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Abstract: An increased number antibiotic-resistant bacteria have emerged with the rise in antibiotic
use worldwide. As such, there has been a growing interest in investigating novel antibiotics against
antibiotic-resistant bacteria. Due to the extensive history of using plants for medicinal purposes,
scientists and medical professionals have turned to plants as potential alternatives to common an-
tibiotic treatments. Unlike other antibiotics in use, plant-based antibiotics have the innate ability
to eliminate a broad spectrum of microorganisms through phytochemical defenses, including com-
pounds such as alkaloids, organosulfur compounds, phenols, coumarins, and terpenes. In recent
years, these antimicrobial compounds have been refined through extraction methods and tested
against antibiotic-resistant strains of Gram-negative and Gram-positive bacteria. The results of the
experiments demonstrated that plant extracts successfully inhibited bacteria independently or in
combination with other antimicrobial products. In this review, we examine the use of plant-based
antibiotics for their utilization against antibiotic-resistant bacterial infections. In addition, we examine
recent clinical trials utilizing phytochemicals for the treatment of several microbial infections.

Keywords: antibiotic resistance; alkaloids; multidrug-resistant; MRSA; organosulfur compounds; phenolic
compounds; phytochemicals; plant-based extracts; Pseudomonas aeruginosa; Staphylococcus aureus

1. Introduction

The discovery of penicillin led to a cascade of medical innovations that enhanced the
treatment of bacterial infections [1,2]. However, as the discovery and utility of antibiotics
increased, their ability to successfully inhibit bacterial infections decreased due to the
overuse of antibiotics [1,3]. Microbial infections and antibiotic resistance are a major prob-
lem leading to the deaths of millions of patients each year. The development of resistance
has made the currently available antibacterial medications less effective [4]. This threat
is further compounded by the growing recognition of biofilm formations among several
bacterial species, which have made certain antibiotics ineffective for severe infections [5,6].
Therefore, new medicinal treatments that could restrict the growth of antibiotic resistance
(e.g., bacterial pathogens) are required. Several methods have been proposed in recent
years to combat antibiotic resistance. One of the suggested methods for achieving this
includes combining antibiotics with other compounds, such as plant phytochemicals, to
restore their antibacterial activities (Figure 1) [7,8]. This review explores the antimicrobial
activities of several phytochemicals (e.g., alkaloids, organosulfur compounds, phenols,
coumarins, and terpenes) against antibiotic-resistant bacteria.
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through subsequent bacterial generations. As such, there is a growing need to develop 
novel antibacterials that can overcome the inevitable production of antibiotic-resistant 
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microbes, particularly multidrug-resistant bacteria. As such, there is growing interest in 
using plant extracts to help address antibiotic resistance [13,17,18]. In this review, we 

Figure 1. Structures of major phytochemical families.

2. Mechanisms of Antibacterial Activity and Resistance

An antibiotic’s activity is attributed to two primary processes that interfere with the
production or operation of an essential bacterial function and/or evade the established
antibacterial resistance mechanisms [9,10]. Most antibiotics were discovered in soil samples
that contained compounds that are able to eradicate bacteria. In addition, antibiotics such
as streptomycin, erythromycin, tetracycline, vancomycin, penicillins, and cephalosporins
were harvested from fungi and filamentous bacteria [9,10]. In contrast, the second- and
third-generation beta-lactams of the penicillin and cephalosporin families were made using
semisynthetic modifications, whereas the second-generation erythromycins, clarithromycin,
and azithromycin were made through complete synthesis [9,10].

In general, the primary targets for antibacterial agents include bacterial protein biosyn-
thesis, bacterial cell-wall biosynthesis, bacterial cell membranes, bacterial DNA replication
and repair, and metabolic pathways [9,10]. An antibiotic’s usefulness is limited when it has
been shown to be an effective antibacterial agent and is widely used therapeutically. With-
out proper restrictions and surveillance, bacterial resistance manifests over a prolonged
period of use. Bacteria have several methods for resisting antibiotics. Some bacteria have
an intrinsic resistance to one or more antimicrobial agent classes. In most cases, bacteria
develop resistance to antibiotics, primarily through several mechanisms, including the
activation of efflux pumps, destruction through hydrolytic enzymes, the modification of
antibiotic structures, and the alteration of target structures [9,10]. In addition, plasmids are
another method by which antibacterial resistance propagates through subsequent bacterial
generations. As such, there is a growing need to develop novel antibacterials that can
overcome the inevitable production of antibiotic-resistant bacteria.

One method for circumventing antibiotic resistance has been the use of plant phy-
tochemicals. For centuries, plant products have been utilized to treat infections across
several cultures [11–13]. The revitalized interest in utilizing natural products or creating
synthetic versions of natural products grew in response to antibiotic resistance [11–14].
In recent years, phytochemicals have demonstrated strong antimicrobial activities in con-
junction with standard antibiotic regimens [11,15,16]. Currently, alkaloids, organosulfur
compounds, and phenolic compounds extracted from plants have shown efficacy against
microbes, particularly multidrug-resistant bacteria. As such, there is growing interest in
using plant extracts to help address antibiotic resistance [13,17,18]. In this review, we
examine the use of plant-based antibiotics for their utilization against antibiotic-resistant
bacterial infections.

2.1. Alkaloids

Alkaloids comprise a major class of phytochemicals that are synthesized as secondary
metabolites with low molecular weights and nitrogen contents [17]. Several antibacterial
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medications have been derived from alkaloids. For example, medications such as line-
zolid and trimethoprim contain alkaloids as their primary structures. Alkaloids exhibit
antibacterial activities against a wide range of bacterial infections [17]. Alkaloids include a
large family of chemicals with diverse heterocyclic structures, which are generally further
classified by their carbon skeleton structures [11,13,17–20]. Several plant families contain
alkaloid compounds with antimicrobial properties against S. aureus, P. aeruginosa, and other
pathogenic bacteria [19].

