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Abstract: Infectious disease is one of the greatest causes of morbidity and mortality worldwide,
and with the emergence of antimicrobial resistance, the situation is worsening. In order to prevent
this crisis, antimicrobial resistance needs to be monitored carefully to control the spread of multidrug-
resistant bacteria. Therefore, in this study, we aimed to determine the prevalence of infection caused
by Klebsiella pneumoniae and investigate the antimicrobial profile pattern of K. pneumoniae in the last
eleven years. This retrospective study was conducted in a tertiary hospital in Makkah, Saudi Arabia.
Data were collected from January 2011 to December 2021. From 2011 to 2021, a total of 61,027 bacterial
isolates were collected from clinical samples, among which 14.7% (n = 9014) were K. pneumoniae. The
antibiotic susceptibility pattern of K. pneumoniae revealed a significant increase in the resistance rate
in most tested antibiotics during the study period. A marked jump in the resistance rate was seen in
amoxicillin/clavulanate and piperacillin/tazobactam, from 33.6% and 13.6% in 2011 to 71.4% and
84.9% in 2021, respectively. Ceftazidime, cefotaxime, and cefepime resistance rates increased from
29.9%, 26.2%, and 53.9%, respectively, in 2011 to become 84.9%, 85.1%, and 85.8% in 2021. Moreover,
a significant increase in the resistance rate was seen in both imipenem and amikacin, with an average
resistance rate rise from 6.6% for imipenem and 11.9% for amikacin in 2011 to 59.9% and 62.2% in
2021, respectively. The present study showed that the prevalence and drug resistance of K. pneumoniae
increased over the study period. Thus, preventing hospital-acquired infection and the reasonable use
of antibiotics must be implemented to control and reduce antimicrobial resistance.

Keywords: Klebsiella pneumoniae; antibiotic resistance; MDR; ESBL; Saudi Arabia; Makkah; antibiogram
pattern

1. Introduction

Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative encapsulated bacterium that
colonizes multiple sites of the human body, including the gastrointestinal tract, respira-
tory tract, oral cavities, and skin [1]. K. pneumoniae is an opportunistic pathogen and a
major cause of hospital-acquired infections, including bloodstream infections, urinary tract
infections, and pneumonia [2]. To survive the lethal effects of antibiotics, K. pneumoniae
developed multiple resistance mechanisms, such as modifying the target site, drug inac-
tivation, reduced cell permeability, and efflux pump activation [3,4]. For example, some
strains of K. pneumoniae can survive and overcome the effect of β-lactam antibiotics by
producing extended-spectrum beta-lactamase (ESBL) enzymes. ESBLs can hydrolyze and
inactivate β-lactam antibiotics, including penicillins, cephalosporins (first-, second-, and
third-generation), and aztreonam, but not cephamycins or carbapenems [4]. However,
the effect of ESBL enzymes can be overcome by β-lactams inhibitors, such as clavulanic
acid [3]. ESBLs are encoded by transferable plasmid-mediated genes, such as TEM, SHV,
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and CTX-M [5]. Since the identification of the first ESBL-producing bacteria in 1980, the
incidence of ESBL-producing organisms has increased drastically to become a significant
public health threat [6,7]. Recently, it has been noticed that ESBL-producing bacteria exhibit
a high resistance rate to other antibiotic classes, such as fluoroquinolones, sulfonamides,
and aminoglycosides [8]. In addition to ESBL, K. pneumoniae acquired resistance to car-
bapenems through three major mechanisms: enzyme production, efflux pumps, and porin
mutations [9]. Among these, enzyme production (carbapenemases) is the most dominant
resistance mechanism [9]. Furthermore, colistin resistance was also observed in K. pneumo-
niae and other Gram-negative bacteria. The mechanism of colistin resistance is generally
through the modification of the lipopolysaccharide (LPS) outer membrane structure, which
would lower the binding affinity of colistin to the LPS [10]. Due to this increase in antibiotic
resistance, multiple studies were conducted worldwide to monitor the antibiotic resistance
of K. pneumoniae [11].

In Saudi Arabia, the surveillance of antibiotic resistance of K. pneumoniae revealed an
increase in the resistance rate among different antibiotic classes. For example, in Aseer
(south), several studies conducted between 2015 and 2019 showed an increase in the re-
sistance rate against penicillin and cephalosporin. Nearly all the isolates were resistant
to ceftazidime, piperacillin, and ampicillin [12,13]. Similarly, a previous study in Riyadh
(center) showed that 55% of K. pneumoniae were capable of producing ESBL and exhibited
a high resistance rate to ceftazidime (95%) and cefotaxime (97%) [5]. In addition, dur-
ing a four-year surveillance of K. pneumoniae in Al-Medina (north), Saudi Arabia, over
half of the isolates were found to be resistant to different classes of antibiotics (with an
average of 61.7%). Among carbapenems, 38.7% and 46.1% resistance rates were found
towards imipenem and meropenem, respectively [14]. Moreover, the study revealed a
high resistance to colistin and tigecycline. Although the result of colistin resistance was
not reliable due to the low sample size, this finding is worrying because of the limited
options for treating infection caused by multidrug-resistant K. pneumoniae [14,15]. The
aforementioned studies indicated a continuous increase in the antibiotic resistance rate of
K. pneumoniae, which requires urgent and continuous monitoring. Therefore, this study
aimed to determine the prevalence of K. pneumoniae infections and the resistance trend over
eleven years in Makkah, Saudi Arabia.

