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Abstract: Inflammation and biofilm-associated infection are common in chronic venous leg ulcers
(VU), causing deep pain and delayed healing. Albeit important, clinical markers and laboratory
parameters for identifying and monitoring persistent VU infections are limited. This study analyzed
101 patients with infected (IVU) and noninfected VUs (NVU). Clinical data were collected in both
groups. The serum homocysteine (Hcys) and inflammatory cytokines from the wound fluid were
measured. In addition, microbial identification, antibiotic susceptibility, and biofilm production were
examined. IVU were 56 (55.4%) while NVU were 45 (44.5%). IVUs showed a significant increase in
the wound’s size and depth compared to NVUs. In addition, significantly higher levels of interleukin
(IL)-6, IL-10, IL17A, and tumor necrosis factor-alpha (TNF-α) were found in patients with IVUs
compared to those with NVUs. Notably, hyperhomocysteinemia (HHcy) was significantly more
common in patients with IVUs than NVUs. A total of 89 different pathogens were identified from
56 IVUs. Gram-negative bacteria were 51.7%, while the Gram-positives were 48.3%. At the species
level, Staphylococcus aureus was the most common isolate (43.8%), followed by Pseudomonas aeruginosa
(18.0%). Multidrug-resistant organisms (MDROs) accounted for 25.8% of the total isolates. Strong
biofilm producers (SBPs) (70.8%) were significantly more abundant than weak biofilm producers
(WBP) (29.2%) in IVUs. SBPs were present in 97.7% of the IVUs as single or multispecies infections.
Specifically, SBPs were 94.9% for S. aureus, 87.5% for P. aeruginosa, and 28.6% for Escherichia coli. In
IVU, the tissue microenvironment and biofilm production can support chronic microbial persistence
and a most severe clinical outcome even in the presence of an intense immune response, as shown by
the high levels of inflammatory molecules. The measurement of local cytokines in combination with
systemic homocysteine may offer a novel set of biomarkers for the clinical assessment of IVUs caused
by biofilm-producing bacteria.

Keywords: leg ulcers; venous ulcer; biofilm; homocysteine; infection; wound; cytokines

1. Introduction

The presence of a chronic venous leg ulcer (VU) is a debilitating condition highly
prevalent in the elderly population. In European countries and the United States, approxi-
mately 2% of the entire population is affected by chronic wounds, with VUs accounting
for up to 70% of lower leg ulcers [1–3]. VU is an open wound between the knee and the
ankle joint that remains unhealed for more than 30 days due to venous insufficiency [4].
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The prolonged inflammation observed in the VUs leads to leukocytes’ recruitment and
the release of inflammatory modulators that negatively affect the surrounding tissues [5].
Although the wound healing process involves inflammation and resolution of the inflamma-
tory response, the excessive production of inflammatory mediators may cause deleterious
consequences [6]. Previous studies have identified up-regulation of cytokines in patients
with VU, suggesting that chronic venous hypertension results in an inflammatory state
responsible for poor wound healing [7,8]. In addition, inflammatory markers such as
interleukin (IL)-1, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) have been shown to
significantly increase in VU than in acute healing wounds [9–12]. Similar results have been
observed for angiogenic factors such as the Vascular Endothelial Growth Factor (VEGF),
epidermal growth factor receptor (EGFR), basic fibroblast growth factor (bFGF), and other
cytokines [13,14]. However, no consensus exists for sampling procedures or measuring
systems, and the large heterogeneity of cytokine levels has limited the potential benefit of
previous research [15].