Specifically, several recent studies showed that the alkaloid sanguinarine, a ben-
zophenanthridine alkaloid found in Sanguinaria canadensis and other poppy fumaria species,
has strong antibacterial, antifungal, and anti-inflammatory properties [17,18]. Sanguinarine
was identified as having broad-spectrum antimicrobial properties that interfere with bacte-
rial cell division and cytokinesis [19]. Specifically, sanguinarine inhibits the replication of
methicillin-resistant Staphylococcus aureus (MRSA) through the disruption of the plasma
membrane by interfering with the protein FtsZ’s ability to assemble into filaments, thereby
inhibiting bacterial fission [19,21–23]. When used in combination, sanguinarine enhanced
the antimicrobial activity of vancomycin and streptomycin. The chelating EDTA, which
disrupts the permeability of the bacterial cell wall, increases the amount of sanguinarine
and streptomycin that enter the bacterial cell, thereby boosting their antimicrobial activi-
ties. Sanguinarine also demonstrated effectiveness against eight phytopathogenic fungi,
including Magnaporthe oryzae, Fusarium oxysporum, Fusarium graminearum, and Botrytis
cinerea [21]. Specifically, in vitro studies of fungi treated with sanguinarine showed that the
alkaloid eliminated fungi by increasing the production of reactive oxygen species, which
was linked to changes in the nuclear morphology and the redox potential of mitochondrial
membranes [21]. In addition, sanguinarine has antimicrobial properties against pathogenic
bacteria found in soil, including Agrobacterium tumefaciens, Pseudomonas lachrymans, and
Xanthomonas vesicatoria [21].

In addition to sanguinarine, another alkaloid, tomatidine, showed strong antimicrobial
activities against S. aureus strains as well as other Gram-negative and Gram-positive bacterial
species [17–19,24]. Tomatidine was first isolated from solanaceous plants, such as tomatoes
and potatoes. Later studies demonstrated the ability of tomatidine to disrupt the activity
of ATP synthase in several bacterial species [17,18,23,24]. Furthermore, tomatidine is an
aminoglycoside potentiator against S. aureus strains that are both sensitive and resistant to
aminoglycosides [25]. Subsequent experiments showed that tomatidine is also effective against
Listeria and Bacillus bacterial species [26]. The exact mechanism behind tomatidine’s synergy
with aminoglycosides is not fully understood [17,19,23,24]. However, it is believed that both
aminoglycosides and tomatidine, when used together, reach their respective intracellular
targets by increasing cell permeabilization [26]. In addition, tomatidine may also inhibit the
formation of macromolecules within the bacterial target by blocking important steps in protein
synthesis. Beyond its antimicrobial activity, tomatidine also inhibits fungal species, such as
Saccharomyces cerevisiae, by blocking the formation of ergosterol via the inhibition of C-24
sterol methyltransferase and C-24 sterol reductase [27–30]. Other alkaloid compounds have
demonstrated synergistic activities with antibiotics.

The alkaloid piperine potentiates the effect of ciprofloxacin against S. aureus [31].
Similar results were obtained when piperine and gentamicin were administered together
to treat MRSA infections [32]. The mechanism behind this phenomenon remains to be
fully understood. Piperine also exhibited a potent antibacterial activity against Mycobac-
terium tuberculosis and Mycobacterium smegmatis [33–35]. In addition, piperine improves the
therapeutic effectiveness of rifampicin in immunocompromised patients infected with M.
tuberculosis [32,35].

The isoquinoline alkaloid berberine is an effective plant alkaloid against a broad range
of viruses, protozoa, fungi, and bacteria [35]. Although the mechanism is not fully eluci-
dated yet, current experimental studies suggest that berberine’s antimicrobial activity is
related to disrupting bacterial cell walls, particularly in MRSA [35]. In addition to disrupt-
ing bacterial cell walls, berberine may interfere with bacterial division, protein synthesis,
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and biofilm development [35]. Further studies suggested that berberine’s activity is related
to DNA intercalation and the targeting of RNA polymerase, gyrase, and topoisomerase IV
enzymes [36–39].

Overall, alkaloids have strong antimicrobial potentials that make them an attractive
alternative to traditional antibiotics.

2.2. Organosulfur Compounds

Organosulfur compounds, or sulfur-containing compounds, constitute another class
of phytochemicals that are considered secondary metabolites [11,13,17,18]. Originally,
organosulfur compounds were found in two different families of plants that exhibited
antimicrobial qualities: the Alliaceae and the Cruciferae (Brassicaceae) families [13]. One such
organosulfur compound from the Alliaceae family is allicin or diallyl thiosulfinate [13,18].

Allicin, a volatile component derived from raw garlic, was initially credited with the
antibacterial properties of garlic. Since then, allicin has been the subject of many studies
aimed at investigating its potential inhibitory effects against S. aureus, Escherichia coli, and
Candida albicans [40,41]. The inhibitor effects of allicin are equivalent to, if not stronger
than, several common antibiotics (e.g., kanamycin, tetracycline, and penicillin) [42]. In
contrast to these antibiotics, allicin targets a broad spectrum of microorganisms, including
bacteria, yeasts, fungi, and parasites [42]. Allicin’s antibacterial mechanism has been
linked to the specific targeting of bacterial thiol-containing proteins and enzymes, thereby
inhibiting essential metabolic pathways [43]. Specifically, allicin inhibits the growth of
microorganisms through the natural reaction that occurs between its –S(O)–S-group and
the –SH groups in bacterial and fungal proteins [42]. The thiosulfinate’s oxygen atom,
which acts as an electron-withdrawing agent, forms an electrophilic sulfur center that
reacts readily with thiol groups, thereby contributing to allicin’s reactivity. It has also been
reported that the addition of beta-mercaptoethanol, which breaks disulfide bonds, inhibits
the interaction between allicin and cysteine [42]. This result suggests that the disulfide
bonds that form between the sulfhydryl groups of bacterial proteins and allicin play a vital
role in its antimicrobial activity. Due to its broad-spectrum antimicrobial activity, allicin
will likely be a practical solution to treat multidrug-resistant bacteria [13,18].

