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Abstract: Escherichia coli is a versatile commensal and pathogenic member of the human microflora.
As the primary causative pathogen in urosepsis, E. coli places an immense burden on healthcare
systems worldwide. To further exacerbate the issue, multi drug resistance (MDR) has spread rapidly
through E. coli populations, making infections more troublesome and costlier to treat. This paper
aimed to review the literature concerning the development of MDR in uropathogenic E. coli (UPEC)
and explore the existing evidence of current and emerging treatment strategies. While some MDR
strains maybe treated with β-lactam-β-lactamase inhibitor combinations as well as cephalosporins,
cephamycin, temocillin and fosfomycin, current treatment strategies for many MDR UPEC strains
are reliant on carbapenems. Carbapenem overreliance may contribute to the alarming dissemination
of carbapenem-resistance amongst some UPEC communities, which has ushered in a new age of
difficult to treat infections. Alternative treatment options for carbapenem resistant UPEC may include
novel β-lactam-β-lactamase or carbapenemase inhibitor combinations, cefiderocol, polymyxins,
tigecycline, aminoglycosides or fosfomycin. For metallo-β-lactamase producing strains (e.g., NDM,
IMP-4), combinations of cefazidime-avibacam with aztreonam have been used. Additionally, the
emergence of new antimicrobials brings new hope to the treatment of such infections. However,
continued research is required to successfully bring these into the clinic for the treatment of MDR
E. coli urosepsis.

Keywords: multidrug resistance; urosepsis; Escherichia coli; MRE

1. Introduction

Uropathogenic Escherichia coli (UPEC) is responsible for a number of diseases in hu-
mans including urinary tract infections (UTI), and urosepsis. Together, UPEC infections
place an astounding burden on healthcare worldwide, causing 80–95% of community
acquired UTI cases, and 27% of sepsis cases [1–5]. Antibiotics have been the mainstay of
treatment in bacterial infections since their introduction in the early 20th century. However,
the global dissemination of resistance has posed a challenge [6]. Multi-drug resistance is
now one of the most critical challenges facing the world. UPEC infections are typically
treated with β-lactam antibiotics, fluoroquinolones, aminoglycosides and trimethoprim-
sulfamethoxazole [7–9]. However, the spread of third generation cephalosporin resis-
tance mediated by Ambler class A and C β-lactamases, and carbapenem resistance from
Ambler class A, B and D β-lactamases have rendered many antibiotics ineffective [10].
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Still, some treatment options remain. While many class A and C β-lactamase producing
strains are still susceptible to carbapenems, the increase in reliance on these last resort
drugs has triggered an increase in the spread of carbapenem hydrolysing enzymes called
carbapenemases [11–14]. Thus, finding carbapenem-sparing options is a priority. Older
β-lactam-β-lactamase inhibitor (BLBLI) combinations such as amoxicillin/clavulanic acid
may be effective against ESBL producing E. coli while newer BLBLIs such as the diazabi-
cyclooctane (DBO) BLBLIs, may be active against AmpC producing E. coli [15,16]. New
antibiotics are also in development, some of which demonstrated activity against KPC,
NDM and OXA-48-like β-lactamases. This review aims to review the literature around
multi drug resistance in UPEC and present a qualitative synthesis of existing evidence on
current and future treatment options for MDR strains of UPEC.

2. Multi-Drug Resistance in UPEC

Multi-drug resistance is defined as non-susceptibility to at least one antimicrobial in
three or more classes as tested with in vitro susceptibility testing [8]. While multi-drug
resistance in E. coli was discovered in the late 20th century, the WHO has since categorised
carbapenem resistant, extended spectrum β-lactamase (ESBL) producing Enterobacterales
as priority one, with the fear being that antibiotic resistant Enterobacterales will be dispro-
portionally prevalent by 2050 without new antibiotic discovery [17,18]. E. coli has since
shown the ability to resist all classes of antibiotics used in treatment of UPEC infections
with varying degree of resistance. β-lactams are the most common antibiotic family used
to treat UPEC infections and work by inhibiting essential penicillin-binding proteins to
disrupt cell wall synthesis [15,19]. β-lactam resistance is usually mediated by β-lactamases,
enzymes able to hydrolyse antibiotics of this family and render them ineffective [15].

2.1. Extended Spectrum β-Lactamase

Some of the most clinically significant β-lactamases include variants of TEM, SHV and
CTX-M enzymes [10]. These β-lactamases are classified into one of four Ambler classes,
with TEM, SHV and CTX-M categorised as Class A β-lactamases [20]. Both TEM-1 and
SHV-1 are narrow spectrum β-lactamases, resulting in the hydrolysis of penicillins and
cephalosporins such as cefamandole and cefoperazone. The wide use of extended-spectrum
cephalosporins led to the emergence of mutants derived from TEM-1 and SHV-1 [10]. These
new variants possess an extended spectrum of activity, mediating resistance to second-,
third-, and fourth-generation cephalosporins, hence termed ESBLs [21]. CTX-M is the most
widespread ESBL, first discovered and most prevalent in E. coli (though it is believed that
CTX-M originated in Kluyvera spp.). The rapid global dissemination of CTX-M has since
been referred to as the CTX-M pandemic [22,23].

