthopedic implants;
food packaging; pest control

1. Introduction

Infectious diseases, caused by microorganisms that are transferred directly or indi-
rectly from one person and/or animal to another, are still a major healthcare problem [1].
They are indeed one of the major causes of death worldwide, particularly in seniors and
young children in middle and low-income countries. In the last few years, several efforts
have been devoted to the identification and control of most infectious diseases as well
as the improvement of technologies to fight infections (bacteria, viruses, parasites, fungi,
and so on).

In modern medicine, antibiotics are the most commonly used antimicrobial agents
for the treatment of infections caused by pathogens. Unfortunately, pathogenic microbes,
which mutate continuously, can develop mechanisms to evade antibiotics, increasing the
cause of infection and decreasing the usefulness of their treatment. Consequently, antibiotic
resistance is increasing, and it is a top global public health threat [2,3].

Nanotechnology offers a great opportunity to develop innovative materials that, due
to their physicochemical properties, can efficiently be used as antimicrobial agents for
several applications [3,4].

In this context, clay minerals, a class of nanomaterials, are considered a “godsend” for
human beings because they are easily available, possess very low cost, are environmentally
friendly, biocompatible, and capable of crossing cellular membranes [5].

Clay minerals, derived from the chemical weathering of other silicate minerals [6],
are natural layer-type phyllosilicates [7]. The different arrangements of tetrahedral (T)
and octahedral (O) sheets allow clay minerals to be classified into different groups, the
main ones being 1:1 and 2:1. In particular, in TO-type structure (1:1), tetrahedral silicon
sheets are bonded to octahedral aluminum sheets belonging to this group of phyllosilicates,
such as kaolinite and halloysite (the most representative clays of the kaolin group). On the
contrary, the structure of the TOT type (2:1) is constituted by an octahedral sheet of Al3+,
Fe3+, or Mg2+ sandwiched between two tetrahedral sheets of Si4+ or Al3+. Montmorillonite,
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hectorite, (expanding clay minerals representative of smectite group), and illite (a non-
expanding clay mineral representative of the mica group) are examples of clay minerals
belonging to this class (Figure 1).
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Furthermore, clay minerals contain some water molecules that are confined both on
the internal surface and in the clay interlayer. According to the TO-type structure and the
intercalated water molecules, it is possible to observe different morphologies (Figure 2).
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Figure 2. SEM images of clay minerals: (a) pseudohexagonal crystals of kaolinite; (b) tubular crystals
of halloysite; (c) spheroidal crystals of halloysite; (d) wavy subhedral montmorillonite crystals [9];
(e) flaky illite crystals; and (f) fibrous illite. Reproduced with permission from [10].

Iron-rich clay minerals are traditionally classified as “healing clays”, mainly due
to their capacity to release metal ions, such as Fe2+ ions, which are responsible for an-
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timicrobial activity. Indeed, Fe2+ ions produce reactive oxygen species (ROS) that can
damage membranes and DNA [11]. In addition, the presence of Al3+ ions increases the
toxicity of the clays because Al can rearrange the membrane structure in ways that favor its
oxidation [12,13] (Figure 3).
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Recently, French green clay was reported to be used in the treatment of Buruli ulcer,
a necrotizing fasciitis caused by Mycobacterium ulcerans [14]. Other clays, such as those
belonging to the smectite group, can exert some bactericidal activity because of their
cation exchange capability and swelling properties [14]. In this context, for example,
several synthetic clay minerals were prepared by exchanging their native ions with known
antibacterial ones such as Ag(I) ions by utilizing the cation exchange properties [15,16].
In this way, the Ag(I) ions were sustained release from the interlayer spaces ensuring
long-term antibacterial effectiveness.

In the last 20 years, halloysite has been widely used in biomedical applications due
to its ability to act as a nanocontainer for biocides, reducing the amount of antibiotics
used due to their controlled time-extended release. Due to these features, there has been
more and more interest from the scientific community in the use of this kind of clay for
antibacterial purposes, as testified by the increasing number of publications related to this
topic (Figure 4).
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obtained by searching Scopus (October 2022) for the terms antibacterial activity and clay minerals
and halloysite, respectively.

In this review, we summarize the latest research about the functionalization of hal-
loysite to develop nanomaterials that have found application for antibacterial protection,
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as antimicrobial agents for orthopedic and dental implants, as scaffolds for wound healing,
in the active food packaging field, and as a carrier for pesticides in food pest control.

