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Abstract: Bacteria can adapt to a changing environment by adopting alternate metabolic states
favoring small molecule synthesis and resilience over growth. In Staphylococcus aureus, these states
are induced by factors present during infection, including nutritional limitations, host responses
and competition with other bacteria. Isogenic “tolerant” populations have variable responses to
antibiotics and can remain viable. In this study, we compared the capability of antibiotics to reduce
the viability of S. aureus made tolerant by different mechanisms. Tolerance was induced with
mupirocin, HQNO, peroxynitrite or human serum. Tolerant cultures were exposed to ceftaroline,
daptomycin, gentamicin, levofloxacin, oritavancin or vancomycin at physiological concentrations,
and the viability was assessed by dilution plating. The minimum duration for 3-log viability reduction
and 24 h viability reduction were calculated independently for each of three biological replicates.
Each tolerance mechanism rendered at least one antibiotic ineffective, and each antibiotic was
rendered ineffective by at least one mechanism of tolerance. Further studies to evaluate additional
antibiotics, combination therapy and different tolerance inducers are warranted.

Keywords: MRSA; Staphylococcus aureus; tolerance; persistence

1. Introduction

Staphylococcus aureus remains the most common invasive human pathogen causing
120,000 cases of invasive infection in the United States annually and over 20,000 infection-
attributable deaths [1]. Antibiotic resistance is common in staphylococci resulting in limited
treatment options, higher mortality and increased healthcare costs [2,3]. Although antibiotic
resistance has long been considered a risk for treatment failure, antibiotic tolerance has
recently also been recognized to play a significant role in negative clinical outcomes [4].

Antimicrobial tolerance occurs when a subpopulation of bacteria adopts a distinct
physiological state that facilitates survival in the presence of antibiotic concentrations
that are bactericidal to the larger population. Although both populations are genetically
identical, the presence of certain genetic mutations can alter the prevalence and rates at
which antibiotic-tolerant subpopulations emerge [5,6].

In addition to genetic changes favoring larger “tolerant” subpopulations, there is
increasing evidence that tolerant states can be induced by factors present in the environment,
particularly those encountered during infection [6]. Rather than a stochastic phenomenon
affecting only a small subpopulation, exposure to such environmental factors can provoke
an entire population to exhibit the tolerant phenotype.

These triggers alter a broad number of bacterial physiological pathways that converge
into a tolerant phenotype [7]. It remains unclear whether staphylococci induced to become
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tolerant by one triggering factor exhibit the same response to antibiotic insult as bacteria
induced to become tolerant by a different trigger.

Most studies to date examining tolerance in S. aureus have focused on a single tolerance-
inducing condition, employing different bacterial strains, different endpoints and only
a subset of antistaphylococcal antibiotics, often at concentrations that are not clinically
relevant. Therefore, it is important to systematically examine these mechanisms to assess
the effectiveness of contemporary antistaphylococcal therapies under tolerance-inducing
conditions. Our goal was to determine if antistaphylococcal antibiotics remain capable
of reducing the viability of tolerant Staphylococcus aureus bacteria and if such capability is
linked to the mechanism of tolerance induction.

2. Results

All antistaphylococcal antibiotics reduced the viability of non-tolerant bacterial cul-
tures, frequently achieving bactericidal activity within 48 h (Table 1). For each antibiotic,
there existed at least one tolerance-inducing condition that prevents bactericidal activity
over 48 h (Figure 1). This revealed that none of the antistaphylococcal antibiotics assessed
are consistently effective in the simulated in vivo environment. Of the antibiotics tested,
oritavancin remained the most consistently active; however, it became completely ineffec-
tive under humoral tolerance conditions (Figure 2). In fact, daptomycin was the only agent
that retained activity against humoral tolerance conditions, albeit with a slower time to
bactericidal activity.

Table 1. Time needed to induce a 3-log reduction in viability (hours).