ESBLs are defined by their ability to hydrolyse three β-lactam classes; penicillins,
cephalosporins (including broad spectrum agents such as ceftriaxone and ceftazidime)
and monobactams, but not cephamycins or carbapenems [24,25]. ESBLs often exhibit
resistance to multiple other antibiotics such as aminoglycosides and fluoroquinolones via
transmission of co-resistance located on the same mobile genetic elements, making these
infections even more difficult to treat [26].

2.2. Plasmid-Mediated AmpC-β-Lactamase

AmpC-β-lactamases are classified as Ambler Class C [20]. AmpC-β-lactamases are
usually chromosomally encoded, though E. coli only produces low and usually ineffectual
levels, with the exception of some mutant strains [27]. However, AmpC-β-lactamases
may also be transferred via plasmids [28,29]. AmpC β-lactamases provide resistance to
all β-lactams with the exception of cefepime, cefpirome, and the carbapenems [25,30,31].
AmpC-β-lactamases are not as wide-spread as ESBLs with numerous studies reporting less
than 7% of isolated E. coli containing AmpC-β-lactamase [32–40]. Colonisation of AmpC-β-
lactamase producing E. coli strains is strongly associated with healthcare contact [35].
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2.3. Carbapenemase

Carbapenemases span three of the four Ambler classes.
Class A carbapenemases can have a chromosomal location but are often plasmid-

mediated [11]. K. pneumoniae carbapenemase (KPC), which is mainly seen in Klebsiella,
is also the most predominant type of class A carbapenemases in E. coli [14]. KPCs are
broad-spectrum, acting against almost all β-lactams.

Class B carbapenemases are broad-spectrum β-lactamases able to hydrolyse all β-
lactam antibiotics that are currently clinically available with the exception of monobac-
tams [9,41]. The most common metallo-β-lactamases (MBL) reported in E. coli are variants
of New Delhi metallo-β-lactamase (NDM), which was first observed in E. coli in 2009 [14].

Class D carbapenemases are types of oxacillin-hydrolysing enzymes [42]. Of the
>200 enzymes, only a few are active against carbapenems with OXA-48 and OXA-48-
like such as OXA-181, OXA-232 and OXA-484, being the most common in E. coli [43,44].
These carbapenemases have weak activity by themselves, and often spare cephalosporins,
however co-occurrence with other resistance mechanisms including ESBLs can result in
high-level third generation cephalosporin and carbapenem resistance [45].

2.4. Resistance to Non-β-Lactam Antibiotics

Though β-lactam antibiotics are the drug of choice for treating UPEC infections, other
classes of antibiotics are also effective against E. coli [46]. These include fluoroquinolones,
aminoglycosides, and fosfomycin as well as sulfonamides and trimethoprim [9]. Various
resistance mechanisms also exist to impact the efficacy of these drugs and are often found
in ESBL producing strains [26,47].

2.4.1. Fluoroquinolones

Fluoroquinolones are active against a wide range of bacteria [46,48]. They work by
interfering with DNA supercoiling [46]. Resistance is commonly due to mutations in drug
targets, though upregulated efflux pumps, protection of target structures and reduced per-
meability of the outer membrane are all thought to play a role in resistance (Figure 1) [46].
A 2016 study from the US found that 28.2% of tested strains were resistant to fluoro-
quinolones, while a 2019 study in Iran found 45.2% of their isolates were fluoroquinolone
resistant [49,50]. Though fluoroquinolones are not a first-line treatment in UTI cases, reports
show their prescription in nearly 50% of uncomplicated UTI cases [51]. Reports also show
a direct correlation between floroquinolone use and community resistance rates [52].

2.4.2. Aminoglycosides

Aminoglycosides are often used in combination with β-lactams in UPEC infections.
They work by irreversibly binding to the 30S subunit of the 16S rRNA, as well as the 50S
subunit of the 70S bacterial ribosome [46,53]. In some bacteria, resistance may occur by
mutation in the 16S RNA, and/or S5 and S12 ribosomal protein [53]. The likelihood of such
a mutation occurring in E. coli is low, due to the numerous copies of these operons that
E. coli possesses [54]. For this reason, resistance to aminoglycosides in UPEC is plasmid
mediated [46]. Resistance to aminoglycosides can also be caused by enzymatic inactivation
or protection of ribosomal methylases [55].

2.4.3. Fosfomycin

Fosfomycin is a broad spectrum antibiotic effective on many Gram-positive and
Gram-negative bacteria. There are three forms of the antibiotic, two of which are oral
formulations—fosfomycin tromethamine and fosfomycin calcium—and one IV formulation,
fosfomycin disodium [56]. While oral fosfomycin is used worldwide, IV fosfomycin has
yet to obtain FDA approval in the United States, despite being used in other countries for
treatment of severe infections due to MDR Gram negative pathogens [16,57,58]. Fosfomycin
works by inhibiting peptidoglycan synthesis and is often used to treat cystitis [8]. There
are two major resistance mechanisms against fosfomycin, including mutations encoding
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for proteins involved in the uptake system, and the acquisition of plasmids encoding for
fosfomycin-modifying enzymes [46].
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Figure 1. Possible mechanisms of resistance include (A) activation of efflux pumps, which remove
drugs such as β-lactams from the bacterial cell (B) decreased drug uptake, preventing drugs such
as fosfomycin from entering the cell (C) enzymes such as β-lactamase, which inactivate antibiotics,
(D) modification of target site disallowing binding of drugs such as sulfonamides and trimethoprim
and (E) protection of target site inhibiting binding of drugs such as fluroquinolones.