Other organosulfates, such as glucosinolates and isothiocyanates, inhibit a wide range
of pathogenic bacteria [13,18]. Isothiocyanates are volatile organosulfur compounds pro-
duced when the enzyme myrosinase reacts with plant glucosinolates [13,18]. Myrosinase
hydrolyzes glucosinolates into active substances such as nitriles, thiocyanates, and isoth-
iocyanates. Isothiocyanates have strong inhibitory effects on several pathogenic bacteria
by disrupting their cell walls [13,18]. The in vitro antibacterial efficacy of isothiocyanates
against bacterial pathogens has been the subject of several investigations, but little is
known about their in vivo antimicrobial properties. Most studies have been focused on
sulforaphane’s ability to fight Helicobacter pylori bacteria. H. pylori produces a urease en-
zyme, which hydrolyzes urea in ammonia and carbon dioxide, thereby neutralizing the
gastric acid surrounding the bacteria [44]. In addition, several virulence factors produce by
H. pylori cause excessive inflammation in the gastric mucosa [44]. Sulforaphane was found
to inactivate urease and eliminate H. pylori infections [44]. Dufour et al. demonstrated that
sulforaphane was particularly effective against several clinical isolates of H. pylori, many of
which were resistant to common antibiotics [45]. Dufour et al. also hypothesized that the
isothiocyanate’s antimicrobial action is related to its reactivity with proteins that disrupt
essential biochemical pathways within H. pylori. Isothiocyanates attack sulfhydryl groups
at their individual thiol-containing amino acids, such as cysteine [45]. Isothiocyanates are
also known to block the ATP binding sites of bacterial P-ATPase.

Another family of organosulfur compounds, allyl isothiocyanates (AITCs), have also
shown strong bacteriostatic and bactericidal activities against E. coli and S. aureus [46]. Allyl
ITCs synergize with streptomycin against E. coli and P. aeruginosa and lower the minimum
inhibitory concentration (MIC) values of erythromycin against S. pyogenes [47,48]. The
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antibacterial properties of AITC have been attributed to several different mechanisms, such
as weakening cell walls and releasing reactive cellular metabolites [49,50].

Prati et al. previously reported that benzyl isothiocyanate (BITC) is bactericidal against
several MRSA clinical isolates [51]. This strong BITC antibacterial activity appears to be influ-
enced by its lipophilic and electrophilic chemical composition, which allows it to penetrate
bacterial outer membranes and disrupt their plasma membranes. Phenethyl isothiocyanate
(PEITC) has demonstrated antibacterial activity against several bacteria obtained from the
human digestive tract (e.g., Enterococcus spp., Enterobacteriaceae spp., Lactobacillus spp., Bi-
fidobacterium spp., Bacteroides spp., and Clostridium spp.) [52–54]. Besides its antibacterial
effect, PEITC is effective against several fungal species. It accomplishes this antifungal effect
through reducing the rate of oxygen consumption, increasing the production of reactive oxy-
gen species, and depolarizing the mitochondrial membrane [52–54]. Overall, phytochemicals
such as organosulfur compounds are effective in inhibiting different pathogenic bacteria.

2.3. Phenolic Compounds

Phenolic compounds are a diverse class of substances found in many foods, such as
fruits, vegetables, tea, wine, and honey [11,13,17–19]. Phenolic compounds are grouped into
several groups, including phenolic acids, flavonoids, and non-flavonoids [55]. Chemically,
phenolic compounds are aromatic in their structures and contain numerous hydroxyl
groups. These hydroxyl groups donate electrons or hydrogen atoms to neutralize free
radicals and other reactive oxygen species [55]. As a result, the antimicrobial activities of
phenolic compounds include inhibiting efflux pumps and cell wall biosynthesis as well
as inhibiting key bacterial enzymes such as urease and dihydrofolate reductase. Phenolic
compounds are, therefore, contenders for future investigations and clinical trials due to
their effective antimicrobial activities. Two common groups of phenolic compounds include
flavonoids and non-flavonoids [17,19].

2.4. Flavonoids

Flavonoids have demonstrated antimicrobial abilities against both Gram-negative
and Gram-positive pathogens [17]. The most effective antibacterial phenolic compounds
include flavanols, flavonols, and phenolic acids. These compounds exhibit antibacterial
activities through a variety of mechanisms, including inhibiting bacterial enzymes and
toxins, disrupting cytoplasmic membranes, preventing the formation of biofilms, and
working synergistically with a wide spectrum of antibiotics [56].

Previous studies revealed that the hydroxylation and lipophilic substituents of the
flavonoid ring enhance its antibacterial activity, whereas the substitution of a methoxy,
acetyl, or fluoride group has the opposite effect [57–64]. The hydroxyl groups on flavonoid
rings inhibit bacterial enzymes involved in cellular respiration and disrupt bacterial mem-
branes [14,57–59,65–67]. Similarly, lengthy aliphatic chain substitutions increase the hy-
drophobicity of flavonoids, which increases their interactions with antibiotics. These inter-
actions facilitate the movement of antibiotics across the bacterial cell wall to inhibit their
intracellular targets. In general, flavonoid compounds exhibit a broad range of antibiotic
activities through a number of modifications to their ring structures [14,57–59,65–67].

One flavonoid, galangin, possess a potent antibacterial activity against S. aureus
species by targeting their bacterial cell walls [68]. Cushnie et al. showed that incubat-
ing S. aureus bacteria with galangin reduced the number of S. aureus colonies by almost
15,000-fold. Interestingly, it was discovered that there was an increase in potassium loss
from the S. aureus cytoplasm when incubated with galangin. Cushine et al. investigated
the mechanism of potassium release by S. aureus during incubation with galangin using
two difference compounds: novobiocin and penicillin G. Penicillin G, which is known to
disrupt cell membranes, was used as a positive control, while novobiocin, which does not
target the cell membrane, was used as a negative control. Staph aureus bacterial cells were
then individually incubated with penicillin G or novobiocin to confirm that the increase
in potassium loss was due to cell wall disruption. Novobiocin did not increase potassium
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release, whereas penicillin G increased potassium release. The study, therefore, showed
that galangin eliminates bacteria by targeting their cell walls and inducing cell lysis [69].

Other phenols, such kaempferol and quercetin, demonstrated synergistic effects with ri-
fampicin against MRSA strains. When combined with rifampicin, kaempferol and quercetin
inhibited MRSA beta-lactamase enzymes, which increased the inhibition of bacterial growth
by 57.8% and 75.8%, respectively. Similarly, kaempferol and quercetin synergize and en-
hance ciprofloxacin’s activity against several bacterial topoisomerases [70,71].