Elevated serum homocysteine (Hcy), defined as hyperhomocysteinemia (HHcy), is an
independent risk factor for thrombovascular diseases [16,17]. It has been observed that in
the presence of HHcy, the Hcy levels within a lesion are significantly higher than the serum
levels. This condition leads to T cells and monocytes activation with T cells differentiation
into a proinflammatory Th1 phenotype that, in turn, activates the local macrophage, smooth
muscle, and foam cell populations [18]. The levels of Hcy within a tissue microenvironment
may also influence the local immune response leading to either enhanced inflammation
by immune cell activation and alterations in the cytokine profiles or diminished respon-
siveness through cellular apoptosis and death [19–22]. Although evidence demonstrated
clear associations between elevated Hcy and vascular risks, the specific mechanisms by
which HHcy contributes to vascular diseases remain uncertain. Nevertheless, in VUs, the
impaired host immune response, necrotic tissues, and debris promote bacterial attachment
and infection. A VU fails to heal in the event of infection and can be recalcitrant to con-
ventional antimicrobial treatment due to microbial biofilm [23]. Indeed, biofilm acts as an
important predisposing factor to the chronicity of a nonhealing VU by providing a protec-
tive environment against the host immune response and antimicrobial penetration [24,25].
Thus, aggressive and prolonged antibiotic treatment, based on conventional susceptibility
testing, may show poor efficacy in eradicating biofilm infections since the minimum bacteri-
cidal concentration cannot be achieved in vivo without posing severe adverse effects to the
host [26]. Furthermore, the biofilm lifestyle increases the horizontal transfer of virulence
genes and the development of multidrug-resistant organisms (MDRO) [27,28]. Therefore,
biofilms significantly impact VU’s treatment and must be considered when developing a
targeted treatment plan. This study analyzes putative factors for discriminating between
IVU versus NVU and the contribution of biofilm-growing bacteria in patients with VU to
promote the early detection of high-risk subjects and prevent further complications.

2. Results

From January 2019 to April 2021, 101 patients with infected (IVU; N = 56) and nonin-
fected chronic venous leg ulcers (NVU; N = 45) were enrolled in the study. The demographic
and clinical characteristics are summarized in Table 1. IVUs showed a significant increase
in size (p < 0.0001), and depth (p = 0.0008) of the ulcer as compared to NVUs. Notably, a sig-
nificantly (p < 0.0001) higher number of patients with hyperhomocysteinemia (HHcy) was
reported in IVU than in NVU. In addition, significantly higher levels of IL-6 (p = 0.0003),
IL-10 (p = 0.02), IL17A (p < 0.0001), and TNF-α (p = 0.0003) were found in patients with
IVUs compared to those with NVUs. Conversely, interferon-gamma (IFN-γ) was the only
inflammatory molecule significantly (p = 0.03) higher in NVU than IVU.
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Table 1. Body mass index (BMI), hyperhomocysteinemia (HHcy) cut-off was set at >15.0 µmol/L;
high-sensitivity C-reactive protein (CRP) cut-off was set at <1.0 mg/L. Interferon-gamma (IFN-γ),
interleukin (IL)-1β, IL-6, IL-8, IL-10, IL17A, IL22 and tumor necrosis factor alpha (TNF-α).

Clinical Data NVU
(N 45)

IVU
(N 56) p

Sex (Male/Female) (%) 38/62 42/58 0.79
Age (Years) (Median-Range) 81 (41–97) 76.5 (28–97) 0.35

BMI (Kg/m2) (Median-Range) 26.7 (21.0–40.2) 25.2 (20.2–42.5) 0.78
Diabetic (%) N = 6 (13.3) N = 11 (20.4) 0.46

Duration of ulcer (months)
(Median-Range) 6.8 (3–48) 4 (3–48) 0.72

Size of ulcer (cm2) (Median-Range) 8.6 (1.5–53) 28 (3–140) <0.0001
Depth of ulcer (% Grade 3) N = 2 (4.4) N = 17 (30.3) 0.0008

HHcy (% of positive subjects) N = 7 (15.6) N = 33 (58.9) <0.0001
CRP (% of positive subjects) N = 28 (62.2) N = 38 (67.9) 0.58

IFN-γ (pg/mL) (Median-Range) 1.44 × 101 (1.11 × 100–3.76 × 102) 1.78 × 100 (1.02 × 100–8.21 × 101) 0.03
IL-1β (pg/mL) (Median-Range) 7.49 × 104 (3.73 × 103–6.99 × 105) 7.53 × 104 (3.95 × 104–4.93 × 105) 0.80
IL-6 (pg/mL) (Median-Range) 1.84 × 104 (4.71 × 102–8.28 × 104) 1.75 × 105 (6.94 × 104–3.31 × 105) 0.0003
IL-8 (pg/mL) (Median-Range) 8.21 × 104 (2.07 × 104–8.94 × 105) 1.30 × 105 (3.89 × 104–1.86 × 106) 0.23