2.4.4. Sulfonamides and Trimethoprim

Sulfonamides and trimethoprim are bacteriostatic antibiotics that interfere with bacte-
rial folic acid synthesis, and are synergistic when given in combination [46]. Resistance is a
result of either a mutation in the gene encoding for target enzymes, or the acquisition of
genes that are insensitive to either sulfonamides or trimethoprim [46].

3. Current Treatment Options for MDR UPEC

Initial selection of antimicrobials is often determined by the suspected pathogen and
its susceptibilities [59]. However, studies suggest that empiric treatment for patients with
ESBL-producing infections have low appropriateness rates ranging from 37–50% [60]. Inap-
propriate therapy has been associated with increased morbidity and mortality, lengthening
hospital stay and contributing to the development of AMR [51,61]. Recommended empiric
treatment varies by location and should be guided by local susceptibility trends.

3.1. ESBL and AmpC Producing UPEC
3.1.1. Carbapenems

As both ESBL and AmpC producing UPEC are typically resistant to most cephalosporins,
carbapenems have traditionally been recommended to treat such infections [16]. Most
literature seems to focus on meropenem and imipenem, with a fewer number studying
ertapenem, as comparators for non-carbapenem drugs intended for use against ESBL and
AmpC producing UPEC. As the dependence on carbapenems may be, in part, to blame
for the increasing rates of carbapenem resistance seen in recent years, where possible,
carbapenem sparing options should be favoured.

3.1.2. β-Lactam-β-Lactamase-Inhibitor Combinations

β-lactam-β-lactamase-inhibitors (BLBLI), are one therapy of treating ESBL produc-
ing Enterobacterales [16]. BLBLIs effective against Class A enzymes include, amoxicillin-
clavulanate, and piperacillin-tazobactam among others [15,16]. However, whether BLBLIs
truly present a comparable treatment to carbapenems is still unclear. In a retrospective
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observational study of ESBL producing E. coli bloodstream infections, Rodríguez-Baño
et al. observed a 9.3% mortality rate in patients receiving a definitive treatment of either
amoxicillin-clavulanate and piperacillin-tazobactam versus 16.7% receiving carbapenems
(p > 0.2) [62]. However, in this study, the treatment groups were unequal, with patients
treated with carbapenems having higher illness severity. Conversely, in a noninferior-
ity randomised clinical trial (MERINO), Harris et al. found that the 30-day mortality
rate for patients with bloodstream infection caused by ESBL or AmpC-producing E. coli
or K. pneumoniae who were treated with piperacillin-tazobactam was 12.3% versus 3.7%
(p = 0.90) in patients treated with meropenem [63]. While multiple studies and system-
atic reviews have reported that BLBLIs present a promising alternative to carbapenem
use [62,64–70], many others have conversely shown carbapenems remain the superior
treatment [63,71,72]. Additional studies are required to confirm BLBLI noninferiority for
different infection syndromes, leaving carbapenems as the drug of choice to combat ESBL
producing bacteria. One such additional study is a phase 4 clinical trial aiming to replicate
the MERINO trial in lower risk patients. The study is currently recruiting and estimated to
be completed in April 2024 [73].

Traditionally, AmpC-producing Enterobacterales possess enzymes that are not well in-
hibited by BLBLIs, however, second generation BLBLIs such as ceftolozane-tazobactam
and ceftazidime-avibactam have been designed to combat AmpC-producing Enterobac-
terales [16,24]. As is the case with BLBLIs for ESBL producers, it remains unknown whether
these new BLBLIs are a comparable treatment to carbapenems. A 2019 randomised clinical
trial comparing ceftazidime-avibactam against the best available therapy (BAT) showed
that clinical cure rates between the two were similar (80.0% ceftazidime-avibactam, 89.5%
BAT) [74]. A 2020 systematic review of six randomised controlled trials showed that pooled
data of ceftazidime-avibactam, cefiderocol, plazomicn and eravacycline was superior to
carbapenems in composite cure, a combination of clinical success and microbiological eradi-
cation, though not statistically significantly so [75]. However, a 2021 systematic review and
meta-analysis of six randomised controlled trials showed that ceftolozane-tazobactam and
ceftazidime-avibactam had a lower clinical and microbiological success rate when compared
to carbapenems [76].

3.1.3. Cephalosporins

While both ESBL and AmpC producing Enterobacterales are resistant to most
cephalosporins, exceptions do exist, though the literature is mixed. TEM and SHV produc-
ing ESBLs have shown susceptibility to cefotaxime in vitro though it is not used in practice,
while CTX-M producers can be susceptible to ceftazidime and cefepime [16].

In a randomised controlled trial, Seo et al. found that the clinical and microbiological
response to cefepime was only 33.3% compared to that of piperacillin-tazobactam (93%)
and ertapenem (97%) (p < 0.001) in the treatment of ESBL-producing UPEC causing UTI [77].
Similarly, in a systematic review of thirty-five studies, Son et al. found little difference in
mortality with empirical treatment of cephalosporins and carbapenems, with a risk ratio
(RR) of 0.72 (0.11–1.17), although, the mortality rate was lower in the carbapenem group
versus the cephalosporins, RR = 0.56 (0.42–0.74), with regard to definitive treatment [64].
However, in a single centre retrospective study in patients with UTI caused by ESBL
producing Enterobacterales, Kim et al. found that cefepime was comparable to carbapenems.
It should be noted that in this study, the sample sizes were very small, and drastically fewer
patients received cefepime (n = 17) compared to carbapenems (n = 89) [78].