Another well-known subset of flavonoids, known as flavanols, includes compounds
such as catechin, epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin
gallate; these compound exhibit both bacteriostatic and bactericidal activities. According
to several studies, the ability of flavonols to attach to the lipid bilayer of bacterial plasma
membranes is strongly associated with their antimicrobial activity [72–78]. The demon-
strated inhibitory effect of the flavonol alkyl gallate against several S. aureus variants is
due to its ability to decrease the production of several S. aureus virulence factors, such as
coagulase or alpha-toxin [79]. In addition, flavonol interferes with biofilm formation by
S. aureus [79]. Other flavanols, such as (−)-epicatechin gallate and (−)-epigallocatechin
gallate, promote the aggregation of staphylococcal cell walls, which renders them more
susceptible to beta-lactam antibiotics [80–83].

2.5. Non-Flavonoids

In addition to flavonoids, non-flavonoid compounds show a broad range of antimi-
crobial activities against several microorganisms. Some common non-flavonoids include
stilbenes, coumarins, phenolic acids, and tannins. A recent study investigating sugarcane
bagasse extract found it to be effective against several S. aureus strains by altering their
membrane permeability. Specifically, the study found that there was more conductivity
in the extract-exposed strains compared to the control strains, suggesting that sugarcane
polyphenol extract may influence the integrity of bacterial membranes, leading to cellular
electrolyte leakage [84]. Zhao et al. also showed that, following incubation with a subin-
hibitory dose of non-flavonoid polyphenols, phenolic acids also alter the shapes of bacterial
cells. Scanning and transmission electron microscopy analyses revealed that S. aureus
cells that had been exposed to the sugarcane bagasse extract displayed uneven surface
wrinkles as well as fragmentation, adhesions, and the aggregation of cellular debris. These
alterations suggested that the sugarcane bagasse extract severely damaged the outer cell
walls of S. aureus cells, causing cytoplasmic components to seep out [85].

3. Clinical Trial Assessment of Phytochemicals against Microbes

In addition to in vivo and in vitro studies, several clinical trials have examined the
efficacy of phytochemicals as antimicrobial agents (Table 1). The most prevalent sterols in
plants are beta-sitosterols. Unlike other phytosterols, beta-sitosterols are not produced en-
dogenously and can only be obtained from the diet [86]. A study by Donald et al. evaluated
the use of the phytochemical beta-sitosterol against pulmonary tuberculosis [87]. Despite
only differing from cholesterol by one ethyl group in the side chain, beta-sitosterol has sev-
eral biological effects, such as boosting the proliferation of peripheral blood lymphocytes by
increasing interleukin-2 and interferon-gamma production [88–91]. Given this observation,
Donald et al. examined whether beta-sitosterol may be used individually or in conjunction
with current antibiotics against tuberculosis, which currently includes a six-month regimen
of isoniazid, rifampicin, pyrazindamide, and ethambutol [87]. Approximately a quarter
of tuberculosis patients in resource-poor countries are unable to complete the current an-
tibiotic regimen for tuberculosis. Therefore, assessing the efficacy of beta-sitosterol against
pulmonary tuberculosis would provide these countries a readily available and tolerable
treatment alternative.
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Table 1. Phytochemical clinical trials against bacteria.

Author Type of Study Subjects Phytochemical Purpose Results

Donald
et al. [87]

Randomized
Control Trial Human Beta-sitosterol

Treating
Mycobacterium
tuberculosis infection

• Improved weight gain, lymphocyte
counts, radio- graphical findings on chest
X-ray

• Similar efficacy with standard antibiotics
against M. tuberculosis

Ahmed
et al. [92] Clinical Trial Human Silymarin Treating hepatitis C

infection

• Decreased liver function tests
• Improved blood counts and oxidative

stress markers
• Decreased viral load of HCV
• Increased sex hormones

Rahim
et al. [93] Clinical Trial Human—In Vitro Alpha-Viniferin

Treating S. aureus
from the
nasal passages

• Reduced S. aureus levels in the nasal passage
• Maintained nasal flora
• High potency against S. aureus

Nawarathne
et al. [94] Clinical Trial Human—In Vitro Nigella sativa L.

extract

Treating the
Propionibacterium
acnes infection

• All three formulations inhibited the
growth of S. aureus and P. acnes

• Very stable under different conditions
(e.g., color, odor, homogeneity, washabil-
ity, consistency, and pH)

Ferrazzano
et al. [95]

Randomized
Control Trial Human—In Vitro Plantago

lanceolata

Reducing oral
streptococci and
lactobacilli bacterial
species

• Potent antimicrobial against streptococci
• Well tolerated by patients

Kerdar
et al. [96]

Randomized
Control Trial Human Scrophularia

striata

Treating periodontitis
due to Streptococcus
mutans

• Improved plaque index, pocket depth,
and bleeding on probing

• Decreased the number of Streptococcus
mutans in the long term

Mergia
et al. [97]

Randomized
Control Trial

Swiss Albino
Murine Model

Verbascum
sinaiticum

Treating Trypanosoma
brucei species

• Improved mean survival and body weight
• Lowered parasite load
• Low toxicity to murine model

Askari
et al. [98]

Randomized
Control Trial Human Subjects Myrtle and oak

gall
Treating bacterial
vaginosis

• Reducing vaginal discharge and pH
• Improved disease recurrence
• Effective against mixed vaginitis

Karumathil
et al. [99]

Randomized
Control Trial

In Vitro
Keratinocytes

Trans-
cinnamaldehyde
and Eugenol

Treating Acinetobacter
baumannii wound
infections

• Reduced A. baumannii adhesion and invasion
• Reduced biofilm formation
• Decreased transcription of biofilm

production genes

Donald et al. used a blinded randomized placebo-controlled trial to assess the treat-
ment duration for hospitalized pulmonary tuberculosis with positive sputum cultures
of Mycobacterium tuberculosis at the South African National Tuberculosis Association in
Cape Town, South Africa [87]. In addition, the patients’ chest radiography, weight gain,
Matoux test responses, hematological studies, and liver function tests were performed
routinely throughout their treatment course. For a total period of six months, a total of
23 patients received 20 mg of beta-sitosterol, while 24 patients in the placebo group received
an inactive ingredient known as talcum and the standard antibiotic therapy for hospital-
ized pulmonary tuberculosis patients [87]. At the beginning of the study, there were no
significant differences in patient characteristics, such as age, sex, or health comorbidities,
in the treatment and placebo groups. Donald et al. also included hospitalized pulmonary
tuberculosis patients who had M. tuberculosis samples that were sensitive to the current
antibiotic regimen against M. tuberculosis. After one month of treatment, 11 patients in
the beta-sitosterol (58%) and placebo groups (61%) had positive sputum cultures for M.
tuberculosis. At two months, only two patients, or 11% in each group, were still positive [87].
Following the start of the antibiotic treatment for pulmonary tuberculosis, the majority of
the sputum cultures were expected to be negative, along with a radiographic improvement,
by two months.