2. Halloysite Nanotubes Based Antimicrobial Materials

Halloysite is a natural phyllosilicate clay belonging to the kaolin group that shows an
Al:Si ratio of 1:1 and a general formula of Al2Si2O5(OH)4·nH2O. Typically, it is naturally
found as nanotubes and therefore is usually referred to as halloysite nanotubes (HNTs).
HNTs are constituted by 10–15 aluminosilicate bilayers, with a spacing of approximately
0.72 nm. The arrangement of the sheets generates an external surface composed by siloxane
(Si–O–Si) groups and a lumen constituted by a gibbsite-like array of aluminol (Al–OH)
groups. Furthermore, the rolling process causes some structural defects the also be present
at the HNTs’ edges in the form of some Al–OH and Si–OH groups. The different chemical
composition causes the tubes to undergo ionization in aqueous media in an opposite way,
generating tubes with inner and outer surfaces oppositely charged across a wide pH range.
In particular, the lumen is positively charged, whereas on the external surface there is a
permanent negative charge.

By exploiting the different chemical composition and the different surface charges,
HNTs can be modified, resulting in different nanomaterials with tunable properties that
have found applications as fillers in polymeric matrices [17–19], drug carriers and deliv-
ery systems [20,21], supports for metal nanoparticles for catalytic purposes [22–25], and
so on [26,27] (Figure 5a,b). The growing number of halloysite-related publications and
patents attests to the clay’s growing popularity. It is noteworthy that the number of pub-
lications is comparable to that of patents, indicating an actual involvement of academia
beyond industrial applications (Figure 5c).
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Figure 5. Comparison of the number of (a) scientific publications and (b) patents on the different
applications fields of halloysite; (c) distribution (%) of scientific publications in “patent” and “journal”
for halloysite. Data analysis of publications in October 2022 was performed using the SciFinder
Scholar search system using searches for “Document type” the “Journal” and “Patent”, respectively.

HNTs are biocompatible materials, and several in vitro and in vivo studies have as-
sessed the non-toxic nature of this clay mineral. Halloysite, indeed, was found to be
nontoxic for different cells [28,29], model organisms [30,31], and yeast cells [32]. Further-
more, it was found that by feeding HNTs to different animals, such as chickens and piglets,
no toxic effects were observed [33,34].
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Recently, an in vivo study was reported that allowed the authors to estimate the maxi-
mum concentration of HNTs that could be administered without observing toxicity. It was
discovered that prolonged oral administration of 50 mg of HNTs per body weight for up to
30 days caused aluminum accumulation in mice lungs, resulting in pulmonary fibrosis [35].

HNTs can interact with cells in different ways, some of them are driven by electrostatic
(attraction) and/or hydrophobic interactions and/or van der Waals forces. On the contrary,
the cells interact with HNTs depending on their nature. For example, while bacteria
incorporate HNTs into their biofilm structure, in mammalian cells HNTs are uptaken
through their membrane, whether via endocytosis or mechanisms where actin filaments
are reported (Figure 6).
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Due to its intrinsic properties, halloysite, in contrast to some other clays, cannot be
considered an antibacterial nanomaterial. It, indeed, lacks interlayer cation exchange prop-
erties and does not possess the ability to release metal ions, properties that are fundamental
to exerting some bactericidal effects [36], as was already discussed. However, by suitable
modification of the surfaces, it is possible to obtain nanomaterials with promising antibac-
terial activities. Furthermore, because HNTs possess an empty lumen, they have been used
as nanocontainers for different antibiotics, obtaining nanomaterials that are used to treat
common pathogens for different applications (Table 1) [37,38].

For example, the HNTs surfaces’ modification with three different charged surfactants,
namely sodium dodecyl sulphate (SDS), acetyl trimethylammonium bromide (CTAB), and
Tween 80, which are, respectively, anionic, cationic, and non-ionic surfactants, allowed the
authors to synthesize nanomaterials that possess enhanced antibacterial activity depending
on the surfactant used [60]. In particular, the toxicity of all nanomaterials was investigated
against three phytopathogenic bacteria (A. tumifeciens, X. oryzae, and R. solanacearum) by
calculation of the minimum inhibitory concentration (MIC), bacterial growth inhibition,
cell membrane integrity loss, inhibition of biofilm formation, and reactive oxygen species
production. Experimental findings showed that, among all surfactants, the modification
of HNTs with CTAB produced the most efficient nanomaterial in suppressing the growth,
inducing higher ROS production, disrupting the cell membrane integrity, and inhibiting
biofilm formation.
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Table 1. Different HNTs based antimicrobial nanomaterials and their relative applications.