Additionally, chromosomally encoded AmpC producers may be susceptible to ce-
fepime, though there is little clinical data supporting susceptibility in plasmid-mediated
AmpC producers [16]. Overall, current literature suggests that cephalosporin monotherapy
may be suboptimal to carbapenem when treating ESBL and AmpC-producing UPEC, and
are often recommended to be avoided.
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3.1.4. Cephamycins

Cephamycins are second-generation cephalosporins active against ESBL producers,
though they are not active against AmpC-producers [79]. Cephamycins include cefoxitin,
cefotetan, cefmetazole, moxalactam and flomoxef. In a retrospective observational study,
Araki et al. found that there was no significant difference (p = 0.72) in clinical cure rate
between cefmetazole (86.1%) and meropenem (89.5%) when treating ESBL producing E. coli
and K. pneumoniae [80]. Similarly, another retrospective observational study described
comparable efficacy of cefmetazole and carbapenems in the treatment of UTI caused by
ESBL-producing E. coli, though the authors did conclude that carbapenems were the
preferred drug of choice for more severe cases [81]. However, in cefotaxime-resistant
bacteria, use of cephamycins were associated with a longer hospital stay (10.2 ± 8.5) when
compared to a carbapenem (14.6 ± 9.4 days) (p < 0.01), though the 28 day mortality rates
were not statistically significant (20.7% vs. 13.8%, respectively, p = 0.28) [82]. Conversely,
Lee et al. found that flomoxef had a significantly higher mortality rate than carbapenems
(27.3% vs. 10.5%, p < 0.01) in the treatment of sepsis caused by ESBL-producing UPEC [83].
Therefore, although cephamycins present a possible carbapenem sparing option for non-
severe infections, additional clinical data are still needed.

3.1.5. Temocillin

Temocillin is a penicillin antibiotic first developed in the 1980s, before being relaunched
in Germany in 2019 [84]. Temocillin is marketed as a parenteral therapy of bloodstream
infections and complicated urinary tract infections, stable against both ESBL and AmpC-
producers [84]. In a retrospective observational study of adults with a UTI caused by
ESBL-producing UPEC, Delroy et al. found that 94% of the 72 patients who were treated
with temocillin reached clinical cure compared to 99% of the 72 patients treated with a
carbapenem (p = 0.206) [85]. However, of these patients only six were given temocillin
as a first line therapy, others were first given a carbapenem, before being switched to
temocillin [85]. This suggests that temocillin may be a potential treatment for ESBL and
AmpC producing UPEC causing UTI. A phase 3 clinical trial is currently recruiting to com-
pare the efficacy of temocillin versus meropenem against third-generation cephalosporin
resistant Enterobacterales [86].

3.1.6. Intravenous Fosfomycin

In a multicentre, double-blind, randomized, noninferiority trial Kaye et al. com-
pared intravenous fosfomycin to piperacillin-tazobactam to treat complicated UTIs and
found fosfomycin had a 64.7% overall success rate compared to 54.5% of piperacillin-
tazobactam [87,88]. However, in a multicentre clinical trial of patients with urosepsis
caused by UPEC, Sojo-Dorado et al. found only 68.6% of fosfomycin patients reached
clinical and microbiological cure versus 78.1% patients treated with meropenem or cef-
triaxone (p = 0.10) [89]. This suggests fosfomycin monotherapy is not as efficacious as
other comparators.

Recent studies have shown that fosfomycin has great success when used in combination
with other antibiotics. In a prospective, multicentre, non-interventional study in 209 patients
with ESBL-producing bacteria, including E. coli, Putensen et al. found that 81.3% of patients
had an overall clinical success when treated with fosfomycin in combination, predominantly
with a carbapenem, 3rd- or 4th- generation cephalosporin, BLBLI, and/or a quinolone [90].
Of these 209 patients, 51 patients had at least one MDR pathogen, and an even higher
rate of success (84.8%) was observed in these patients [90]. Additionally, a combination of
fosfomycin with colistin has been shown to be synergistic against MDR UPEC in vitro [91].
In combination, fosfomycin presents a promising alternative to other treatments.

3.2. Carbapenemase Producing UPEC

Treatment options for carbapenemase producing UPEC that are supported by clinical
evidence are far more limited (Table 1). As such, an individualised approach is often necessary.
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Table 1. Clinical studies evaluating the efficacy of antibiotics against numerous carbapenemase producing bacteria including E. coli.

Reference Period Design Number of
Patients Objective Treatment & Doses Causative Agent/s E. coli Specific

Outcome Outcome ClinicalTrials.gov
Identifier

[92]
July 2014
to July
2017

Phase 3
Multicentre
Multinational
Randomised
Parallel Assignment
Open-label
Active controlled
trial

77

To evaluate the
efficacy and safety
of meropenem–
vaborbactam
monotherapy
against best
available therapy for
CRE.