IL-10 (pg/mL) (Median-Range) 7.36 × 101 (4.61 × 100–3.12 × 102) 1.42 × 102 (6.26 × 101–6.02 × 102) 0.02
IL-17A (pg/mL) (Median-Range) 6.46 × 101 (2.38 × 100–2.01 × 102) 9.50 × 103 (5.49 × 101–7.84 × 103) <0.0001
IL-22 (pg/mL) (Median-Range) 2.72 × 102 (1.05 × 100–8.34 × 102) 2.47 × 102 (1.03 × 100–1.67 × 104) 0.14

TNF-α (pg/mL) (Median-Range) 3.75 × 102 (8.68 × 101–1.81 × 103) 1.59 × 103 (3.94 × 102–9.38 × 103) 0.0002

Before systemic antibiotic treatment, samples were collected from IVUs for microbio-
logic analysis. A total of 89 different pathogens were identified from 56 IVUs. In particular,
single bacterial species were detected from 32 ulcerative lesions, while two different species
were observed in 16 lesions. In addition, three different microorganisms were observed in
seven cases, and four bacterial species were isolated in one patient.

Gram-negative bacteria accounted for 51.7% (n = 46), while the Gram-positives were
48.3% (n = 43) of the total. At the species level, Staphylococcus aureus was the most common
isolate (43.8%; n = 39), followed by Pseudomonas aeruginosa (18.0%; n = 16). In descending
order, other relevant pathogens were Escherichia coli (7.9%; n = 7), Serratia marcescens (6.7%;
n = 6) and Enterobacter cloacae (3.4%; n = 3) and Morganella morganii (Table 2).

Table 2. Bacterial isolates from patients with colonized skin ulcers.

Strain N %

Staphylococcus aureus 39 43.8
Pseudomonas aeruginosa 16 18.0

Escherichia coli 7 7.9
Serratia marcescens 6 6.7
Enterobacter cloacae 3 3.4
Morganella morganii 3 3.4
Enterococcus faecium 2 2.3
Klebsiella pneumoniae 2 2.3

Shewanella algae 2 2.3
Achromobacter xylosoxidans 1 1.1

Bordetella trematum 1 1.1
Citrobacter freundii 1 1.1
Enterococcus faecalis 1 1.1

Klebsiella oxytoca 1 1.1
Proteus mirabilis 1 1.1
Proteus vulgaris 1 1.1

Stenotrophomnas maltophilia 1 1.1
Streptococcus gallolyticus 1 1.1

Total 89 100
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The antimicrobial susceptibility profiles of Gram-negative and Gram-positive isolates
are summarized in Figure 1A,B. S. aureus showed high resistance to fluoroquinolones
(ciprofloxacin and levofloxacin) and aminoglycosides (gentamicin and tobramycin). No
decrease in susceptibility to dalbavancin, daptomycin, linezolid, tigecycline, and van-
comycin was detected in the S. aureus isolates. P. aeruginosa showed resistance to ampi-
cillin/sulbactam, cefepime, ceftazidime, ciprofloxacin, levofloxacin and piperacillin/tazobactam
and was totally susceptible only to colistin and ceftolozane/tazobactam. Carbapen-
ems, colistin, ampicillin/sulbactam, ceftazidime/avibactam, ceftolozane/tazobactam and
piperacillin/tazobactam were the most active antibiotics against E. coli.
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Figure 1. Antibiotic resistance pattern (% of resistance) for the indicated antibiotics tested against
the Gram-negative (A) and Gram-positive (B) pathogens isolated from 56 patients with infected
chronic venous leg ulcers. The numbers in brackets indicate the number of bacterial isolates. Isolates
were classified as susceptible or resistant according to the European Committee on Antimicrobial
Susceptibility Testing clinical breakpoint tables (EUCAST clinical breakpoint). Blank: not tested.
(AMC) amoxicillin/clavulanic acid; (AMS) ampicillin-sulbactam; (CAV) ceftazidime-avibactam;
(C/T) ceftolozane/tazobactam; (HLG) high-level gentamicin; (PIT) piperacillin/tazobactam; (Q-D)
quinupristin-dalfopristin (TSX) trimethoprim/sulfamethoxazole.

