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Abstract: The bacterium Pseudomonas aeruginosa is known to be associated with nosocomial infections
around the world. Pazufloxacin, a potent DNA gyrase inhibitor, is known to be an effective drug
candidate. However, it has not been clarified whether the pharmacokinetic (PK)/pharmacodynamic
(PD) of pazufloxacin was effective against P. aeruginosa. Herein, we demonstrated that the PK/PD
index of pazufloxacin against P. aeruginosa infection is used to optimize the dosing regiments. We
constructed an in vivo infection model by infecting P. aeruginosa into the thigh of a mouse to determine
the PD, and we measured the serum concentration of pazufloxacin to construct the PK model using
high-performance liquid chromatography. The therapeutic efficacy of pazufloxacin was correlated
with the ratio of the area under the free concentration time curve at 24 h to the minimum inhibitory
concentration (f AUC24/MIC), and the maximum free concentration to the MIC (f Cmax/MIC). Each
contribution rate (R2) was 0.72 and 0.65, respectively, whereas the time at which the free drug
concentration remained above the MIC (R2 = 0.28). The target value of pazufloxacin f AUC24/MIC
for stasis was 46.1, for 1 log10 it was 63.8, and for 2 log10 it was 100.8. Moreover, f Cmax/MIC for
stasis was 5.5, for 1 log10 it was 7.1, and for 2 log10 it was 10.8. We demonstrated that the in vivo
concentration-dependent activity of pazufloxacin was effective against the P. aeruginosa infection, and
successfully made the PK/PD model sufficiently bactericidal. The PK/PD model will be beneficial in
preventing the spread of nosocomial infections.

Keywords: pharmacokinetics; pharmacodynamics; pazufloxacin; Pseudomonas aeruginosa; murine
thigh infection model

1. Introduction

Pseudomonas aeruginosa (P. aeruginosa) is known to be related to hospital-acquired
infections such as urinary tract, pneumonia, surgical site, and bloodstream infections [1,2].
The first-line antibiotic therapy typically used against P. aeruginosa is carbapenems, but
the frequency of carbapenem-resistant strains has been steadily increasing, leading to
their increased use [3,4] and the need for alternative treatments. Pazufloxacin is a well-
known DNA gyrase inhibitor which demonstrates potent activity against P. aeruginosa
strains in vitro and effectiveness against the P. aeruginosa infection [5,6]. As pharmacoki-
netic/pharmacodynamic (PK/PD) analyses have demonstrated effectiveness for optimizing
dosage regimens, and thereby improving outcomes [7], they have received increasing at-
tention. There are a few papers that calculated the PK/PD parameters for fluoroquinolones
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using a neutropenic mouse thigh infection model. Liu et al. reported that the target value
of enrofloxacin AUC24/MIC for stasis was 7.8, for 1 log10 it was 10.5, and for 2 log10 it was
15.1 [8]. Andes et al. reported that the target value of gatifloxacin AUC24/MIC for stasis
was 41.2, for 1 log10 it was 72.2, and for 2 log10 it was 126 [9]. Zhou et al. reported that the
target value of antofloxacin fAUC24/MIC for stasis was 38.7, for 1 log10 it was 66.1, and for
2 log10 it was 147 [10]. The target value may vary among fluoroquinolones. Furthermore,
we have shown that the target time above the MIC value differs among cephems [11,12].
Tebipenem has been shown to correlate with AUC/MIC and Cmax/MIC better than the
time above MIC, despite the use of carbapenems [13]. Thus, we believe that the target value
should be indicated for each drug.

However, a PK/PD analysis of pazufloxacin against the P. aeruginosa infection has
not been conducted, even though it is essential for the optimization regarding dosing
regimens. Herein, we evaluated the effectiveness of pazufloxacin in vivo and demonstrated
the PK/PD index against P. aeruginosa.

2. Results
2.1. Susceptibility Testing of Pazufloxacin

The MIC of pazufloxacin is based on our examination against P. aeruginosa, where
ATCC 27853 was 0.5 µg/mL.

2.2. PK of Pazufloxacin

Figure 1 shows the serum concentrations in the infected neutropenic mice that were
administrated pazufloxacin of 2.5, 10, and 40 mg/kg, while Table 1 summarizes the serum
PK parameters. The Cmax ranged from 0.63 to 10.03 µg/mL and the AUC0–∞ from 1.35 to
21.6 µg·h/mL. The Cmax and AUC0–∞ showed a linear relationship with the dose of pazu-
floxacin (data not shown). The mean PK values for these three doses were 0.96 ± 0.25 h–1,
2.40 ± 0.55 h–1, and 0.84 ± 0.12 L/kg, respectively, and the %PB of pazufloxacin was
20.25 ± 3.88%.
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Figure 1. Pharmacokinetic parameters of pazufloxacin after single subcutaneous administration in
infected neutropenic mice. Simulation time-concentration curves were created following parameters.
Vd = 0.84 L/kg, ke = 2.40 h–1, and ka = 0.96 h–1. Data are expressed as mean ± S.D. (n = 3).