Nanomaterial Biocide Pathogen Application Ref.

HNTs-NH2 Gentamicin E. coli, S. aureus
and S. epidermidis Antibacterial [39]

HNTs Oregano essential
oil E. coli, S. aureus Food packaging [40]

HNTs Carvacrol
A. hydrophila, P. putida,
L. monocytogenes and
S. aureus, A. alternata

Antibacterial [41,42]

HNTs CdS E. coli, S. aureus Antibacterial [43]

HNTs/pectin Salicylic acid Salmonella, P. aeruginosa,
E. coli and S. aureus Food packaging [44]

HNTs/pectin
HNTs/alginate Salicylic acid E. coli, S. typhimurium,

P. aeruginosa and S. aureus Food packaging [45]

HNTs/low-density polyethylene Carvacrol and
thymol E. coli Food packaging [46]

HNTs/polyethylene Carvacrol A. hydrophila Food packaging [47]
HNTs-poly(4-vinylpyridine) CuNPs E. coli Antibacterial [48]

HNTs- poly(4-vinylpyridine)/polyethersulfone AgNPs E. coli, S. aureus Antifouling
and antibacterial [49]

HNTs/chitosan Norfloxacin E. coli, S. aureus Antibacterial [50]
HNTs/chitosan/polyvinyl alcohol nanofibers Benzocaine E. coli, S. aureus Antibacterial [51]
HNTs/sodium alginate-poly (ethylene oxide)

fibrous mats Levofloxacin E. coli, S. aureus Wound dressing [52]

HNTs/chitosan/pullulan Rutin E. coli, L. monocytogenes Food packaging [53]

HNTs/alginate Cephalexin E. coli, P. aeruginosa
and S. aureus Antibacterial protection [54]

HNTs/polyethylene glycol ClO2 / Food packaging [55]
HNTs/poly(lactic) acid Clove essential oil / Food packaging [56]

HNTs/chitosan Clove essential oil B. mojavensis, E. coli Food packaging [57]
HNTs/LDPE Carvacrol E. coli, S. aureus Food packaging [58]

HNTs/silk fibroin microfibers Tetracycline
hydrochloride E. coli, S. aureus Wound dressing [59]

HNTs/poly(lactic) acid Clove essential oil / Food packaging [56]

Conversely, the functionalization of HNTs with SDS was useful to obtain dispersible
nanomaterials that, after the immobilization of AgNPs, were used as filler for carrageenan
films [61]. The antimicrobial activity of the obtained nanocomposite was evaluated against
two foodborne pathogen bacteria, L. monocytogenes and E. coli, by a total viable cell count
method. This experiment showed that the modification of HNTs with SDS was a valuable
strategy for obtaining a carrier of AgNPs, which confer good antibacterial activity to the
polymer where it is dispersed.

Phosphomolybdic acid (PMo) was loaded into HNTs to synthesize nanomaterials with
bactericidal properties, without the use of antibiotics [62]. The actual confinement of the
PMo inside the tubes was verified by TEM analysis coupled with an EDX probe, and release
experiments showed that the total amount of acid loaded in the tubes was released after
135 min. The so obtained nanomaterial was further loaded with AgNPs, resulting in a
construct that showed good antibacterial properties against P. aeruginosa, S. aureus, and
A. baumannii. In detail, the growth inhibition of P. aeruginosa and S. aureus was observed
at 0.25 g L−1, whereas in the case of A. baumannii it was observed at 0.125 g L−1, with the
MICs being at 0.5 and 0.25 g L−1, respectively.