Drug: Meropenem-vaborbactam
2 g/2 g dose via IV

Drug: Best Available Therapy
Antibiotic(s) chosen by
Investigator

Confirmed or
suspected
carbapenem-resistant
K. pneumoniae, E. coli,
Enterobacter cloacae sp.,
Proteus mirabilis,
Serratia marcescens

Not provided

Meropenem–
vaborbactam cure
rate of 65.6% versus
33.3% cure rate for
best available
therapy.

NCT02168946

[93] 2016 to
2019

Phase 3
Multicentre
Randomised
Parallel assignment
Open-label
Clinical trial

152

To evaluate the
efficacy of
cefiderocol for
treatment of serious
infections caused by
carbapenem-
resistant
Gram-negative
pathogens.

Drug: Cefiderocol
2 g intravenously over 3 h every
8 h for a period of 7 to 14 days, or
2 g every 6 h for participants
with creatinine clearance
>120 mL/min.

Drug: Best Available Therapy
Standard of care with either a
polymyxin-based or
non-polymyxin-based regimen
as determined by the investigator
and consisting of one to three
marketed antibacterial agent(s).

Carbapenem resistant
Acinetobacter
baumannii, K.
pneumoniae,
Pseudomonas
aeruginosa,
Stenotrophomonas
maltophilia,
Acinetobacter
nosocomialis, E. cloacae,
E. coli

Mortality rate of
cefiderocol was 17%
vs. BAT 0%

Clinical cure
achieved by 50% of
cefiderocol patients
and 53% of best
available therapy
patients suffering
nosocomial
pneumonia.

Clinical cure
achieved by 43% of
cefiderocol patients
and 43% of best
available therapy
patients suffering
bloodstream
infections or sepsis.

NCT02714595

[94] 2013 to
2016

Phase 4
Randomised
Parallel assignment
Open label
Superiority trial.

406

To determine
whether the addition
of meropenem to
colistin is superior
to colistin
monotherapy in the
treatment infections
caused by
multi-drug resistant
bacteria.

Drug: Colistin
IV loading dose of 9 mil IU units
Maintenance dose 4.5 mil IU
q12h, adjusted for renal function,
for 10 days.

Drug: Meropenem
IV 2 g every 8 h, adjusted for
renal function, for up to 10 days.

Drug: Colistin
Loading dose of 9 mil IU units
Maintenance dose 4.5 mil IU
every 12 h, adjusted for renal
function, for 10 days.

Carbapenem resistant
A. baumannii,
Enterobacterales and
Pseudomonas

Not provided

No significant
difference between
colistin
monotherapy and
combination therapy
was observed (79%,
73%, respectively).

NCT01732250



Antibiotics 2022, 11, 1821 8 of 20

Table 1. Cont.

Reference Period Design Number of
Patients Objective Treatment & Doses Causative Agent/s E. coli Specific

Outcome Outcome ClinicalTrials.gov
Identifier

[95]

October
2012 to
August
2014

A Phase 3
Multicentre
Randomised
Parallel assignment
Double blind-double
dummy Clinical trial

598 and 435

Combined
total of 1033

To evaluate the
effects of
Ceftazidime
Avibactam versus
Doripenem for the
treatment of cUTI

Drug: Ceftazidime-Avibactam
(CAZ-AVI)
Ceftazidime 2000 mg
Avibactam 500 mg
Every 8 h in a volume of 100 mL
at a constant rate over 120 min
administered IV.

Drug: Doripenem
500 mg of Doripenem every 8 h
administered by intravenous (IV)
infusion in a volume of 100 mL
at a constant rate over 60 min

Carbapenem resistant
E. coli, K. pneumoniae,
Proteus mirabilis, E.
cloacae, P. aeruginosa
and ESBL-positive
Enterobacterales

Mortality rate of
infections with: All
baseline E. coli
pathogens treated
with ceftazidime-
avibactam was
78.4% vs.
doripenem 71.9%

Ceftazidime-
avibactam
nonsusceptible E.
coli treated with
ceftazidime-
avibactam 61.1% vs.
doripenem 54.1%

Ceftazidime-
avibactam
susceptible E. coli
treated with
Mortality rate of
infections with
81.1% vs.
doripenem 73.7%

Combined
symptomatic resolu-
tion/microbiological
eradication at test of
cure was observed
in 71.2% of
CAZ-AVI patients
vs. 64.5% doripenem
patients.

NCT01595438
NCT01599806
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3.2.1. Carbapenems

Though some studies show select carbapenems may act as a sufficient treatment,
more data is available on the efficacy of carbapenem when used with BLIs [16]. The
carbapenem, meropenem combined with the BLI vaborbactam, has been studied for the
treatment of cUTI and associated bacteraemia [96]. Vaborbactam is a first-in-class boronic
acid β-lactamase inhibitor that inhibits KPC enzymes, which was recently introduced to
clinical practice [97]. In a phase 3, multicentre, multinational, randomised clinical trial
(TANGO I) Kaye et al. found overall success occurred in 189 of 192 (98.4%) patients treated
with meropenem-vaborbactam versus 171 of 182 (94.0%) patients treated with piperacillin-
tazobactam (p < 0.001) [98]. E. coli was the causative agent in 65.1% of patients treated
with meropenem-vaborbactam and 64.3% of patients treated with piperacillin-tazobactam,
however whether these pathogens were confirmed as CRE was not noted in the study [98].
Additionally, another phase 3, multinational, randomised controlled trial (TANGO II)
confirmed that meropenem–vaborbactam monotherapy resulted in increased clinical cure,
decreased mortality, and reduced nephrotoxicity compared to the BAT, which was either a
monotherapy or combination therapy of polymyxins, carbapenems, aminoglycosides, or
tigecycline; or monotherapy with ceftazidime-avibactam [92].