By the end of the study, Donald et al. reported three patients in the beta-sitosterol
group and one patient in the placebo group with no signs of radiographic improvement at
six months, despite the negative sputum. In addition, there were no significant differences
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in the baseline values for hemoglobin, hematocrit, neutrophils, globulin, creatinine, and
urea at the beginning of the study [87]. However, weight gain was higher in the beta-
sitsterol group compared to the placebo group (8.9 kg vs. 6.1 kg). Furthermore, the
lymphocyte and eosinophil counts were higher in the beta-sitosterol groups compared to
the placebo group. There were also differences in the monocyte counts, platelet counts,
and sedimentation rates between the groups and time points [87]. Overall, Donald et al.’s
study showed that there was improved weight gain and a higher immune response in
pulmonary tuberculosis patients receiving beta-sitosterol. The efficacy was similar to the
current antibiotic treatments for tuberculosis. The main limitation of the study was the
low sample sizes for the treatment and placebo groups. In addition, it remains to be seen
whether similar results would be detected in different patient populations.

Similar to pulmonary tuberculosis, Ahmed et al. examined the use of the flavonolignan
silymarin for the treatment of hepatitis C (HCV) [92]. More than 185 million people
around the globe have been infected by HCV, which has increased the number of patients
who develop chronic liver failure and hepatocellular carcinoma [100–102]. Interferon
monotherapy was the initial course of treatment before viruses were discovered. This
drug had unpleasant side effects and was only moderately effective. The discovery of
pegylated interferons, the addition of ribavirin, and antivirals were just a few of the methods
that improved the overall efficacy [103]. Since 1997, a weekly infusion of PEG-IFN and
ribavirin has improved the effectiveness and cure rate of the treatment [103]. With the
simultaneous injection of ribavirin and PEG-IFN-alpha, a persistent virological response in
40–50% of HCV-infected people has been documented [103]. Given the severe side effects of
HCV medications, there is a need to find effective and tolerable medications for HCV [103].
Silymarin consists of a combination of flavonolignans or phytochemicals that were extracted
from the seeds and fruits of the Silybum marianum plant [104–108]. Three phytochemicals
make up silymarin: silidianin, silicristin, and silybin [104–108]. The most potent and active
phytochemical, silybin, is thought to be primarily responsible for silymarin’s purported
health advantages [104–108]. Numerous pharmacological effects of silymarin have been
noted, but its antiretroviral effects stand out. Silymarin has previously been demonstrated
to be safe in human patients at large doses (>1500 mg/day) [104–108]. Therefore, Ahmed
et al. investigated the effectiveness of Silymarin in treating HCV infection [92].

A total of 30 patients were randomized into control and the treatment groups, each
containing a total of 15 patients. Only antiretrovirals (sofosbuvir and ribavirin; 400 mg/800 mg
each/day) were given to the control group. The treatment group received adjunct medication,
including antiretrovirals (400/800 mg/day) and silymarin (400 mg/day), during an 8-week
period. Ahmed et al. showed that silymarin significantly improved the blood parameters
in treated patients when combined with sofosbuvir and ribavirin compared to the control
group [92]. When compared to the control group, sofosbuvir/ribavirin and silymarin adjunct
therapy in the treatment group increased the production of neutrophils, white blood cells,
platelet counts, red blood cells, and hemoglobin [92]. Based on their findings, Ahmed et al.
suggested that the silymarin adjuvant has a positive impact on the hematological parameters
of HCV patients [92]. The levels of liver markers, such as aspartate transaminase (AST),
alanine transaminase (ALT), and bilirubin, were lower in the treatment group. In addition to
reducing the latent viral load, the adjunct therapy showed a positive impact on hematological
indices and oxidative markers compared to the control group.

In addition, the study showed that when used as an adjuvant therapy with sofos-
buvir/ribavirin, silymarin had a positive impact on the hormonal levels of both male
and female HCV patients. In contrast to the control group, the adjunct therapy showed
increased testosterone levels in male patients, which decreased in the control group. Proges-
terone levels stayed the same in both the treatment and control groups of male patients [92].
The serum levels of LH and FSH in female patients were checked and found to be higher in
both the control and treatment groups. This demonstrates that both medications and ad-
juncts have positive or ameliorating effects. The progesterone levels in the treatment group,
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which were shown to be lower in the control group, tended to normalize with silymarin,
although the testosterone levels in the female group remained nearly constant [92].

Overall, Ahmed et al.’s study showed that the viral RNA from infected HCV patients
was successfully reduced by the sofosbuvir/ribavirin and silymarin treatment. Since the
viral load decreased in both groups, comparing the effects of silymarin adjunct therapy
on viral quantification was not possible [92]. However, the study showed that sofosbu-
vir/ribavirin and new-generation antivirals are sufficient to completely remove HCV viral
RNA [92]. To examine silymarin’s role in correcting HCV RNA levels, Ahmed et al. sug-
gested further studies to examine silymarin’s impact on the eradication of the HCV virus
over a shorter period.

