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Abstract: Outpatient treatment of Pseudomonas aeruginosa infections is challenged by increasing
rates of resistance to fluoroquinolones, the only class of antibiotics which offers an established oral
route of administration against this organism. Azithromycin does not demonstrate activity against
P. aeruginosa when evaluated under standard methods of susceptibility testing with bacteriologic
media. However, growing evidence shows that azithromycin is very active against P. aeruginosa when
using physiologic media that recapitulate the in vivo milieu and is supported by animal models of
infection and various clinical settings, including cystic fibrosis. We present three cases of outpatient
management of P. aeruginosa otolaryngological infections successfully treated with oral azithromycin,
500 mg daily ranging from 3–8 weeks, where use of fluoroquinolones was not possible due to either
resistance or patient intolerance. We review the previous data supporting this clinical approach, in
the hope that this will alert clinicians to this treatment option and to inspire a more thorough clinical
trial evaluation of azithromycin in this environment of growing medical need.

Keywords: multidrug-resistant Gram-negative infections; azithromycin; Pseudomonas aeruginosa;
sinusitis; skin infection; otitis media

1. Introduction

The rapid spread of antibiotic resistance and high treatment failures in Gram-negative
infections has spurred interest in the repurposing of drugs as therapeutic alternatives. One
promising agent is the widely prescribed antibiotic azithromycin. Historically, this drug has
not been considered in the management of multidrug-resistant Gram-negative infections
simply because it has no activity against these pathogens when tested in Mueller–Hinton
broth—the gold standard media used for antimicrobial susceptibility testing in clinical lab-
oratories across the globe. Nonetheless, we have provided the first reports of azithromycin
bactericidal activity in mammalian tissue culture media against multidrug-resistant strains
of Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Stenotrophomonas
maltophilia, and Achromobacter xylosoxidans—pathogens for which suboptimal therapy may
have catastrophic clinical consequences [1–3].

These therapeutic benefits partial to mammalian tissue culture media may be some-
what explained by the fact that Mueller–Hinton broth—which is composed of beef extract,
casein and starch—is far from representative of the human physiological environment
where antibiotics actually exert their activities. Standard antimicrobial susceptibility testing
paradigms also overlook a key component in the clearance of any infection—the host
immune system. Azithromycin has known immunomodulatory and anti-inflammatory
properties [4–6]. Building on this literature, our group has uncovered surprising syner-
gistic interactions between azithromycin and innate immune components. Specifically,
azithromycin has been shown to sensitize multidrug-resistant Gram-negative pathogens to
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host immune clearance by antimicrobial peptides, neutrophils, and human serum. These
azithromycin-related bactericidal effects have also been recapitulated in murine models of
lung infection [1,2]. Yet, perhaps our most compelling data of azithromycin bactericidal
activity comes from the clinical translation of our findings. Here we report our clinical
experience using azithromycin in three patients with P. aeruginosa infections.

2. Clinical Cases
2.1. Case 1

A male in his 60s developed bilateral ear pressure and drainage. Clinical history was
pertinent for chronic ear pruritis and cerumen for which he used a metal pick to gently
scratch his ear canals. There was no prior antibiotic history. The patient was evaluated
by otolaryngology and underwent bilateral ear lavage. He was prescribed otic ofloxacin
but developed a contact allergy and the drops were discontinued. Ear canal cultures
were positive for methicillin-resistant Staphylococcus aureus (MRSA) and extensively drug-
resistant (XDR) P. aeruginosa (Table 1). He denied having any fevers, chills, or headaches.
He had had no international travel. He initially felt better, but symptoms recurred. Systemic
antibiotics were prescribed (but never started), and he was referred to infectious diseases.
Examination revealed an edematous right ear canal resulting in almost 50% occlusion with
purulent drainage. The left ear canal had some purulent drainage but was not swollen.
The patient was started on minocycline 100 mg PO every 12 h and azithromycin 500 mg
PO every 24 h. Otolaryngology also compounded and prescribed a 2 to 3-week course
of polymyxin ear drops. The ear purulence diminished somewhat but the right ear canal
remained swollen. Oral antibiotics were continued. A CT scan showed no evidence of
mastoiditis. Over the subsequent weeks the purulence resolved and the edema slowly
improved. Total oral antibiotic therapy was continued for 8 weeks. He was strongly advised
not to insert Q-tips or other objects in his ear canals. The patient showed no signs of relapse
at 90 days after completion of therapy.