Imipenem/cilastatin/relebactam has been studied for the treatment of cUTI [99].
Literature on imipenem/cilastatin/relebactam against carbapenem resistant E. coli is scarce,
however, a phase 3 clinical trial in patients with hospital-acquired pneumonia/ventilator-
associated pneumonia, complicated urinary tract infections, or complicated intraabdominal
infections which were caused by imipenem non-susceptible Gram negatives other than
E. coli, found that there was a 28 day favourable clinical response in 71% of imipenem/
cilastatin/relebactam patients versus 40% in colistin-imipenem patients [100]. This study
also showed imipenem/cilastatin/relebactam had fewer serious adverse effects than the
comparators, resulting in a promising treatment for carbapenem resistant Enterobacterales.

3.2.2. Non-Carbapenem β-Lactams

There are few non-carbapenem β-lactams that present potential treatment options
for carbapenemase producing E. coli, though clinical studies are scarce. Cefiderocol is a
novel cephalosporin with activity against carbapenem resistant UPEC across all Ambler
classes, including ESBL-, AmpC-, KPC- and NDM-1-producing strains [101]. While most
clinical studies of cefiderocol have been conducted against K. pneumoniae, Acinetobacter
baumannii, and Pseudomonas aeruginosa, in vitro studies against E. coli are promising. In a
multicentre phase 3 study of patients with nosocomial pneumonia, bloodstream infections,
or complicated UTI caused by carbapenem-resistant Gram negatives, Bassetti et al. found
microbiological eradication was achieved by 53% of cefiderocol patients with UTI and
20% of patients in the BAT group with UTI [93]. However, E. coli accounted for very
few of the patients in this study [93]. Additionally, a multicentre phase 2 non-inferiority
trial in patients with UTI caused by a wide variety of carbapenem-resistant pathogens,
including E. coli, found cure in 73% of patients treated with cefiderocol versus 55% of
patients treated with imipenem-cilastatin (p = 0.0004) [102]. Cefiderocol is a promising
carbapenem sparing option.

While there have been no randomised controlled trials as to the efficacy of temocillin
to treat carbapenemase producing E. coli, it presents an interesting carbapenem sparing
option. Though temocillin is hydrolysed by both OXA-48 and Ambler class B β-lactamases,
studies have shown some retained efficacy against KPC producing isolates [103]. However,
in addition to studying the efficacy of temocillin against ESBL and AmpC producing
Enterobacterales, Kuch et al. also looked at the effects of temocillin on KPC producing
isolates, and found 42.5% were susceptible to temocillin using a UTI breakpoint, however
100% were resistant using a systemic infection break point [104].

Another promising β-lactam antibiotic is aztreonam. Emeraud et al. found that 86%
of MBL-producing Enterobacterales isolates were susceptible to combinations of aztreonam-
ceftazidime-avibactam in vitro, while 50% were susceptible to aztreonam-amoxicillin-
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clavulanate, and 20% were susceptible to aztreonam-ceftolozane-tazobactam [105]. Ad-
ditionally, a systematic review found that aztreonam-avibactam had an 80% efficacy
against MBL-producing Enterobacterales in vitro [106]. Numerous studies conducted in
MBL-producing K. pneumoniae support these findings, resulting in a promising alternative
treatment [105–113].

3.2.3. Polymyxins

Polymyxin B and polymyxin E (colistin) are last resort drugs, and one of the most
common choices to treat carbapenem resistant Enterobacterales [16]. Polymyxin B and
colistin may both be administered parenterally, however colistin is administered as colistin
methanesulfonate (CMS), an inactive pro-drug, resulting in necessary in vivo conversion,
which causes lower and slower plasma concentration compared to polymyxin B [114].
While polymyxin B is often the preferred choice to treat most infections, colistin is often the
preferred polymyxin to treat UTI as it is believed conversion of CMS to colistin occurs in
the urine, resulting in higher urinary levels of CMS [114,115].

Numerous studies have demonstrated the emergence of other drugs that appear to
be more effective than polymyxins against carbapenem-resistant bacteria. For example,
the previously mentioned phase 3 trial comparing imipenem/cilastatin/relebactam to
colistin-imipenem, saw imipenem/cilastatin/relebactam was significantly superior to
colistin-imipenem [100]. Additionally, in a prospective, multicentre, observational study,
the efficacy and safety of colistin was compared to a new BLBLI combination ceftazidime-
avibactam (discussed below) [116]. Of the 38 patients suffering from carbapenem resistant
Enterobacterales bloodstream, urinary tract and respiratory tract infections included in the
trial, patients treated with colistin had a 32% mortality rate versus just 9% in ceftazidime-
avibactam (p = 0.001) [116].