Tannic acid (TA) functionalized HNTs were used as scaffold for the immobilization
of AgNPs onto clay in order to create a nanomaterial that can counteract antimicrobial
resistance [54]. In vitro antibacterial tests on S. aureus ATCC 25923, S. Typhimurium, and
E. coli ATCC 25922 highlighted that the nanomaterial possessed an MIC (31.25 µg/mL)
against the QC strains and S. Typhimurium ca. 4-fold and >20-fold lower than that of
AgNPs supported on tannic acid or HNTs/TA nanomaterial, respectively.
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Halloysite nanotubes were incorporated into HKUST-1, a Cu-based metal–organic
framework, and used as filler for polyacrylamide hydrogels as human motion detection
and strain sensors with high sensitivity, which have the advantages of repeatability, fast
responsiveness, and, most importantly, antibacterial properties [63]. The authors of this
work demonstrated that the nanocomposite hydrogels obtained showed excellent antimi-
crobial properties against S. aureus and E. coli as a consequence of the release of Cu(II) ions
from the hydrogel matrix, which, once absorbed by bacteria, acts as an oxidizing agent for
organic components, destroying the cell wall and leading to microbial death.

The modification with antibodies properly oriented onto covalently bound protein
A proved to be a successful strategy for developing systems capable of recognizing target
bacteria [64]. It was found that the modified HNTs possessed superior binding toward
target bacteria (E. coli) in comparison to the non-modified control, as quantitatively assessed
by high-throughput flow cytometry.

2.1. Orthopedic Implants

The rising age and longevity of the population have led to the implementation of
primary arthroplasties worldwide. A consequence of this treatment is often represented
by the occurrence of some infections, depending upon the type of bacteria involved and
whether the infection is acute or chronic [65].

Over the years, to avoid bacterial infections, different biomaterials have been designed
and engineered to ensure antibacterial protection. In this context, halloysite is an emerging
filler that can be successfully used.

Lvov et al. (2012) investigated the possibility of using HNTs as a filler for poly-
(methyl methacrylate) (PMMA), which has long been used as bone cement. To avoid
bacterial infections, the authors of this study loaded HNTs with gentamicin, obtaining,
after inclusion in the polymeric matrix, a nanocomposite with good mechanical strength
and sustained release of the active ingredient [66]. Antibacterial tests highlighted that the
gentamicin release inhibited the bacterial growth of E. coli and S. aureus, which were chosen
as models.

A 3D-printed poly-ε-caprolactone (PCL) filled with HNTs and hydroxyapatite (HA)
nanocomposite was fabricated by Riool et al. to release gentamicin sulfate (GS) when used
as a coating for weight-bearing materials [67]. Specifically, the nanocomposite was obtained
by mixing PCL, HNTs, HA, and GS, and the obtained mixture was subjected to fused
filament fabrication (FFF) 3D printing technology to obtain a nanomaterial in the shape of
a bone fixation plate. The nanocomposite obtained was intended to be applied to replace a
mouse femur. The implant obtained was tested in in vitro, ex vivo, and in vivo experiments
to study its antimicrobial efficacy. The experimental results highlighted the potentiality of
this scaffold, which in the future can serve to produce load-bearing implantable devices
with specific drug release properties.

2.2. Dental Implants

Nowadays, it is estimated that about 3.5 billion people worldwide suffer from oral
diseases [68]. Often, to address this, it is necessary to resort to some dental implants and re-
placement procedures that, similarly to the orthopedic ones, are affected by bacterial infections.

In this context, Bottino et al. developed an injectable chlorhexidine (CHX)-loaded
HNTs-modified GelMA hydrogel for dental infection ablation. GelMA is a photocrosslink-
able gelatin methacryloyl [69], a polymer often used in regenerative engineering because of
its good cell−tissue affinity and degradability in the presence of matrix metalloproteinases.
The good antibacterial activity of the nanocomposite was tested on different pathogens as-
sociated with secondary endodontic infection (Figure 5). In addition, an in vivo test on stem
cells from human-exfoliated deciduous teeth and the study of an inflammatory response
using a subcutaneous rat model revealed good cytocompatibility with the hydrogel.

Similarly, chlorhexidine was loaded into HNTs, and the obtained nanomaterials were
used as fillers for a dental resin [70]. The experimental findings show that the incor-
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poration of different percentages of filler in the resin produced a nanocomposite with
enhanced mechanical properties. In addition, it shows a slight decrease in curing depth
and degree of conversion values, which are indicative of its durability. Biological as-
says showed no cytotoxicity on NIH-3T3 cell lines, and most importantly, antibacterial
test on a strain of Streptococcus mutans highlighted the good antimicrobial activity of the
nanocomposite (Figure 7).
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2.3. Halloysite Based Nanomaterials for Wound Healing

Wound healing is a very complex process that occurs in subsequent or overlapped
phases, involves a series of events, and requires the intervention of various mediators.
Chronic skin wounds are lesions that fail to restore the skin’s anatomical and functional
integrity, resulting in ulcers that take several years to heal. One of the most important issues
that impairs the wound healing process is, of course, the occurrence of bacterial infections.