Antibiotic No Induction Nutritional Tolerance Competitive Tolerance Oxidative Tolerance Humoral Tolerance

Ceftaroline 11.1 ± 0.19 † 11.1 ± 1.05 47.6 ± 0.34 * †
Daptomycin 1.5 ± 0.25 † 4.4 ± 0.09 * 17.7 ± 0.95 * 12.9 ± 0.72 *
Gentamicin 1.3 ± 0.17 23.4 ± 0.02 * † 21.9 ± 1.95 * †

Levofloxacin 1.7 ± 0.13 † 4.9 ± 0.56 * 31.8 ±3.00 * †
Oritavancin 1.2 ± 0.08 5.3 ± 0.41 * 1.2 ± 0.02 1.4 ± 0.12 †
Vancomycin 25.8 ± 6.12 † † 45.2 ± 1.39 * †

† 3-log reduction in viability was not achieved within 48 h. * p-value < 0.01 vs. uninduced control.
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Figure 1. Activity of study antibiotics against induced-tolerant staphylococci determined in 
Mueller–Hinton broth. (A) ceftaroline; (B) daptomycin; (C) gentamicin; (D) levofloxacin; (E) orita-
vancin; and (F) vancomycin. Dotted line with black points, nutritional tolerance; dashed line with 
gray points, oxidative tolerance; solid line with white points, competitive tolerance; and gray line 
without points, no tolerance induction. 

   

   
Figure 2. Activity of study antibiotics against induced-tolerant staphylococci determined in human 
serum. (A) ceftaroline; (B) daptomycin; (C) gentamicin; (D) levofloxacin; (E) oritavancin; and (F) 
vancomycin. Dotted line with black points, bacteria conditioned overnight in serum prior to antibi-
otic exposure; and gray line without points, bacteria inoculated into serum immediately prior to 
antibiotic exposure. 
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Figure 1. Activity of study antibiotics against induced-tolerant staphylococci determined in
Mueller–Hinton broth. (A) ceftaroline; (B) daptomycin; (C) gentamicin; (D) levofloxacin; (E) oritavancin;
and (F) vancomycin. Dotted line with black points, nutritional tolerance; dashed line with gray points,
oxidative tolerance; solid line with white points, competitive tolerance; and gray line without points,
no tolerance induction.
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Figure 2. Activity of study antibiotics against induced-tolerant staphylococci determined in human
serum. (A) ceftaroline; (B) daptomycin; (C) gentamicin; (D) levofloxacin; (E) oritavancin; and (F)
vancomycin. Dotted line with black points, bacteria conditioned overnight in serum prior to
antibiotic exposure; and gray line without points, bacteria inoculated into serum immediately prior to
antibiotic exposure.

3. Discussion

Antibiotic tolerance is associated with negative clinical outcomes in patients with
S. aureus bacteremia [8]. Unfortunately, several different environmental triggers and dis-
tinct metabolic pathways converge in the phenotype of antimicrobial tolerance. In this study,
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we simulated antimicrobial tolerance by four well-defined inducing conditions and deter-
mined the impact on antistaphylococcal antibiotic activity.

Nutritional tolerance is a conserved and well-described microbial response to sudden
nutritional deprivation [9,10]. An acute reduction in the amino acid availability results in
an increase in uncharged transfer RNAs, which are recognized by the rel system [11,12].
An activated rel system produces the alarmone ppGpp and initiates a stringent response that
is characterized in S. aureus by impaired ribosome assembly, slow growth and antimicrobial
tolerance [13].

Mupirocin mimics this process via isoleucyl tRNA synthetase inhibition resulting in the
sudden accumulation of uncharged isoleucyl tRNA and stringent response activation [14].
In the current study, nutritional tolerance conferred cross-tolerance to all antistaphylococcal
antibiotics (Table 1, Figure 1). However, oritavancin does retain bactericidal activity against
nutritionally-tolerant staphylococci, albeit with a statistically-significant delay in time to
bactericidal activity. The clinical significance of such a delay in the context of an antibiotic
with such a prolonged half-life is unclear.