Another clinical application of phytochemicals has been the prevention of community-
acquired or hospital-acquired infections as well as the treatment of antibiotic-resistant
bacteria [109]. One of the most prevalent opportunistic pathogens in the world is Staphy-
lococcus aureus. The anterior nares are the main niche for S. aureus and act as a reservoir
for the transmission of the disease, even if the axilla, throat, and perineum are necessary
reservoirs [109]. Several serious illnesses, such as endocarditis, pneumonia, bacteremia,
and chronic osteomyelitis, can be brought on by S. aureus nasal colonization [110]. Due
to the resistance to a wide array of therapeutically important antibiotics and a dearth of
novel treatments, S. aureus infections have emerged as a substantial global concern [111].
Given that large portions of the world’s population depend on traditional medicine, there
is an interest in examining whether phytochemicals may be used for the treatment of
antibiotic-resistant bacteria [112]. Alpha-viniferin is a phytochemical substance obtained
from the medicinal plant Carex humilis, which is found in several eastern Asian na-
tions [113]. Additionally, it was recognized in Caragana Sinica, Caragana chamlagu, and
Iris clarkei. Alpha-viniferin has a range of biological properties, including antioxidant,
antitumor, anticancer, and anti-arthritis properties [113]. Additionally, cyclooxygenase,
acetylcholinesterase, and prostaglandin H-2 synthase have all been documented to be
inhibited by it [113]. Further studies documented the inhibitor effect of alpha-viniferin on
both drug-susceptible and drug-resistant strains of Mycobacterium TB and Staphylococcus
species [113]. Therefore, Rahim et al. tested whether alpha-viniferin could eradicate S.
aureus from the nasal passages.

Specifically, Rahim et al. examined the antibacterial efficacy of alpha-viniferin against
S. aureus in a ten-day clinical trial [93]. The study enrolled 20 Korean adult females
aged between 20 and 60 years with overall good health and physical fitness and the
willingness to avoid topical agents applied to the nares during the entire trial. Alpha-
viniferin, the study medication, was placed in sequentially numbered containers and given
to the subjects in numerical order in accordance with the randomization process. Healthcare
professionals gathered nare samples on day 0 and day 10. On days 0, 4, and 8 of the study,
the skin moisture content of each participant was assessed using a corneometer [93]. The
corneometer measurement was carried out five times on each measurement day at the
same location and in the same manner, with the same temperature and humidity, and the
average result was immediately recorded. The samples were then examined to determine
the moisturizing ability of alpha-viniferin since the moisturizing ability is important for
maintaining the skin barrier [93]. The nasal isolates obtained from the patients were then
used to assess the antibacterial activity of alpha-viniferin. In comparison to vancomycin and
methicillin, alpha-viniferin demonstrated excellent efficacy against three Staphylococcus
species, including methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus
(MRSA), and methicillin-resistant S. epidermidis (MRSE), with no toxicity to other bacterial
strains. In the culture and RT-PCR-based analysis of the collected nasal swab samples, S.
aureus was reduced. Alpha-viniferin also inhibited S. aureus and MRSA while protecting
the natural nasal microbiome. Additionally, the skin’s moisture content was enhanced
by alpha-viniferin, which is crucial for maintaining skin flexibility and barrier integrity
without toxicity. Specifically, the 16S ribosomal RNA based amplicon sequencing analysis
showed that S. aureus was reduced from 51.03% to 23.99% [93]. Given its effectiveness in
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reducing S. aureus species while preserving the microbial flora, Rahim et al. suggested
further studies should be performed with larger sample sizes and comparison groups of
other phytochemicals to assess the safety and efficacy of alpha-viniferin.

In addition to the nasal mucosa, other clinical studies examined the use of phyto-
chemicals on the skin. Sebaceous follicle inflammation in the skin is the main cause of
acne vulgaris [114]. Some bacterial species, such as Propionibacterium acnes, S. aureus, and
S. epidermidis, are responsible for its onset. Due to its capacity to activate complements
and metabolize sebaceous triglycerides into fatty acids, which then chemotactically attract
neutrophils, P. acnes, an obligate anaerobic microorganism, causes inflammatory acne [114].
On the other hand, superficial infections within the skin’s sebaceous unit (the hair follicle,
arrector pili muscle, and sebaceous gland) are typically caused by aerobic Staphylococcus
species [114]. Benzoyl peroxide, retinoids, and antibiotics such as erythromycin or clin-
damycin can all be applied topically to treat acne vulgaris [115]. Oral drugs from the
tetracycline and azithromycin classes can also be used to treat acne vulgaris. Due to the de-
velopment of antibiotic resistance in these bacteria and side effects from current treatment
protocols, novel therapeutic medicines for acne vulgaris must be introduced [115]. Different
civilizations have employed the seeds of Nigella sativa L. (black cumin) for centuries to cure
dermatological diseases, including acne vulgaris, burns, wounds, and other inflammatory
skin conditions [116]. Data that demonstrated N. sativa oil extract in a lotion formulation,
which is the primary treatment for mild to moderate acne vulgaris, had superior efficacy
and was less toxic than a 5% benzoyl peroxide lotion corroborated these conventional asser-
tions [116]. Additionally, N. sativa is a key ingredient in a number of topical preparations
used in traditional medicine to treat acne vulgaris and is widely used in Sri Lankan folklore
medicine as a dermatological cure [116]. Given these observations, Nawarathne et al.
planned to develop topical cosmeceutical formulations incorporating N. sativa and evaluate
the antibacterial activity of those formulations against selected acne-causing bacteria [94].

The agar-well diffusion method was initially used to test the antibacterial activity
of seed extracts against S. aureus and P. acnes [94]. After that, topical gels were created
using three different strengths of ethyl acetate extracted from N. sativa seeds. These topical
formulations underwent antimicrobial activity and stability tests over a 30-day period [94].
The formulation with 15% seed extract had the best antibacterial activity of the three and
was able to stop the growth of S. aureus and P. acnes. This formulation’s antibacterial efficacy
against S. aureus outperformed commercial products [94]. Additionally, no changes in color,
odor, homogeneity, washability, consistency, or pH were noted, and the antibacterial
potency was maintained during storage. Furthermore, a small test on 50 subjects showed
that only 7 (14%) developed signs of hypersensitivity, while the majority of the participants
(86%) were unaffected by the application of the herbal gel formulation [94]. Overall, the
results showed that the phytochemicals in the seeds had a strong antibacterial activity in
topical gel formulations made from N. sativa’s ethyl acetate, suggesting their suitability to
be used in place of the currently available anti-acne drugs.