Comparative monotherapy between colistin and other first-line drugs is controversial
due to the severe nature of many illnesses in which colistin is used and other first-line drugs
are not [16]. Colistin continues to be an option for adult UPEC infections while alternatives
are in development.

3.2.4. Tigecycline

Tigecycline is unaffected by ESBLs and AmpC β-lactamases and is often used as a last-
resort drug as it is effective against carbapenemase producing organisms in vitro [117–122].
However, in practice, the pharmacokinetic properties of tigecycline present difficulties for
treating UTI, due to the limited urinary excretion of the unchanged drug [123–125] Thus,
studies investigating the efficacy of tigecycline in treating E. coli urosepsis are extremely
limited. In a systematic review of 14 cases of MDR UTI, Brust et al. found positive clinical
outcome in 78% of cases, with concomitant antibiotics including carbapenems colistin,
or aminoglycosides [126]. These cases included UTIs caused by ESBL-producing E. coli
and K. pneumoniae, KPC- producing K. pneumoniae, MDR A. baumannii and E. aerogenes, as
well as Vancomycin-resistant Enterococci [126]. Sader et al. collected 12,942 E. coli isolates,
of which 27 were meropenem-nonsusceptible, and found that 100% of their meropenem-
nonsusceptible E. coli strains were susceptible to tigecycline [127].

Despite this, due to its poor renal clearance, tigecycline is not recommended for the
treatment of UTI. Additionally, tigecycline has a high mortality rate, and due to this, the
FDA has issued a boxed warning instructing clinicians to reserve tigecycline for situations
where other treatments are not available [128–132].

3.2.5. Aminoglycosides

Aminoglycosides are often used in combination with other antibiotics to treat car-
bapenem resistant strains. Increasing resistance to aminoglycosides has been observed
in NDM and KPC producers. However, a relatively new aminoglycoside, plazomicin,
has shown interesting results in trials. Plazomicin is an IV semisynthetic aminoglyco-
side approved for the treatment of cUTI [133]. A multicentre, multinational, randomized,
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double-blind, phase 3 trial comparing plazomicin to meropenem in MDR (including car-
bapenem resistant) pathogens of which E. coli predominated, showed that plazomicin
was noninferior to meropenem [134]. At the test-of-cure visit, 81.7% of patients in the pla-
zomicin group were found to have composite cure (combined microbiological eradication
and clinical cure), versus 70.1% of the meropenem group. Though this trial did not focus
solely on carbapenemase-producing E. coli, and some strains included were imipenem or
doripenem resistant, but meropenem susceptible. Plazomicin presents a possible future
option for the treatment of carbapenem-resistant E. coli, however more evidence from
clinical studies is needed to confirm any clinical benefit [134].

3.2.6. Fosfomycin

In addition to being frequently used in treatments of ESBL and AmpC-producing
Enterobacterales, fosfomycin is frequently used as a part of combination therapy to treat
carbapenem resistant strains, though literature on the efficacy of fosfomycin monotherapy
are scarce [16]. A multicentre, observational, prospective case-series study of IV fos-
fomycin against extensively drug resistant ventilator assisted pneumonia, catheter-related
bloodstream infections, intra-abdominal infections, and primary bacteraemia found that
bacterial eradication occurred in 56.3% of cases [135]. Extensively drug resistant pathogens
are susceptible to only one or two antimicrobial classes, and resistant to all others [8].
Though this study was not conducted in E. coli, it is one of very few that investigate
fosfomycin monotherapy.

3.2.7. Ceftazidime-Avibactam

The BLBLI combination of ceftazidime-avibactam has shown promising results in vitro,
with activity against most KPC and OXA-48 producing Enterobacterales. In a single-centre
retrospective observational study, Chen et al. found that ceftazidime-avibactam had a
significantly lower 30 day mortality rate when compared to polymyxin B (13.7% vs. 47.1%,
respectively, p = 0.001) [136]. In two identical phase 3, multicentre trials of patients suffering
cUTI (of which E. coli was responsible for 74.3%, and 24 were potentially carbapenem resis-
tant) Wagenlehner et al. found cure in 77.4% patients treated with ceftazidime-avibactam
vs. 71.0% doripenem patients, demonstrating non-inferiority of ceftazidime-avibactam [95].
Additionally, an international phase 3 trial of patients with cUTI and complicated intra-
abdominal infections caused by ceftazidime-resistant Enterobacterales and Pseudomonas
aeruginosa found that at test of cure, 91% (n = 140) of patients given ceftazidime-avibactam
and 91% (n = 135) of patients given BAT had been cured [137]. Of these patients E. coli
was responsible for 40–50% of infections [137]. Ceftazidime-avibactam was non-inferior to
carbapenems, and a promising alternative.

4. Emerging Antibiotics

The development of new antibiotics is vital to the continued treatment of MDR UPEC
infections. A variety of new antibiotics are in different stages of development, from
undergoing phase 1 trials to completion of phase 3 trials [138]. While some antibiotics in
development are only active against select few β-lactamases, others such as the combination
of taniborbactam and cefepime have shown promising results across a wide variety of
β-lactamases (Table 2).
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Table 2. Expected activity of novel β-lactams and β-lactam-β-lactamase combinations against com-
mon β-lactamases [138,139].

β-Lactamases

ESBL KPC OXA MBL

Sulopenem + - - -
Taniborbactam + cefepime + + + +

Enmetazobactam + cefepime + ? - -
Zidebactam + cefepime + + + ?