Competitive tolerance is a common consequence of co-culture. Even within the same
taxa, microbes often produce toxin-antitoxin systems or metabolic inhibitors to suppress the
growth of “not-self” bacteria [15]. One such system involves the staphylococcal cytochrome
bc1 inhibitor HQNO, which (when produced by Pseudomonas aeruginosa) impairs S. aureus
growth by impairing electron transport [16]. This forces staphylococci to adopt fermentative
growth and dissipate the proton-motive force. As aminoglycosides require an active proton
motive force for bacterial internalization [17], it is no surprise that, in the current study,
competitive tolerance completely blocked gentamicin and, to a degree, levofloxacin but did
not impact antibiotics that act extracellularly, such as ceftaroline and oritavancin (Table 1).

Peroxynitrite is a potent oxidant produced by the activated macrophage oxidative burst
and may be the primary reactive oxygen species at the site of infection [18].
Bacterial aconitase is exquisitely susceptible to redox damage and is specifically deac-
tivated by peroxynitrite [19]. Aconitase inhibition results in the collapse of the bacterial
TCA cycle and forced fermentative growth. However, in this form of fermentative growth,
a proton-motive force can still be generated, albeit without the benefit of the TCA cycle
generation of reducing equivalents. Therefore, although both competitive and oxidative
tolerance result in fermentative growth, they do not induce the same pattern of tolerance to
individual antibiotic agents, such as gentamicin (Figure 1C).

Humoral tolerance results from the activation of the staphylococcal GraSR cell enve-
lope stress regulon [20,21]. This results in the downregulation of cell wall hydrolases and
thickening of the bacterial cell wall [22,23]. The inducer of humoral tolerance, human cathe-
licidin (LL-37), is present at basal levels in the bloodstream but can also be produced
by neutrophils in response to bacterial infection [24]. Even basal levels of cathelicidin
are capable of inducing humoral tolerance sufficient to render most antistaphylococcal
agents ineffective.

Of all the forms of tolerance tested, humoral tolerance was the only one capable
of rendering oritavancin ineffective (Figure 2E). Whether this oritavancin tolerance is a
consequence of GraSR-mediated cell wall thickening or the modulation of a different
member of the GraSR regulon is unclear. The only agent that retained some potency against
humorally-tolerant S. aureus was daptomycin, albeit with a significantly prolonged time to
bactericidal activity (Figure 2B).

This study has several limitations. Although we have tested and validated each of
these forms of tolerance in other clinical isolates, we only performed the systematic anal-
ysis with one pan-susceptible Staphylococcus aureus strain. By necessity, this study was
conducted in vitro in the absence of innate and adaptive immune responses. The simu-
lations were only observed for a 48 h period and, thus, may fail to capture differences in
activity beyond this timepoint. Finally, the antibiotics were added at static concentrations,
which does not adequately recapitulate the pharmacokinetics and pharmacodynamics of
clinical dosing regimens.
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4. Materials and Methods
4.1. Strain Characterization, Cultivation Conditions and Antibiotic Selection

The prototypical methicillin-susceptible Staphylococcus aureus strain SH1000 was
selected for analysis due to its susceptibility profile and its prior use in antibiotic tol-
erance studies [23,25]. Bacteria were cultivated in Mueller–Hinton 2 broth (BD Difco,
Franklin Lakes, NJ, USA) unless otherwise noted. Antibiotics were supplemented at static
concentrations corresponding to the estimated free serum concentration following stan-
dard dosing, including ceftaroline (Allergan, Madison, NJ, USA, 17 mg/L), daptomycin
(Mylan, Canonsburg, PA, USA, 6 mg/L), gentamicin (Alfa Aesar, Haverhill, MA, USA
5 mg/L), levofloxacin (Teva Pharmaceuticals, Tel Aviv, Israel, 4 mg/L), oritavancin (Melinta,
New Haven, CT, USA, 14 mg/L) and vancomycin (Mylan, New Haven, CT, USA, 35 mg/L).