Of the 89 isolates, 25.8% (n = 23) were classified as MDROs including methicillin-
resistant S. aureus (MRSA) (n = 13), multidrug-resistant P. aeruginosa (n = 4), extended-
spectrum β-lactamase (ESBL)-producing E. coli (n = 5) and S. maltophilia resistance to
trimethoprim/sulfamethoxazole.
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Bacterial biofilm plays a major role in delaying chronic wound healing resulting in
a significant health care burden. Thus, we measured the level of biofilm production in
all the isolates (Figure 2). Strong biofilm producers (SBPs) (70.8%) were more abundant
than weak biofilm producers (WBP) (29.2%) in IVUs. At the single species level, SBPs were
detected in 94.9% of S. aureus, 87.5% of P. aeruginosa, 28.6% of Escherichia coli, and 16.7 of
S. marcescens isolates. Notably, SBPs were present in 96.4% (N = 54) of the IVUs as single or
multispecies infections. Conversely, WBPs were found only in two cases of IVUs (13.3%) as
single bacterial species.
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Figure 2. Biofilm production of bacterial isolates from patients with infected chronic venous leg
ulcers. (A) Biofilm formation was assessed by the cBRT. Clinical isolates were classified as strong
biofilm producers (SBPs) and weak biofilm producers (WBP). All results are expressed as a percentage.
(B) Representative images of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli isolates
grown for 24 h at 37 ◦C. Orthogonal sections displaying horizontal and side views of reconstructed
three-dimensional (3D) biofilm images are shown.

Fluorescence microscopy analysis of S. aureus, P. aeruginosa, and E. coli, classified as
SBP (Figure 2B), showed the presence of a uniform layer of mature biofilm ranging from
20 to 60 µm with different morphologies after 24 h of incubation.