Table 1. Pharmacokinetic parameters of pazufloxacin after single subcutaneous doses of 2.5, 10 and
40 mg/kg.

Dosing Regimen (mg/kg) Cmax (µg/mL) AUC0–∞ (µg·h/mL)

2.5 0.63 1.35
10 2.51 5.40
40 10.03 21.6

Cmax, maximum drug concentration; AUC0–∞, area under the drug concentration–time curve from zero to infinity.
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2.3. Association between Antibacterial Effects and PK/PD Indices

The bacterial loads of the thigh-infected animals 2 h after inoculation and the untreated
control mice were 4.43 ± 0.18 log10 and 8.82 ± 0.13 log10 CFU/thigh, respectively. The
highest examined doses reduced the bacterial burden to 2.50 ± 0.53 log10 CFU/thigh.
Figure 2 shows the associations between each of the PK/PD indices and the antibacterial
effects for P. aeruginosa ATCC 27853. In regards to the PK/PD indices for pazufloxacin,
stronger correlations were observed between the therapeutic efficacy of pazufloxacin and
f AUC24/MIC (R2 = 0.72) and f Cmax/MIC (R2 = 0.65) compared with f T > MIC (R2 = 0.28).
Table 2 shows the PK/PD model parameter estimated for the f AUC24/MIC and f Cmax/MIC
indices for pazufloxacin against P. aeruginosa.
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determination. 

  

Figure 2. Relationships between the change in log10 CFU/thigh at 24 h and PK/PD indices.
(a) f AUC24/MIC, (b) f Cmax/MIC, and (c) f T > MIC for P. aeruginosa ATCC 27853. The horizon-
tal dashed lines: organism burden at the start of therapy. Plot: mean for one thigh per mouse. R2:
coefficient of determination.

Table 2. Pharmacokinetic/pharmacodynamic (PK/PD) model parameter estimates predicting viable
counts at 24 h for the f AUC24/MIC and f Cmax/MIC index of pazufloxacin against P. aeruginosa in
the thigh infection models.

Emax (log10 CFU/Thigh) E0 (log10 CFU/Thigh) EC50 γ

f AUC24/MIC 6.56 3.64 41.4 2.04
f Cmax/MIC 6.18 3.60 5.54 2.90

f AUC24/MIC, the ratio of the area under the free concentration–time curve for a 24 h period to the minimum
inhibitory concentration; f Cmax/MIC, the ratio of the maximum free concentration to the minimum inhibitory
concentration; Emax, maximum killing effect; E0, baseline effect in the absence of the drug; EC50, PK/PD index
value needed for 50% of Emax; γ, Hill coefficient.

2.4. Target PK/PD Index in Relation to Efficacy

Based on these results, we summarized the target values of f AUC24/MIC and f Cmax
/MIC required for stasis, 1 log10 and 2 log10 reductions in the bacterial burden in Table 3. As
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a result, the target values of f AUC24/MIC and f Cmax /MIC for a 2 log10 kill were required
to be two times higher compared to the static effect.

Table 3. Target values of pazufloxacin f AUC24/MIC and f Cmax/MIC for a static effect and 1, and
2 log10 kill against P. aeruginosa in the thigh infection models.

fAUC24/MIC fCmax/MIC

static effect 46.1 5.5
1 log10 kill 63.8 7.1
2 log10 kill 100.8 10.8

f AUC24/MIC, the ratio of the area under the free concentration–time curve for a 24 h period to the minimum
inhibitory concentration; f Cmax/MIC, the ratio of the maximum free concentration to the minimum inhibitory
concentration.

3. Discussion

The purpose of this study was to reveal the PK/PD parameters of pazufloxacin, which
has exhibited direct antimicrobial activity against P. aeruginosa as a potent inhibitor of DNA
gyrase and bactericidal activity against P. aeruginosa in in vitro experiments [14].