In this context, terpenoids structurally similar to carvacrol were loaded into HNTs, re-
sulting in nanomaterials that performed well in cell-based scratch assays with a HaCaT cell
monolayer on an in vitro artificial wound model for re-epithelialization and wound heal-
ing. In addition, the antimicrobial effects of the nanomaterials on the common pathogens
that frequently colonize chronic wounds were also evaluated. The results of the experi-
ments revealed promising antibacterial activity against four different Gram-positive and
Gram-negative strains, namely S. aureus ATCC 43300, S. aureus ATCC 29213, S. epidermidis
ATCC 35984, and P. aeruginosa ATCC 27853 [71].
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Polymyxin B sulfate loaded on HNTs was used as filler for gelatin-based elastomers
previously loaded with ciprofloxacin. As a result, a potentially useful biomaterial for
wound dressing was obtained [18]. To validate the potentiality of the nanocomposite
as antimicrobial agent, its antibacterial effects were studied on two different strains,
S. aureus (Gram-positive) and P. aeruginosa (Gram-negative), commonly known to infect
wounds, by evaluating the presence of inhibition zones around the bacterial discs. The
experimental results showed good antimicrobial performance for at least 7 days, thanks to
the slow release of both drugs from the nanocomposite.

AuNPs encapsulated in HNT lumen were used to confer both photothermal and antimi-
crobial properties to chitin-based hydrogels for wound healing applications (Figure 8) [72].
The nanocomposite hydrogels possessed high cytocompatibility on mouse fibroblasts, and,
by in vitro antibacterial experiments, it was demonstrated that, because of the photother-
mal properties, they showed high antibacterial ability towards E. coli and S. aureus. In
addition, the chitin-based hydrogel showed the peculiarity of possessing high hemostatic
performance in mouse liver and tail bleeding. In in vivo experiments, the authors of the
study showed that wound infection healing results confirmed the healing-promoting effect
of the hydrogel material.
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2.4. Food Packaging

Nowadays, food spoilage due to microbial contamination represents a significant prob-
lem, which every year causes enormous economic loss. It is estimated that, in the United
States alone, the wastefulness of food accounts for ca. 30–40% of the total food supply.
Therefore, to prevent bacterial contamination, biofilms with antimicrobial properties should
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be prepared for active food packaging applications [73]. Among the different antimicrobial
agents that have been used for this purpose, essential oils are the most-employed. Most
of them have indeed been classified as “Generally Recognized as Safe” (GRAS) by the US
Food and Drug Administration (FDA), and, in addition, they have been long been used as
flavoring agents. However, they are highly flavoring, show high volatility, and show the
tendency to be oxidized, and thus it is necessary to develop efficient carrier systems for
their practical utilization.

In this context, thyme essential oil was loaded into HNTs, and then the nanomaterial
obtained was mixed with flexographic ink and coated on paper for applications as food
packaging materials [74].

Antimicrobial experiments on E. coli, for a 25-day treatment showed that the packaging
paper filled with HNTs/TO nanomaterial, possessed a strong antimicrobial effect in the
first 10 days. In particular, the packaging paper resulted in very high efficiency and was
especially effective in eradicating E. coli within the initial 5 days, with the bacterial count
reduced to ~1.5 log CFU cm−2.