3. Discussion

VUs are prone to bacterial infection, leading to serious complications. Managing VUs
in the presence of an infection is still challenging due to prolonged healing and frequent
reoccurrence [29,30]. The diagnosis of infection in a VU remains problematic and debated
among health professionals [29]. This study showed that Gram-negative bacteria were
51.7%, mostly represented by P. aeruginosa, followed by E. coli, S. marcescens, E. cloacae,
and M. morganii. Gram-positives were 48.3%, with S. aureus emerging as the dominant
species. These data are in agreement with other reports from patients with VUs showing
comparable microbial distribution [31–33]. Historically, culture-based methods represented
the gold standard for microbial isolation and ulcer identification [34]. However, the culture-
independent molecular method has revealed greater bacterial diversity and load than
traditional culture-based methods [35–38]. Likewise, another study of chronic wounds of
various etiologies revealed that aerobic cultures significantly underestimate the number of
bacterial taxa compared with 16S rRNA sequencing [37]. Specifically, nine of the 20 most
represented bacteria identified with 16S rRNA sequencing were anaerobes that escaped
with aerobic culture methods [37]. Indeed, anaerobes have been implicated in wound
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chronicity and biofilm production [39,40], and the presence of anaerobic bacteria has been
reported in pressure ulcers [41,42]. Thus, analyzing skin microbiota composition in VUs is
central to identifying novel therapeutic strategies for patients with chronic wounds [35,43].
However, despite the 16S rRNA sequencing addresses many of the limitations of culture-
based approaches, the active contribution of different bacterial species to wound outcomes
can be addressed only by culture-based approaches [35,36,38]. Bacterial biofilms growing
on the surface of chronic wounds, such as VUs, are implicated in promoting chronic
inflammation, which leads to delayed healing [40,44–46]. In recent years, the wound
infection continuum has included microbial biofilm and its role in wound infection [47–49].
This study demonstrates that SBPs were significantly more abundant than WBP on the
surface of chronic wounds. Multiple bacterial species from wound specimens is common in
many studies [50]. Other reports showed that a chronic wound biofilm comprises multiple
bacterial species held together within the biofilm matrix [51]. Specifically, we identified
89 bacterial strains from 56 IVUs. In particular, single bacterial species were detected
from 32 ulcerative lesions, while two different species were observed in 16 lesions. In
addition, three different microorganisms were observed in seven cases, and four bacterial
species were isolated in one patient. Notably, bacterial strains classified as WBP were in
most cases associated with polymicrobial infections in association with SBP, confirming
previous observations [52]. This observation suggests biofilm represents a key virulence
determinant in promoting bacterial persistence and chronicity of ulcerative lesions [52,53].
Excessive inflammation plays a major role in delayed tissue regeneration and wound
healing. However, until now, routine laboratory parameters are not available to assess the
inflammatory status of VUs. Elevated inflammatory cytokine levels compared to healthy
tissue have been implicated in the pathogenesis of non-healing VU [11,54]. Consistent
with other studies, our data also indicates the presence of a robust pro-inflammatory
environment in VU. Moreover, the present data showed a significant increase in IL-6,
IL-10, IL17A, and TNF-α concentrations in wound fluids of patients with IVU compared
with NVU. A pilot study showed a significant increase of IL-6 and TNF-α from wound
fluids of patients with mixed bacterial infections compared with monomicrobial-infected
wounds [55]. A previous study reported that the pro-inflammatory cytokines IL-1, IL-6, and
TNF-α have significantly higher levels in the fluid of non-healing wounds compared with
healing chronic leg ulcers [11]. Staphylococcal peptidoglycan or lipopolysaccharide (LPS)
are potent triggers of cytokine release, and IVUs are constantly exposed to various bacterial
stimuli. Microbial endo and exoproducts released by pathogenic bacteria can trigger various
cytokine production pathways to promote their survival and persistence within the host [56].
In particular, deregulation of the potent anti-inflammatory cytokine IL-10 is increasingly
associated with such virulence strategies leading to poor antimicrobial effector mechanisms,
increased disease severity, and chronicity in S. aureus and P. aeruginosa infections [57–59].
Since cytokines can also be influenced by ulcer size, prospective studies are needed further
to validate their clinical application as a diagnostic tool. Although the pathogenesis of
VU is likely multi-factorial, our results indicate that the increase of specific inflammatory
mediators, such as IL-6, IL-10, IL17A, and TNF-α in wound fluids can be found in the
presence of an infection particularly when sustained by biofilm-producing bacteria.

In contrast to local cytokine levels, the serological marker CRP was not significantly
associated with the presence of any of the investigated conditions. This reinforces previous
observations suggesting that CRP cannot be used as a diagnostic marker of tissue infections
without bone involvement or to discriminate between colonization, critical colonization,
and local infection [55,60].

In the present study, we also documented that HHcy was significantly more common
in patients with IVU compared with NVU. HHcy is considered an independent risk factor
for cardiovascular and neurocognitive diseases [20,21,61,62] contributing to developing en-
dothelial dysfunction [63]. Others reported the direct association of diabetic foot ulcers with
increased plasma Hcy levels [64]. More recently it has been reported that elevated serum
Hcy levels inhibit endothelial cell wound repair and angiogenesis [65–69]. Experimental ev-
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idence also suggests that increased Hcy levels promote vascular oxidative stress, activating
a series of chemical reactions that lead to inflammation of the arterial wall and progression
of the atherosclerotic plaque [70]. In eukaryotic cells, Hcy has three main metabolic fates:
methionine production, cysteine biosynthetic pathway, or being released into the extra-
cellular medium. At the same time, Hcy is a crucial intermediate for de novo synthesis of
methionine and in a quorum-sensing (QS) mechanism based on the autoinducer-2 (AI-2)
both in Gram-positive and Gram-negative bacteria. Notably, in bacterial pathogens such as
P. aeruginosa and Enterococcus faecalis, AI-2 regulates the production of virulence factors and
biofilm formation [71–74]. From our data, one could speculate on a possible contribution
of serum Hcy as a potential signaling molecule for the resident biofilm community in the
ulcer. However, because its pathophysiology is still unclear, more studies are needed to
clarify the role of Hcy in developing VU and the relationship between an infected ulcer
and Hcy levels.