To predict the clinical efficacy in the PK/PD analyses, the use of a murine infec-
tion model, which was established by Craig et al. [15], has become a standard method
that is frequently used to optimize doses of antimicrobial agents in clinical trials. The
results showed that in neutropenic mice, nonlinearity was a feature of the unbound PK
of pazufloxacin. This PK nonlinearity was seen in various dose ranges of pazufloxacin
required to fully characterize the PK/PD relationship. Although the number of samples
and sampling points used in the PK analysis were 3 and 4, respectively, the PK param-
eters (Vd = 0.84 L/kg, ke = 2.40 h–1 and CL = 2.0 L/h) were consistent with the report
by Fukuda et al. [16]. Thus, the PK parameters obtained in this study were considered
reasonable. To develop free plasma concentrations for multiple dosing patterns through-
out the 24 h treatment period, we applied the superposition principle to the single-dose
unbound plasma pazufloxacin concentration time curves. As a result, based on the R2

values and a visual examination of the fit, the f AUC24/MIC and f Cmax/MIC ratios in the
thigh infection models were more suitable to predict the in vivo bacterial killing than the
f T > MIC (Figure 2). Previously, the time course of bacterial activity was investigated
using the time–kill curve experiment [17]. In the present study, two major bactericidal
activity patterns of time- and concentration-dependent killing were observed in the drug
concentrations. As concentration-dependent killing has been observed over various con-
centrations with aminoglycosides and fluoroquinolones, the bactericidal activity pattern of
pazufloxacin, which is referred to as concentration-dependent killing, was similar to that of
aminoglycosides and fluoroquinolones in the in vitro experiments, as shown in Figure 2.
Similar results were observed between these antimicrobial agents in the model mouse using
a pazufloxacin-susceptible P. aeruginosa isolate when the pazufloxacin dosage exceeded the
MIC, similar to that of aminoglycosides; this finding verifies the concentration-dependent
efficacy of this antimicrobial agent [16]. The most suitable PK/PD parameter for fluoro-
quinolones in animal models is the AUC24/MIC or Cmax/MIC ratio [8–10]. In our study,
the f AUC24/MIC and f Cmax/MIC ratio required for a static effect and maximum killing
of the P. aeruginosa thigh infection were estimated to be approximately 46.1 and 5.5 and
100.8 and 10.8, respectively (Table 3). The mean Cmax or AUC24 of a single administration
of 1000 mg pazufloxacin reported 18.06 mg/L or 58.6 mg·h/L, respectively [18]. Nakamura
K. et al. reported that the Monte Carlo simulation demonstrated that 1000 mg of pazu-
floxacin administered every 12 h (2000 mg daily) can achieve >90% probability of the target
attainment in a patient with prostatic hypertrophy with MIC = 2 mg/L [19]. They reported
that a prostatic penetration of pazufloxacin (prostate tissue/plasma ratio) was good at
Cmax (0.82–0.99) and AUC0–1.5 (0.80–0.98). In general, tissue penetration of fluoroquinolone
antibiotics (e.g., pazufloxacin) were good, and unbound concentrations of pazufloxacin in
the tissue’s interstitial fluids are similar to those in plasma [20]. Therefore, we expected
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that our demonstrated data will improve clinical outcomes in patients with P. aeruginosa
infections. In this study, we clarified the PK/PD parameters of PZFX against P. aeruginosa.
However, only one strain was used; therefore, further experiments using other strains or
clinical isolates is desirable. In addition, the validation of the PK/PD parameters for other
Gram-negative bacteria has not been validated, so further investigation is needed.

4. Materials and Methods
4.1. Materials

P. aeruginosa was purchased from ATCC (ATCC 27853; ATCC, Rockford, MD, USA).
Sheep blood agar was purchased from Nissui Pharmaceutical Co., Ltd. (Tokyo, Japan).
Pazufloxacin mesilate was purchased from Taisyo Toyama Pharmaceutical Co., Ltd. (Tokyo,
Japan).

4.2. Susceptibility Test of Pazufloxacin

We determined the MIC of P. aeruginosa for pazufloxacin according to the recom-
mended standardized procedure [21]. P. aeruginosa was cultivated onto sheep blood
agar at 37 ◦C before each experiment. We serially diluted the P. aeruginosa suspension
(1.5 × 106 CFU/mL) tenfold with MHB, and then plated 50 µL of each diluent onto Mueller–
Hinton agar plates with or without pazufloxacin (Taisyo Toyama Pharmaceutical Co., Ltd.,
Tokyo, Japan) in each concentration (0.12, 0.25, 0.5, 0.75, or 1 µg/mL) [22], and the MIC of
ATCC 27853 was evaluated after 16–20 h.