Similarly, Gorrasi et al. [75] used rosemary essential oil loaded in HNTs as a filler
for pectin matrix, while peppermint essential oil was loaded on cucurbit[6]uril (CB[6])-
modified HNTs [76]. In this case, the HNTs/CB[6] nanomaterial was mixed by an optimized
casting process into pectin, obtaining a nanocomposite with superior antioxidant and an-
tibacterial activities. The in vitro antimicrobial activity of the nanocomposite was evaluated
on E. coli and S. aureus, isolated from beef and cow milk, respectively (Figure 9), at three
different temperatures. It was found that the percentage of bacterial viability for both
bacterial strains was reduced at 65 ◦C compared to those at 37 ◦C and 4 ◦C. Of note, only
15% of the E. coli survived after the treatment at 65 ◦C.
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Figure 9. Antibacterial activity of pectin/HNT/PO films against E. coli and S. aureus at 4, 37, and
65 ◦C incubated for 30 min. (a) Photographs of petri dishes; (b) viability (expressed as% bacterial
viability) of E. coli and S. aureus onto pectin/HNT/CB[6]/PO films after incubation at the three
different temperatures. Reproduced with permission from [76].

Following the same approach, grapefruit seed oil was encapsulated into HNTs’ lumen
and then dispersed in a pectin matrix, obtaining a nanocomposite that was effective in
the protection of fruits [77]. The authors, indeed, coated fresh strawberries with the film
developed and stored them for 10 days at room temperature RH = 60%. The nanocomposite
films prevented mold formation, extending the storage time of such fruit, in contrast to the
uncoated strawberry, which showed mold after two days with a wrinkled and damaged
appearance (Figure 10).
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One of the most-used chemical species active in food packaging is represented by ZnO
nanoparticles. It is indeed registered by the US Food and Drug Administration (FDA) (FDA,
2011) on the Generally Recognized as Safe (GRAS) list. Therefore, over the years, when the
utilization of HNTs as filler for active food packaging applications is concerned, several
efforts have been made to develop innovative nanomaterials/nanocomposites with ZnO.

In 2015, Pasbakhsh et al. reported the deposition of ZnO on HNTs to obtain a filler
for poly(lactic acid) (PLA) films [78]. The nanocomposite obtained showed enhanced me-
chanical properties in comparison to the neat polymer, and most importantly, it possessed
exceptional antimicrobial activities against E. coli and S. aureus.

Similarly, ZnO@HNTs nanomaterials with a nominal wt% ratio of ZnO to halloysite
equal to 4 as filler for chitosan/polyvinyl alcohol (CS/PVOH) matrices were obtained [79].
The films were tested for their antimicrobial efficacy against four common food pathogenic
bacteria, namely E. coli, S. enterica, L. monocytogenes, and S. aureus. To prove the biological
activity, two different parameters were evaluated: the inhibitory activity, by measuring the
diameter of the clear inhibition zone, and the bacterial growth inhibition. Both experiments
showed enhanced antibacterial activity of the nanocomposite in comparison to chitosan.

Acid-treated HNTs were used as nanocontainers for cinnamaldehyde and as filler
in alginate film [80]. The use of HNTs was helpful in slowing down the release of the
active ingredient from the film. Kinetic release experiments, using isooctane as the release
medium, to simulate fatty foods, showed that after 72 h, the filler containing HNTs still
retained about 60 wt% of the total amount of cinnamaldehyde loaded. Antimicrobial tests
highlighted the usefulness of HNTs in the nanocomposite; indeed, the hybrid nanocompos-
ite demonstrated prolonged antimicrobial action on E. coli and S. aureus for at least four
and five days more, respectively, in comparison to cinnamaldehyde simply dispersed in
the alginate.

Similarly, using layer-by-layer (LbL) self-assembly technology [81], HNTs loaded
with cinnamaldehyde were further functionalized with positively charged poly(allylamine
hydrochloride) (PAH) and negatively charged poly(styrene sulfonate) (PSS). The goal of this
kind of functionalization was to cloak the tubes with end-stoppers to avoid the fast release
of the active ingredients. The authors of this study demonstrated that cinnamaldehyde was
selectively released at a low pH value; therefore, the nanomaterial could be used to develop
smart packaging for food protection. To prove this hypothesis, some antimicrobial tests on
S. aureus and a pilot study of packed fresh wheat noodles with the developed nanomaterial
were performed. It was demonstrated that the HNT-based nanomaterial showed good
fumigant antimicrobial activity, and the total plate count, study of pH and color change,
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and environmental SEM characterization of the treated noodles highlighted that it can be
effectively used to extend the shelf-life of fresh wheat noodles.