In addition, phytochemicals from Plantago lanceolata herbal tea were shown to be
effective antimicrobial agents for controlling bacterial species in the oral cavity [117–119].
Different kinds of Streptococcus and Lactobacillus bacteria play a major part in the onset
and progression of caries [117–119]. Reduced levels of these microorganisms in the oral
cavity will add another justification for dental caries prevention because they are the most
significant elements in the process [117–119]. Antimicrobial therapies, such as those derived
from plant extracts that fight bacteria and lower the levels of cariogenic microflora in saliva,
are potential alternatives [120–123]. About 275 species make up the Plantago genus (Plan-
taginaceaeare) found throughout the globe. Some Plantago species exhibit strong antiviral,
anti-inflammatory, and antioxidant properties [124,125]. Additionally, the genus Plantago
has a high concentration of phenolic chemicals (flavonoids and tannins). Particularly,
phenolic chemicals regulate bacterial growth, which prevents tooth decay by limiting the
proliferation and virulence of pathogenic oral flora [124,125]. A study by Ferrazzano et al.
examined the effectiveness of a mouthwash made from an infusion of dried P. lanceolata



Antibiotics 2022, 11, 1838 11 of 19

leaves in lowering cariogenic microflora salivary counts [95]. The antimicrobial activity
of a P. lanceolata tea against cariogenic bacterial strains of the species Streptococcus and
Lactobacillus isolated from clinical samples was evaluated in vitro [95].

To examine the efficacy of this mouthwash, Ferrazzano et al. used clinical isolates
of L. casei, S. bovis, S. mutans, S. mitis, S. parasanguinis, S. viridans, and S. sobrinus from
specimens obtained from 44 adolescents (24 males and 20 females) at the Diagnostic Unit
of Bacteriology and Mycology of the University of Naples [95]. Patients were randomly
assigned to the test and control groups using blocked randomization from a computer-
generated list. The placebo and treatment rinse formulations were prepared using the
clinical isolates obtained from the patients. The experimental mouth rinse was prepared
with an infusion of P. lanceolata leaves and flowers, while the placebo mouthwash was
prepared with Amorosa water colored with food dye [95]. The placebo group was instructed
to rinse with 10 mL of a placebo mouth wash that did not contain phenolic substances
for 60 s after performing oral hygiene three times a day (after breakfast, after lunch, and
before sleeping) for 7 days [95]. After seven days, Ferrazzano et al. observed a reduction
in Streptococci (28.6% vs. 85.7%) species in the treatment group compared to the control
groups; however, there was no difference in the Lactobacilli group (65% vs. 75%). A further
analysis using mass spectroscopy showed that the flavonoids, coumarins, lipids, cinnamic
acids, lignans, and phenolic compounds were likely responsible for the antimicrobial effect
from the P. lanceolata mouthwash [95]. However, Ferrazzano et al. only examined the short-
term efficacy of P. lanceolata against oral streptococci and lactobacilli. Further research into
other bacterial species and longer time points are needed to determine whether the ability
to lower mutans streptococci salivary numbers can be sustained over time and whether
resistance will develop. In addition, it is important to evaluate the patients’ long-term
acceptability and compliance [95].

A similar study by Kerdar et al. examined the use of the Scrophularia striata plant
against Streptococcus mutans [96]. The Iranian flowering plants in the Scrophularia genus, such
as Scrophularia striata, are used in traditional medicine to alleviate inflammation throughout
the body [126]. The biologically active substances iridoids, flavonoids, phenyl propanoids,
and phenolic acids with anti-inflammatory and antimicrobial activities are abundant in the
genus Scrophularia [126]. An oral inflammatory condition called chronic periodontitis damages
the soft tissues as well as the alveolar bone, periodontal ligament, and cementum. The most
common bacteria associated with tooth plaque, which is a sticky substance made from leftover
food particles and saliva in your mouth, is associated with periodontitis secondary to S.
mutans infection [127]. The disease is brought on by an interplay between the body’s defense
mechanism and the biofilm retention of the gum sulcus [127].

In this study, Kerdar et al. investigated a mouthwash using Scrophularia striata in vitro
for chronic periodontitis disease. The study was a randomized clinical trial that incorporated
50 people between 20 and 50 years old who had chronic periodontitis. These patients were
given either a Listerine (control/placebo) or an S. striata mouthwash. The patients were asked
to gargle 15 mL of mouthwash for 30 s, followed by at least 45 min of fasting. After using
the mouthwash for two and four weeks, participants were observed for three clinical criteria:
the plaque index, gingival bleeding, and probing depth (the distance measured from the
base of the pocket to the most apical point on the gingival margin). Saliva samples were
taken to assess the mouthwash’s antibacterial efficacy [96]. The analysis revealed a significant
difference in bleeding on probing (bleeding induced by the gentle manipulation of the tissue)
during the initial examination in the S. striata group following two weeks of mouthwash
use. Between two and four weeks of treatment, there were no appreciable changes. In the
treatment group, bleeding on probing was not significantly different between the first and
second examinations after taking the mouthwash, but a comparison of the first and last
evaluations showed that the mouthwashes decreased bleeding on probing [96]. In addition, a
substantial change in the plaque index (PI) was seen in the treatment group after the initial
evaluation following two weeks of mouthwash use. During the second examination, neither
group experienced any appreciable changes. The plaque index showed a significant difference
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in the treatment group during the first examination, but no significant difference was seen in
the second examination. The mean value of the PI in the treatment group was considerably
lower than in the control group [96]. Overall, Kerdar et al. showed that the S. striata plant
extract is effective in treating chronic periodontitis disease and is more potent in comparison
to other mouthwash products. In the short term, S. striata may improve the plaque index,
pocket depth, and bleeding on probing.