4.3. In Vivo Study

The animal study was preceded by approval from the Kagoshima University Institu-
tional Animal Care and Use Committee (approval No.: MD12106). The development of the
neutropenia and thigh infection model mouse was performed according to the previous
report [23,24]. Briefly, we intraperitoneally administrated 150 mg/kg of cyclophosphamide
for 4 days into ddY female mice (5 weeks old) following administration of 100 mg/kg for
1 day to induce a “neutropenic condition model” before the experimental infection. Next,
before bacterial inoculation, the mice were anesthetized with a mixture of medetomidine
(0.3 mg/kg), midazolam (4.0 mg/kg), and butorphanol (5.0 mg/kg) [25]. We injected a bac-
terial suspension from an early logarithmic phase into a posterior thigh (6 × 104 CFU/mL,
100 µL/thigh). Two hours after the bacterial inoculation, the infection had been repro-
ducibly established.

4.4. Serum Concentration of Pazufloxacin

A total of 2.5, 10, and 40 mg/kg of pazufloxacin was subcutaneously administrated to
conduct single-dose serum PK analyses in the neutropenic mice. After that, serum samples
were obtained at 10, 15, 30, 60, and 120 min after administration. The serum concentration
of pazufloxacin was measured using HPLC with a slightly modified previous method [26].
The validation parameters of the chromatography method are indicated in Supplementary
Table S1.

4.5. Serum Protein Binding of Pazufloxacin

We determined the protein-binding activity using centrifugal filter units as follows [27].
In the first, the serum samples were incubated for 30 min at 37 ◦C after samples were
centrifuged at 2000× g for 10 min at 37 ◦C. The supernatants were filtrated with a 0.2 µm
ultrafilter and the concentration of pazufloxacin wad measured using HPLC. We calculated
the protein binding percentage (%PB). The equation was as follows:

%PB = [(Cp − Cpuf)/Cp] × 100

where Cp is the pazufloxacin concentration in serum and Cpuf is the pazufloxacin-free
concentration in the ultrafiltrate.
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4.6. PD Analyses of Pazufloxacin

Two hours after inoculation with ATCC 27853, pazufloxacin (2.5–35 mg/kg) was
injected subcutaneously at intervals of 6, 8, 12, and 24 h in 24 different dosing patterns.
We then euthanized the treated mice and removed their thighs 24 h after the start of
pazufloxacin administration. Next, we collected thigh samples from the untreated mice
and homogenized them in 7 mL of sterile saline to count the number of viable cells at 2 and
26 h after bacterial inoculation. The thigh homogenate was serially diluted tenfold with
MHB and spread onto bromothymol blue agar, followed by culturing for 24 h (37 ◦C). Next,
the CFU for each thigh was determined, set at a lower limit of 160 CFU/thigh. The same
regimens described above were repeated, except for with 23 different dosing patterns, for
the thigh-infected animals. Finally, we euthanized the mice after inoculation.

4.7. PK/PD Analyses of Pazufloxacin

The following PK parameters, such as the absorption rate constant (ka (h–1)), the
elimination rate constant (ke (h–1)), the volume of distribution (Vd (L/kg)), and AUC, were
calculated based on the drug concentration data, using a standard one-compartment model
with first-order absorption and elimination processes. The pazufloxacin concentration in
the serum (Cp (µg/mL)) at the time (t (h)) after dosing (D (mg/kg)) were described as
follows:

Cp = D × ka × (e−ke × t − e−ka × t)/Vd (ka − ke)

We then simulated the serum pazufloxacin concentrations based on the mean phar-
macokinetic parameters for the four doses to estimate the following three major PK/PD
indices: f AUC24/MIC, f Cmax/MIC, and f T > MIC.

Then, data regarding the antibacterial activity were fitted to the following model:

E = E0 − (Emax × Xγ)/(EC50
γ + Xγ),

where E, E0, and Emax represent the killing effect of the pazufloxacin (log10 CFU of P. aerug-
inosa per thigh at 24 h), the baseline effect in the absence of the drug, and the maximum
killing effect, respectively, where X represents the PK/PD index, EC50 represents the PK/PD
index value required for 50% of Emax, and γ represents the Hill coefficient describing the
steepness of the sigmoid curve. The MULTI program (originally developed by Yamaoka
et al. [28], and currently maintained by the Department of Biopharmaceutics and Drug
Metabolism, Kyoto University (Kyoto, Japan)) was used for all PK/PD analyses with non-
linear least-squares regression, and the Mann–Whitney U test was used for all statistical
analyses.

5. Conclusions

We determined the most predictive PK/PD index of pazufloxacin against P. aeruginosa
and the predictive index required for effectiveness. These results would be useful to
estimate the optimal dose of pazufloxacin to fight against P. aeruginosa infections.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics11070982/s1, Table S1: Accuracy and precision of quantification of PZFX.
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