Recently, to solve the problems arising from the low water solubility and high volatility
of some antimicrobial agents, an innovative strategy was adopted based on Pickering
emulsion. In this context, properly modified HNTs were used to prepare emulsions based
on cassia oil, selected as the oil phase [82]. To render the external surface of halloysite
hydrophobic, and therefore to obtain stable emulsions, HNTs were firstly subjected to ball
milling in a polytetrafluoroethylene (PTFE) jar. During the process, PTFE was transferred
from the milling jar walls to HNTs surface, changing its hydrophilicity and electrical
properties. Finally, the obtained nanomaterials were used as solid particles on the oil−water
interface for preparing Pickering emulsions. Antibacterial experiments showed that the
use of hydrophobic HNTs as an emulsifier of cassia oil enhanced its antibacterial properties
towards S. aureus and E. coli. Bacterial growth kinetics experiments and live/dead bacterial
viability assays (Figure 11) further confirmed the improved biological properties of the
nanoemulsions and showed that cassia oil is slowly released from the HNTs. The results
obtained in the present work open the doorway to the use of HNTs as emulsifiers for the
preparation of Pickering emulsions for future applications in food protection.
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2.5. Carrier for Pesticides

Population growth has necessitated increased food production, which has been ham-
pered by climate change and agricultural crop pests, to name a few. Up until now, pest
control has been a fundamental part of good manufacturing practice in food processing
from an economic, hygienic, and regulatory viewpoint. Therefore, the development of sys-
tems capable of being carriers and gradually releasing the pesticides is crucial to reducing
both their environmental impact and ensuring pest protection over time. In this context,
halloysite, which has shown excellent eco-compatibility [83–85], represents an inexpensive
carrier for several pesticides.

Acid-treated HNTs were used as carrier for chlorpyrifos (CPF), a hydrophobic pes-
ticide, followed by the coating of the tubes with alginate gels, used to slow down the
release of the CPF from the tubes. To increase the loading of the active ingredient, a
three-dimensional structure involving the acid-treated HNTs was also created via a step-
by-step modification of the HNTs’ surface with Ca2+ and EDTA2−, exploiting their strong
coordination interactions (Figure 12) [86].
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In addition to the increase in loading efficiency and slow release of CPF, the synthesized
nanopesticide, because of the strong interaction of alginate with plant leaves, shows a foliar
adhesion property against rain rinsing that is strengthened by 86% in comparison to pristine
CPF, thus reducing the overall environmental impact.

Similarly, CPF was loaded onto modified HNTs to develop a novel pesticide for
the control of the growth of beet armyworm (which grows fastest at 35 ◦C) [87]. The
modification of HNTs was achieved by the grafting of a thermo-responsive polymer, poly-
isopropylacrylamide (PNIPAAM), followed by a polydopamine coating that was used
to avoid fast release of CPF. The nanomaterial showed excellent thermosensitive release
performance, with an average release rate of CPF at 35 ◦C ca. 2.5 times higher than that
at 25 ◦C.

An emulsion of chlorantraniliprole (CAP) in xylene was added to an aqueous HNTs
dispersion, forming a three-dimensional network structure that showed increased leaf
adhesion, rain erosion resistance, and insecticidal effect in comparison to “free” CAP [88].
To test the insecticidal activity of the synthesized system, S. frugiperda was selected as a
pest model. The experimental results showed an increased mortality in the presence of the
HNTs based emulsion, indicating that the system is promising for future applications.

The loading of pyrethrum extract into HNTs’ lumen led to the synthesis of nanopesti-
cides where, because of the presence of HNTs, the active ingredients are protected from
UV light and slowly released over time. In addition, in vivo tests on two different insects,
G. mellonella and T. molitor, chosen as pest models, showed that the nanomaterial was highly
active on the first one at a half dose compared to a commercial pesticide [89].

3. Conclusions

The functionalization of halloysite nanotubes both by supramolecular approach and
by covalent modification represents a valuable strategy for the development of low-cost
and innovative antimicrobial agents for applications in several fields. The clay’s bio- and
eco-compatibility, as well as its ease of availability and physicochemical properties, are
important factors in the biomedical use of HNTs. Furthermore, the empty lumen of HNTs
is useful for the loading of antimicrobial species, conferring on the clay the antibacterial
properties required for future applications, such as topical wound treatment or active food
packaging. At the same time, the encapsulation of active ingredients helps their sustained
release over time and ensures their protection from photodegradation.

Scientific research on HNTs is still in progress, and every day innovative chemical
strategies are proposed to expand the utilization of this clay.