Beyond treating mucosal infections, phytochemicals were also shown to be effective
against tropical parasitic infections. Human Trypanosomiasis is caused by two subspecies
of Trypanosoma brucei: T. brucei gambiense and T. brucei rhodesiense [128]. Due to its
effects on people’s settlement patterns, especially land use and farming, the disease has
a significant economic impact in Africa [128]. In Africa, trypanocides are used to treat
the illness, but the medications are outdated, expensive, ineffective, and have a problem
with drug resistance. Khaya senegalensis, Piliostigma reticulatum, Securidaca longepedunculata,
Ximenia americana, and Artemisia abyssinica are a few examples of herbal treatments that
have been utilized to treat this disease and are highly trypanocidal [129]. The biennial plant
Verbascum sinaiticum is used to treat several conditions, including wounds, stomach aches,
and viral infections [129]. Given these observations, Mergia et al. performed an in vitro
randomized experiment using Swiss albino mice infected with a field isolate of T. congolense
to assess the effectiveness of V. sinaiticum extracts [97].

The V. sinaiticum extracts were injected intraperitoneally for 7 days at doses of 100,
200, and 400 mg/kg at 12 days postinfection, when the peak parasitemia level was around
108 trypanosomes/mL. As indicators for gauging the effectiveness of the extracts, the
parasitemia, packed cell volume, mean survival time, and change in body weight were
used [97]. To examine the trypanocidal properties of the V. sinaiticum extracts, forty healthy
Swiss albino mice were intraperitoneally injected with 0.2 mL of T. congolense-infected blood
(104 trypanosomes/mL). Eight groups of five mice were formed by randomly dividing
the mice. On the 12th day after infection, when the infected mice displayed maximal
parasitemia (108 trypanosomes/mL), the mice in each group were treated with the extracts.
V. sinaiticum was administered to groups I–III at doses of 100, 200, and 400 mg/kg, and
to groups IV–VI at doses of 100, 200, and 400 mg/kg, respectively. Diminazine aceturate
was administered to group VII, the positive control, in a single dose of 28 mg/kg [97]. The
extracts had no toxicological effect on Swiss albino mice. Alkaloids, flavonoids, glycosides,
saponins, steroids, phenolic compounds, and tannins were among the phytochemicals
examined in V. sinaiticum. On day 14 of treatment, the mice treated with 400 mg/kg of V.
sinaiticum showed considerably lower mean parasitemia than the negative control group.
When compared to the negative control at the end of the observation period, animals treated
with the same dose had significantly higher packed cell volume values and body weights
as well as a maximum mean survival time of approximately 40 days [97]. Overall, Mergia
et al. showed that V. sinaiticum has the potential to be used as a trypanocidal treatment, but
more research is needed to pinpoint the biologically active compounds in the extract as
well as to test the extracts in human studies.

Phytochemicals were also effective against urogenital infections, such as bacterial
vaginosis. Bacterial vaginosis affects adult females when Lactobacillus spp. are replaced
by Gardnerella vaginalis, Mobiluncus curtisii, M. mulieris, or Mycoplasma hominis [130,131].
Another kind of vaginosis among 10–25% of either pregnant or non-pregnant women is
caused by Trichomonas vaginalis [130,131]. Due to the emergence of antibiotic-resistant
strains, bacterial vaginosis recurs in 30% of patients within the first month and 59% within
six months [130,131]. Given the adverse effects of antibiotics for bacterial vaginitis, natural
products such as boric acid, douching, Melaleuca alternifolia essential oil, garlic, and propolis
have been used for the treatment of bacterial vaginitis. As such, Askari et al. examined
the effectiveness of a myrtle and oak gall suppository (MGOS) in the treating vaginosis.
In the randomized control trial, 120 of the 150 patients (40 in the metronidazole group,
40 in the MOGS group, and 40 in the placebo group) finished the prescribed course of
treatment. According to test results, metronidazole was superior to a placebo in treating
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bacterial vaginosis and was also the best therapy for achieving a negative Nugent score [98].
On the other hand, MOGS was also more effective in treating vaginal trichomoniasis.
Overall, the clinical study by Askari et al. demonstrated that MGOS was more effective
than metronidazole in the treatment of bacterial vaginosis, without experiencing significant
side effects.

Lastly, clinical studies found that phytochemicals are effective antibacterial agents to
treat wound infections. Acinetobacter baumannii has become a significant human pathogen,
especially when it comes to infections contracted in hospitals [132,133]. A. baumannii
has developed resistance to the majority of the currently available antibiotics over the
past few years. In addition, A. baumannii is a significant pathogen that causes persistent
wound infections in burn patients, which can result in the loss of skin grafts and slow
wound healing [132,133]. As a result, systemic antibiotics are ineffective in reducing
pathogen loads in granulation wounds [132,133]. Thus, alternative approaches to treat A.
baumannii-related wound infections are now necessary due to the pathogen’s multidrug
resistance. In recent years, several plant-derived compounds have been investigated for
their potential would healing properties [132,133]. In this an vitro study, Karumathil
et al. examined whether transcinnamaldehyde (TC) and eugenol (EG), two naturally
occurring plant-derived antimicrobials (PDAs), could reduce A. baumannii adherence to
and invasion of human keratinocytes (HEK001 cells) [99]. In the study, Karumathil et al.
used two clinical isolates of A. baumannii obtained from infected wounds (Navel-17 and
OIFC-109). Compared to the control keratinocytes, TC and EG both significantly decreased
A. baumannii adherence and invasion to HEK001 by about 2 to 3 log colony-forming units
/mL. In addition, TC and EG reduced the production of A. baumannii biofilms. An RT-qPCR
analysis showed that the two phytochemicals significantly reduced the transcription of
genes linked to the development of A. baumannii biofilm. The findings imply that both TC
and EG might be utilized to treat A. baumannii wound infections. However, further research
in human patients is required to confirm their effectiveness.

4. Conclusions

As the threat of antibiotic resistance increases, alternative antimicrobial methods are
needed. Phytochemicals remain an attractive alternative for addressing this need. As
shown previously, phytochemicals show antimicrobial activities in several different clinical
scenarios, which makes them versatile agents against several microbial species. Further
randomized clinical trials using a greater number of subjects are needed to assess their
efficacy and applicability in other infections, particularly viral infections. Despite the
long history of utilizing natural products, any medications have the possibility of being
dangerous to the consumer. Despite their availability, plant extracts and other natural
products are neither regulated nor quality controlled. As a result, further research on the
safety and effects of phytochemicals remains to be investigated [11,13,17,134]. However,
given their simplicity, efficacy, and affordability, phytochemicals are a promising alternative
to antibiotics.
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