Nacubactam + meropenem + + + +
ETXO282 + cefpodoxime + + + -
VNRX-7145 + ceftibuten + + + -

ARX-1796 + + + -
Xeruborbactam + QPX2014 + + + +

+ = antibiotic active against β-lactamase; - = antibiotic is not active against β-lactamase; ? = unknown if antibiotic
is active against β-lactamase.

4.1. Sulopenem

Sulopenem is a broad-spectrum synthetic penem which can be administered both
orally and intravenously [9,138]. As a β-lactam, sulopenem works as a cell wall inhibitor
against ESBL-producing cephalosporin resistant Enterobacterales, but it is not stable against
carbapenemase [138]. Sulopenem has been shown to work potently against MDR E. coli
in vitro [140]. Three phase 3 clinical trials spanning seven countries were completed
between 2018–2020, however, the results were somewhat disappointing. The first study was
an all-oral therapy study where sulopenem demonstrated inferiority to ciprofloxacin, and
in the second and third studies IV sulopenem followed by orally administered sulopenem
etzadroxil did not meet the non-inferiority margin, when compared to ertapenem [141–143].

4.2. Tebipenem

Tebipenem piyoxil hydrobromide (TBPM-PI-HBr) is a prodrug of the carbapenem
tebipenem, promoted as a treatment for complicated UTI caused by MDR Enterobacterales,
which have shown to be resistant to nitrofurantoin, sulfamethoxazole/trimethoprim, flu-
oroquinolones, and oral cephalosporins [141,144]. In a global, double-blind phase 3 trial
(ADAPT-PO), 1372 patients received either TBPM-PI-HBr or ertapenem. Patients receiving
TBPM-PI-HBr had an overall response rate of 58.8% compared to 61.6% response rate in
patients receiving ertapenem. As TBPM-PI-HBr met non-inferiority requirements com-
pared to IV ertapenem, it is a potential first or second line therapy for community acquired
UTI [145].

4.3. Taniborbactam and Cefepime

Taniborbactam is a boronate-based BLI with inhibitory activity against ESBL, CTX-M,
KPC-2 and 3, MBLs (especially NDM), and OXA-48. Cefepime is a fourth-generation
cephalosporin. A global, randomized, double-blind, active-controlled non-inferiority
phase 3 study was completed in late 2021. Preliminary findings showed that cefepime-
taniborbactam had a clinical success in 70% of patients compared to just 58% of patients
receiving meropenem. However, the complete results are yet to be released [146].

4.4. Enmetazobactam and Cefepime

Enmetazobactam is a penicillanic acid sulfone ESBL inhibitor, combined with cefepime
to constitute an IV BLBLI combination, which presents an empiric, carbapenem sparing
option for treatment of cUTI. Belley et al. conducted a phase 3 interventional, explana-
tory, double-blinded randomised non-inferiority clinical trial involving 1034 randomised
patients over 19 countries, which ran from 2018–2021, and compared the efficacy and
safety of enmetazobactam and cefepime with tazobactam and piperacillin [147]. Cefepime-
enmetazobactam demonstrated a 79.1% efficacy at time of cure compared to 58.9% in
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piperacillin-tazobactam. Of the patients tested, 20.9% had ESBL producing uropathogens,
99.3% of which expressed a CTX-M type. Additionally, 3.5% co-expressed AmpC [147].
Cefepime-enmetazobactam presents another promising antibiotic.

4.5. Other Novel Antibiotics in Phase I or II Trials

Many other novel antibiotics are currently in phase 1 or 2 trials (Table 2). Novel
diazabicyclooctane (DBO) β-lactamase inhibitors include, Zidebactam, effective against
carbapenemases of Ambler classes A, B and D [148], nacubactam, shown to inhibit Class A,
B and C and some Class D β-lactamases in vitro [149], ETX0282, an oral prodrug of ETX1317,
with intrinsic antibacterial activity against Enterobacterales, active against ESBL, AmpC,
OXA-48 and KPC producing strains, but ineffective against MBL producing strains [150],
and ARX-1796, an oral prodrug of avibactam, a potent DBO active against KPC and
OXA-48 but not MBL [150]. Additionally, other BLBLIs include Cefpodoxime-ETX0282,
which may present a useful treatment for patients with ESBL producing pathogen causing
UTI unresponsive to first-line agents [151], VNRX-7145 an oral boronate-based BLI active
against Class A, C and D β-lactamases [152], and finally, xeruborbactam, which exhibits
inhibition of metallo-β-lactamases of Classes A, B, C, and D in Enterobacterales [153].

5. Conclusions

Unsurprisingly, MDR bacteria represent a key public health concern worldwide. With
UPEC responsible for 80–95% community acquired UTI cases and 27% sepsis cases, multi-
drug resistance in UPEC remains a great concern [1–5]. Though some forms of multi-drug
resistance in UPEC may be treatable, the appearance of carbapenem resistant, extended
spectrum β-lactamase producing E. coli is a great concern. Treatment options for MDR
UPEC are limited, though the development of novel BLBLIs presents promising future
therapy options. Further research on the optimisation of existing treatment options as well
as emerging novel agents in the development pipeline is constantly required to navigate
treatment of these infections in a world of ever-increasing resistance.
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