Several limitations must be noted when considering the data produced in this study.
First, our microbiological analysis was restricted to aerobic bacteria. Although anaerobes
have been identified as a significant contributor to wound bioburden, standardized cul-
turing and identifying procedures in clinical microbiology laboratories are uncommon for
VU [75]. However, widespread opinion among wound care practitioners is that aerobic
or facultative pathogens are the primary causes of delayed healing and infection in acute
and chronic wounds [76]. Moreover, the relevance of wound swab sampling has been
repeatedly questioned in favor of biopsied tissue, suggesting that the associated microflora
does not reflect that of deeper tissue [77]. However, it should be noted that wound contam-
ination/infection commonly occurs from sources external to the wound. Thus, it is highly
unlikely that superficial tissue will result sterile while deeper tissue is infected [76].

In summary, these data further confirmed that studying bacterial biofilm within the
wound is critical to understanding its pathophysiology and developing innovative diag-
nostic tools and targeted therapies. In addition, serological markers such as Hcy associated
with the local cytokines’ detection may have a significant role in IVU identification. In
particular, the assessment of these biomarkers could be effective in monitoring patients’
follow-up during antibiotic treatments, to evaluate the effectiveness of an ulcer debride-
ment or other approaches aimed at reducing the bacterial load in patients with VUs. Thus,
introducing new predictors potentially associated with VU may facilitate the early detec-
tion of high-risk subjects. Nevertheless, more prospective studies and higher resolution
diagnostic tools may provide a better evidence-based diagnosis of VU.

4. Material and Methods
4.1. Patients and Samples

All patients with VUs admitted to the San Gallicano Dermatological Institute, Istituti
Fisioterapici Ospitalieri (IFO) from March 2019 to November 2021 were included in the
study. A VU was classified as chronic when it persisted for at least three months [78].
VUs were examined by a team of expert wound care specialists and classified as being
infected or noninfected based on clinical signs (e.g., cellulitis, edema, erythema, heat,
increased exudate, and pain) and a comprehensive review of medical records and laboratory
test results [29,79]. IVUs that required systemic antibiotic treatments were sampled for
microbiologic analysis before antibiotic administration. Sample collection was performed
by commercially available swabs (COPAN swabs, Brescia, Italy) by rotating a sterile,
premoistened swab across the surface of a leg ulcer according to departmental guidelines.
Only one swab per patient was collected after careful wound cleaning and debridement to
prevent surface contamination. All specimens were appropriately labeled, packaged, and
processed within two hours after collection for culture analysis and biofilm assessment [52].
Exclusion criteria were the presence of fungi in a polymicrobial infection and a systemic
antimicrobial treatment or local antiseptic therapy within two weeks before sampling.
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4.2. Microbiology

Bacterial identification was performed by matrix-assisted laser desorption/ionization-
time of flight mass spectrometry (MALDI-TOF MS) system (Bruker Daltonik, Bremen,
Germany). The antimicrobial susceptibility was assessed by the BD PhoenixTM auto-
mated microbiology system (Becton Dickinson Diagnostic Systems, Sparks, MD, USA).
Susceptibility for ceftazidime/avibactam, ceftolozane/tazobactam, colistin, and dalba-
vancin was determined by the Sensititre broth microdilution method (Thermo Scien-
tific, Branchburg, NJ, USA), and results were interpreted according to the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints (http:
//www.eucast.org/clinical_breakpoints (accessed on 5 August 2022)) [80]. MDROs were
defined as described previously [52] and according to the Healthcare Infection Control Prac-
tices Advisory Committee (HICPAC, https://www.cdc.gov/hicpac/index.html (accessed
on 5 August 2022)) guidelines and the local infection control committee.