Halloysite is a clay belonging to the kaolin group; conversely to “smectite” clays, it
does not possess a high CEC capacity. Recently, to resolve this aspect, the covalent linkage
of HNTs with another clay, specifically hectorite, to develop a nanomaterial that possesses



Antibiotics 2022, 11, 1761 14 of 17

both the typical characteristics of the two clay minerals, namely an empty lumen and
expandible interlayer surfaces, which allow cation exchange, has been proposed [90].

The obtained nanomaterial was tested as a carrier agent for two antimicrobial species,
ciprofloxacin and Ag(I) ions. Ciprofloxacin molecules were specifically loaded into the
lumen of HNTs, whereas Ag(I) ions were found in the hectorite interlayers, as demonstrated
by various techniques. The high loading of the two species obtained could be promising
for the future application of the nanomaterial in infections where synergism between two
antibacterial species is needed.

Author Contributions: S.R.: Conceptualization; M.M., R.C., G.C., C.G.C., F.L. and S.R.: Data curation;
M.M., R.C., G.C., C.G.C., F.L. and S.R.: Writing–Original Draft; S.R. and M.M.: Writing–Review and
Editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taubes, G. The Bacteria Fight Back. Science 2008, 321, 356–361. [CrossRef] [PubMed]
2. Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.;

Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [CrossRef]
3. Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the

Recent Pharmaceutical Innovations. Pharmaceutics 2020, 12, 142. [CrossRef] [PubMed]
4. He, J.; Hong, M.; Xie, W.; Chen, Z.; Chen, D.; Xie, S. Progress and prospects of nanomaterials against resistant bacteria. J. Control.

Release 2022, 351, 301–323. [CrossRef] [PubMed]
5. Notarbartolo, M.; Massaro, M.; de Melo Barbosa, R.; Emili, C.; Liotta, L.F.; Poma, P.; Raymo, F.M.; Sànchez-Espejo, R.; Vago, R.;

Viseras-Iborra, C.; et al. Exploring the cellular uptake of hectorite clay mineral and its drug carrier capabilities. Colloids Surf.
B Biointerfaces 2022, 220, 112931. [CrossRef]

6. Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.-H.; Soper, A.K.; Greathouse, J.A. Surface geochemistry of the clay minerals.
Proc. Natl. Acad. Sci. USA 1999, 96, 3358–3364. [CrossRef] [PubMed]

7. Neeraj, K.; Chandra, M. Basics of Clay Minerals and Their Characteristic Properties. In Clay and Clay Minerals; Gustavo Morari Do, N., Ed.;
IntechOpen: Rijeka, Croatia, 2021; Chapter 2. [CrossRef]

8. da Rocha, M.C.; Galdino, T.; Trigueiro, P.; Honorio, L.M.C.; de Melo Barbosa, R.; Carrasco, S.M.; Silva-Filho, E.C.; Osajima, J.A.;
Viseras, C. Clays as Vehicles for Drug Photostability. Pharmaceutics 2022, 14, 796. [CrossRef]

9. Fesharaki, O.; García-Romero, E.; Cuevas-González, J.; López-Martínez, N. Clay mineral genesis and chemical evolution in the
Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay Miner. 2007, 42, 187–201. [CrossRef]

10. Christidis, G.E. Industrial Clays. In Advances in the Characterization of Industrial Minerals; Christidis, G.E., Ed.; European
Mineralogical Union Mineralogical Society of Great Britain & Ireland: London, UK, 2010; Volume 9.

11. Glimcher, M.J. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in
Their Formation. Rev. Mineral. Geochem. 2006, 64, 223–282. [CrossRef]

12. Kiss, T.; Sovago, I.; Martin, R.B. Aluminum(3+) binding by adenosine 5′-phosphates: AMP, ADP, and ATP. Inorg. Chem. 1991,
30, 2130–2132. [CrossRef]

13. Londono, S.C.; Hartnett, H.E.; Williams, L.B. Antibacterial Activity of Aluminum in Clay from the Colombian Amazon. Environ.
Sci. Technol. 2017, 51, 2401–2408. [CrossRef] [PubMed]

14. Williams, L.B.; Haydel, S.E. Evaluation of the medicinal use of clay minerals as antibacterial agents. Int. Geol. Rev. 2010,
52, 745–770. [CrossRef]
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