Table 1. Broth microdilution minimum inhibitory concentrations (MICs) for P. aeruginosa from strains
isolated from ear canal (case 1) and sinuses (case 2 and case 3).

Antibiotic

Case 1 Case 2 Case 3

MIC
(mg/L) Interpretation MIC

(mg/L) Interpretation MIC
(mg/L) Interpretation

Amikacin >32 R - - - -
Aztreonam >16 R ≤4 S ≤4 S
Cefepime >16 R ≤2 S 8 S

Cefidericol 8 I - - - -
Ceftazidime >16 R ≤1 S 4 S

Ceftazidime/avibactam >16 R - - - -
Ceftolozane/tazobactam >8 R - - - -

Ciprofloxacin >2 R ≤0.25 S >2 R
Delafloxacin >2 R - - - -

Colistin 2 I - - - -
Eravacycline 4 (ND) - - - -
Gentamicin >8 R ≤2 S >8 R
Imipenem >16/4 R - - >8 R

Levofloxacin >4 R ≤0.50 S >4 R
Meropenem >8 R ≤1 S 2 S

Meropenem/vaborbactam >16/8 R - - - -
Piperacillin/tazobactam >64 R ≤8 S ≤8 S

Tobramycin >8 R ≤2 S ≤2 S

Minimum inhibitory concentrations (MICs) were determined as per Clinical Laboratory Standards Institute (CLSI)
guidelines in Mueller–Hinton broth. I, intermediate; ND, not determined; R, resistant; S, susceptible.



Antibiotics 2022, 11, 515 3 of 6

2.2. Case 2

A female in her 60s with diabetes mellitus, hypertension, and hypercholesterolemia
was referred to infectious diseases for a 3-year history of recurrent sinusitis refractory
to antibiotics. Symptoms would resolve with antibiotics but then recur. Within the past
year, sinus cultures were positive for S. maltophilia, Staphylococcus epidermidis, and most
recently, pan-susceptible P. aeruginosa. Symptoms included sinus pressure, congestion, and
vertigo. No fevers, chills, or systemic symptoms other than fatigue due to lack of sleep
from the above symptoms occurred. While the P. aeruginosa was susceptible to all reported
antibiotics (Table 1), to minimize the risk of Clostridioides difficile, azithromycin 500 mg
PO daily was prescribed. After 2 weeks, the vertigo resolved, and symptoms improved.
Azithromycin was continued for 21 days with durable relief. Of note, due to the recurrent
nature of the sinusitis, an immune workup was performed and revealed a lambda light
chain in serum protein electrophoresis and the patient was referred to hematology.

2.3. Case 3

A female in her 60s was referred with a history of extranodal sinus lymphoma and
recurrent sinusitis over several years secondary to methicillin-susceptible S. aureus (MSSA),
MRSA, and P. aeruginosa. The most recent episode of sinusitis was due to P. aeruginosa,
treated with levofloxacin. Symptoms of sinus pressure and pain returned, now yielding
a quinolone-resistant P. aeruginosa (Table 1). The patient was subsequently treated with a
21-day course of azithromycin 500 mg PO daily with symptomatic improvement.

3. Discussion

Infections due to P. aeruginosa are becoming increasingly difficult to treat due to
increases in antimicrobial resistance. Bacterial sinusitis and otitis are generally managed
in the outpatient setting with oral antibiotics. However, when these infections are caused
by P. aeruginosa, the only established oral antibiotics are fluoroquinolones, which are
becoming increasingly more difficult to deploy, not only because of rising rates of resistance
but also the growing list of FDA warnings against their use. These include: (i) high
propensity to cause Clostridioides difficile infection; (ii) concerns surrounding glycemic
control in patients with diabetes mellitus; (iii) risks of tendon rupture, which is augmented
further with concomitant glucocorticoids; (iv) risks of aortic rupture in patients with
underlying cardiovascular disease. Furthermore, fluoroquinolone use is not favorable in
the pediatric populations and in pregnancy except in cases of last resort [7–10].

Based on previous science published by our group and others, we successfully de-
ployed azithromycin therapy to three patients with P. aeruginosa otolaryngological infections
(two with sinusitis and one with otitis externa) where fluoroquinolones could not be used
due to either resistance or patient allergy or intolerance. In the case of otitis externa, the
XDR P. aeruginosa strain was not amenable to even the newest available antibiotics. In all
cases the treatment was azithromycin 500 mg daily, with duration ranging from 3 weeks for
the two monomicrobial sinusitis infections to 8 weeks for the polymicrobial otitis externa,
which required concomitant minocycline to cover the MRSA. The 8-week duration for the
otitis externa was based on bimonthly examinations until clinical resolution.