4.3. Biofilm Production

Bacterial isolates were analyzed for their ability to produce biofilm by the clinical
BioFilm Ring Test (cBRT) (Biofilm Control, Saint Beauzire, France) as described previ-
ously [81,82]. Briefly, an overnight culture grown on a Chocolate agar plate was used to
inoculate 2 mL of 0.45% saline solution to 1.0 ± 0.3 McFarland turbidity standard. The
bacterial suspension was used to inoculate a 96-well polystyrene plate with 200 µL/well.
The test was performed using the toner solution (TON004) containing magnetic beads 1%
(v/v) mixed in the Brain Heart Infusion medium. Ten-fold serial dilutions were performed
in a volume of 200 µL BHI/TON mix. Staphylococcus epidermidis ATCC 12228 were included
in each plate as standard reference and internal control. After 5 h of incubation at 37 ◦C in
a static condition, wells were covered with contrast liquid, placed for 1 min on the block
carrying 96 mini-magnets, and scanned with a plate reader (Pack BIOFILM, Biofilm Control,
Saint Beauzire, France). The adhesion strength of each strain was expressed as BioFilm
Index [83] and used to classify strains as weak and strong biofilm producers [84]. Each
strain was analyzed in duplicate, and experiments were repeated three times.

4.4. High-Sensitivity C-Reactive Protein (CRP) Assay

According to routine clinical practice, serum CRP level was measured on a Cobas c503
analyzer (Roche Diagnostics, Mannheim, Germany).

4.5. Wound Fluid Sampling and Cytokines Analysis

Wound fluid of 70 µL was collected from the ulceration site with commercially avail-
able nylon-flocked swabs (Minitip Flocked Swabs 551C; COPAN swabs, Brescia, Italy) after
sharp debridement [85]. These swabs consist of perpendicular nylon fibers allowing liquid
samples to uptake by capillary action. Subsequently, wound fluid was recovered from the
swab by immediate centrifugation (10,000 rpm for 3 min at room temperature). Finally, all
samples were cleared by centrifugation at 10,000× g for 20 min at four ◦C before cytokines
analysis to obtain cell-free supernatants.

A broad range of immune mediators, including Interferon-gamma (IFN-γ), Inter-
leukin (IL)-1β, IL-6, the chemokine IL-8, the regulatory cytokine IL-10, the T-cell–associated
cytokines IL-17A, IL22, and the tumor necrosis factor-alpha (TNF-α) were measured in su-
pernatants samples by using an automated ELISA assay Simple Plex™ technology on ELLA
platform (Bio-Techne, Minneapolis, MN, USA) following the manufacturer’s instructions.

4.6. Biofilm Imaging

Bacterial isolates were grown overnight on blood agar plates. Single colonies were
used to inoculate 3 mL of 0.45% saline solution (Air Life, Carefusion, CA, USA) to obtain
turbidity of 0.5 ± 0.3 McFarland turbidity standard. Samples were diluted at 1:1000 and
resuspended in 1 mL of BHI in a µ-Slide, eight well chamber slides (Ibidi, Gräfelfing,
Germany). The bacterial suspension was incubated at 37 ◦C for 24 h to allow biofilm
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Antibiotics 2022, 11, 1268 9 of 12

formation. Subsequently, the medium was removed, and samples were washed in a
0.45% saline solution. The biofilm cells were stained by the LIVE/DEAD BacLight kit
(Life Technologies, New York, NY, USA) and examined with an Apotome system (Zeiss,
Oberkochen, Germany) connected to an Axio Observer inverted fluorescence microscope
(Zeiss). Data were analyzed with the ZEN 3.2 (blue edition) software (Zeiss) [80].

4.7. Statistics

All variables were summarized with descriptive statistics. The comparisons between
continuous variables were made with the Student’s t-test or the Mann-Whitney U test, when
appropriate. In contrast, categorical variables were tested using the χ2 or two-tailed Fisher’s
exact test when appropriate. A p value of <0.05 was considered statistically significant.
Statistical analyses were performed using SPSS software version 21 (SPSS, Inc., Chicago, IL,
USA).
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