Mupirocin was obtained from Panreac AppliChem, Chicago, IL, USA. Active ceftaro-
line was generated from ceftaroline fosamil by enzymatic amino dephosphorylation [26],
and we validated its activity by bioassay prior to use. All media containing oritavancin
were supplemented with Tween20 (0.002%), and all media containing daptomycin were
supplemented to 50 mg/L Ca2+ per CLSI recommendations [27]. Human male blood
type AB serum was obtained from Sigma Aldrich, St. Louis, MO, USA. Antibiotics were
added to human serum at static concentrations corresponding to the estimated total serum
concentration following standard dosing as follows: ceftaroline, 21 mg/L; daptomycin,
80 mg/L; gentamicin, 5 mg/L; levofloxacin, 6 mg/L; oritavancin, 16 mg/L plus 0.002%
Tween20; and vancomycin, 150 mg/L.

4.2. Nutritional Tolerance

Acute nutritional limitation was simulated by the method of Reiss et al. [28]. Briefly,
overnight bacterial cultures were adjusted to approximately 1 × 108 colony forming units
(cfu) per mL with fresh Mueller–Hinton broth. Cultures were then supplemented with
mupirocin at a concentration of 3.2 mg/L and returned to the incubator with shaking for
1 h (37 ◦C, 180 rpm), after which antibiotics were added at the above concentrations.

4.3. Competitive Tolerance

Competition with Pseudomonas aeruginosa was simulated by the method of Orazi et al. [16].
Briefly, overnight bacterial cultures were adjusted to approximately 1 × 108 cfu/mL
with fresh Mueller–Hinton broth. Cultures were then supplemented with 2-heptyl-4-
hydroyquinoline-N-oxide (HQNO) to a final concentration of 3 mg/L and returned to the
incubator with shaking for 1 h (37 ◦C and 180 rpm), after which antibiotics were added at
the above concentrations.

4.4. Oxidative Tolerance

Exposure to tolerance-inducing reactive oxygen species was simulated by the method
of Beam et al. [19]. Briefly, overnight bacterial cultures were adjusted to approximately
1 × 108 cfu/mL with fresh Mueller–Hinton broth. Cultures were then supplemented with
peroxynitrite to a final concentration of 2 mM and returned to the incubator with shaking
for 1 h (37 ◦C and 180 rpm), after which antibiotics were added at the above concentrations.

4.5. Humoral Tolerance

Cathelicidin-mediated tolerance was simulated by the method of Ledger et al. [23].
Briefly, approximately 1 × 108 cfu/mL bacteria were inoculated into human serum and
incubated with shaking overnight (~16 h, 37 ◦C, 180 rpm). Antibiotics were then added at
the above concentrations. Parallel experiments using freshly-inoculated bacteria added to
separate tubes concomitant with antibiotics were included as non-serum-adapted controls.

4.6. Data Analysis

Samples were removed for colony enumeration immediately prior to the addition
of antibiotics and at set intervals after antibiotic challenge. Samples were enumerated
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by dilution plating on brain heart infusion agar (BD Difco, Franklin Lakes, NJ, USA).
Antibiotics were considered “bactericidal” if the viable cfu/mL decreased from the baseline
by more than 3 log10 units over a 48-h period. The minimum duration to bactericidal
activity (MDK99.9) [4] was determined individually per replicate via linear extrapolation
between the timepoints immediately preceding and following a 3 log10 unit reduction from
baseline. All analyses were performed in triplicate.

Descriptive data were expressed as the mean and standard deviation. Differences in
MDK99.9 between tolerance-exposure conditions were determined by ANOVA with post
hoc Student’s t-test, including Holm–Bonferroni adjustment. A p-value ≤ 0.05 was consid-
ered to be significant.

5. Conclusions

The mechanism by which antimicrobial tolerance is induced impacts both the time
to bactericidal effect and the extent of killing. No antibiotic was consistently bactericidal
against all forms of tolerance; conversely, no form of tolerance was able to render all
antistaphylococcal antibiotics ineffective. Further studies are needed to evaluate the potency
of additional antistaphylococcal antibiotics, antibiotic activity in the context of different
environmental inducers of tolerance and strategies to counteract the establishment of
antibiotic tolerance.
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