The patients were all in their 60s, with varying degrees of innate immune compromise
due to comorbidities. It is notable that age 60 likely represents a pivotal period of innate
immune system senescence in the human population, evidenced by the abrupt rise in
incidence and mortality of respiratory and invasive infections in patients >60 years of
age [11]. Indeed, the mortality seen over the past 2 years during the COVID-19 pandemic
was no exception to this pattern [12].

Azithromycin is a well-established and safe antibiotic that has been available for
decades. Its role in the chronic management of patients with cystic fibrosis has been
largely attributed to its anti-inflammatory effect [6]. As prior work has shown and as
these cases illustrate, a component of the anti-inflammatory effect may be due to its direct
anti-pseudomonal activity. In comparison to fluoroquinolones, azithromycin poses a lower
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risk of C. difficile, has a more established track record in pregnancy and pediatrics, and
does not carry a risk of tendon and aortic rupture. It is notable that there is a risk for QTc
prolongation, particularly in patients on anti-arrhythmic medications, but that was not a
concern in our patients [13].

The therapeutic success seen in our patients is likely multifactorial and related to
in vivo physiological and immunomodulatory properties that are difficult to capture in
our current in vitro antimicrobial susceptibility testing paradigms. Indeed, strain specific
genome sequences have been used to predict and demonstrate that bacterial metabolic
responses vary based on differences in media or nutritional environments that, in turn, may
affect the virulence and expression of antibiotic resistant genes [14,15]. Differences in cation
concentrations and bicarbonate levels have been shown to influence antibiotic susceptibility
results [16,17]. Bicarbonate levels can affect the proton motive force of bacteria that can,
in turn, affect the activity and/or uptake of antibiotics such as azithromycin that work
intracellularly to inhibit protein synthesis [17]. Azithromycin also has robust immunomod-
ulatory and anti-inflammatory properties that have proven beneficial clinically [5,6]. In
patients with cystic fibrosis, for example, azithromycin has been shown to improve lung
function and reduce P. aeruginosa exacerbations [5,6]. Azithromycin has also been shown to
work synergistically with bacterial pore-forming components of the innate immune system,
such as serum complement and antimicrobial peptides, that facilitate the entry of drugs
like azithromycin that work intracellularly [1–3]. The clinical efficacy of azithromycin is
also likely complemented by its ability to impair bacterial biofilm synthesis [3,18,19], and
the attenuation of other bacterial virulence factors [19–21], including adherence to host
epithelial cells [22,23].

While not described in this case series in order to keep infection types more homo-
geneous, we wish to inform readers that we have successfully utilized azithromycin in
multidrug-resistant P. aeruginosa soft tissue infections, including a patient in his 40s with
P. aeruginosa Fournier’s gangrene in the setting of neutropenia from myelodysplastic syn-
drome. Alongside aggressive source control, the patient had a satisfactory outcome with
piperacillin-tazobactam 4.5 g IV every 6 h plus azithromycin 500 mg IV daily, despite a
minimum inhibitory concentration to piperacillin-tazobactam of 64 mg/L and resistance
to other available agents (this was before the availability of ceftazidime-avibactam and
subsequent agents).

P. aeruginosa susceptibility to azithromycin was not confirmed in the reported cases. In
our experience, azithromycin is universally “resistant” when tested via standard microdilu-
tion methods in Mueller–Hinton broth, and not reflective of in vivo activity. Nonetheless,
there is mounting evidence to suggest that P. aeruginosa is susceptible to azithromycin when
its activity is tested under more physiological conditions (e.g., mammalian tissue culture
media), even across XDR strains [1,24,25]. Moreover, serial passage of P. aeruginosa (over
10 consecutive days) at sub-minimum inhibitory concentrations of azithromycin in physio-
logic media demonstrate no increased resistance to azithromycin over this time frame [1].
We suspect that the majority of P. aeruginosa are indeed susceptible to azithromycin killing.
However, larger scale studies are needed to determine if these findings are universal and to
evaluate the possibility of resistance development over time. We hope that continued stud-
ies will lead to further development of what we believe to be more accurate assessments of
antibiotic activity in vitro under more physiological conditions that recapitulate the in vivo
environment, as compared to current bacteriological media that is based on supporting
viable bacterial growth.
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