2. Results
2.1. Patient and Samples Demographics

This retrospective study was carried out to determine the burden of infections caused
by K. pneumoniae over eleven years, from January 2011 to December 2021. Out of 61,027 iso-
lates found during the study period, 9014 (14.7%) were K. pneumoniae. The results showed
an increase in K. pneumoniae isolates over the years, with an annual number of isolates rang-
ing from 622 to 1131 and an average of 819.5 ± 205.7. The detection rates of K. pneumoniae
increased from 7.7% in 2011 to 25.9% in 2020. However, the results revealed that the rates of
K. pneumoniae isolates drastically reduced from 25.9% in 2020 to 17.9% in 2022, which could
be due to the strong implementation of infection control policies following the COVID-19
pandemic (Table 1).

Throughout the study period, the results showed a significantly higher rate of K. pneu-
moniae isolated from inpatients (mean: 672.5 ± 193.6) compared to outpatients (mean:
147 ± 51.9) (Table 1 and Figure 1). In addition, higher rates of K. pneumoniae isolates
were obtained from male subjects compared to females (p value ≤ 0.0001) (Table 1). The
results also showed a direct correlation between age and the rates of K. pneumoniae iso-
lates (Figure 1). Collectively, these results may suggest that prolonged hospitalization and
weakened immunity due to aging are potential risk factors for K. pneumoniae infection.
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Table 1. The demographic distribution of K. pneumoniae.

Year
Total

Isolated
Organisms

Total
K. pneumoniae

Isolates
Inpatient Outpatient Male Female

2011 8081 622 (7.7%) 546 (87.8%) 76 (12.2%) 348 (55.9%) 274 (44.1%)
2012 7241 677 (9.3%) 528 (78.0%) 149 (22%) 322 (47.6%) 355 (52.4%)
2013 6294 627 (10%) 474 (75.6%) 153 (24.4%) 350 (55.8%) 277 (44.2%)
2014 5217 573 (11%) 471 (82.2%) 102 (17.8%) 323 (56.4%) 250 (43.6%)
2015 5163 727 (14.1%) 581 (79.9%) 146 (20.1%) 436 (60%) 291 (40%)
2016 4722 685 (14.5%) 490 (71.5%) 195 (28.5%) 399 (58.2%) 286 (41.8%)
2017 4376 911 (20.8%) 724 (79.5%) 187 (20.5%) 572 (62.8%) 339 (37.2%)
2018 4980 1131 (22.7%) 994 (87.9%) 137 (12.1%) 679 (60%) 452 (40%)
2019 4835 931 (19.3%) 858 (92.2%) 73 (7.8%) 532 (57.1%) 399 (42.9%)
2020 4029 1043 (25.9%) 893 (85.6%) 150 (14.4%) 681 (65.3%) 362 (34.7%)
2021 6089 1087 (17.9%) 838 (77.1%) 249 (22.9%) 700 (64.4%) 387 (35.6%)
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Figure 1. The distribution of K. pneumoniae isolates from inpatient and outpatient departments from
2011–2021.

During the study period, K. pneumoniae isolates were reported mostly from blood
samples (28.4%), followed by sputum (21.8%), wounds (21.3%), urine (14.7), and tip and
catheter (1.5%) (Figure 2). Overall, the results showed a gradual increase in the percentage
of detection of K. pneumoniae isolates from different samples over the years (Table 2).
Regardless of the sample origin, K. pneumoniae isolates were significantly higher from
inpatient specimens (mean: 82.55 ± 6.3) compared to outpatients (mean: 17.45 ± 6.4)
(Figure 3). For example, 83.65% of K. pneumoniae isolated from blood samples were obtained
from inpatient specimens, and the remaining 16.35% were from outpatients (Figure 3).
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2.2. Antimicrobial Resistance Profile of K. pneumoniae

The analysis of the antimicrobial susceptibility pattern of K. pneumoniae revealed a
sharp increase in the resistance rate in most of the tested antibiotics (Table 3, Figure 4A–C).
Throughout the duration of the study, the highest resistance rate was observed in ampicillin
(97.6%), and the lowest resistance rate was for tigecycline (15.7%) (Table 3). The complex
of β-lactam/β-lactamase-inhibitor antibiotics (amoxicillin/clavulanate and piperacillin/
tazobactam) showed a significant gradual increase in the resistance rate over the eleven
years (Table 3 and Figure 4A). Similarly, a sharp increase in resistance was observed in
the third- and fourth-generation cephalosporins (ceftazidime, cefotaxime, and cefepime)
(Table 3 and Figure 4A). Among the cephalosporin antibiotics, cefotaxime showed the
lowest resistance rate (68.6%), followed by ceftazidime (74.9%), and cefepime (81.0%)
(Table 3). Notably, imipenem was the most sensitive antibiotic among the β-lactam antibi-
otic family in the first two years of the study; however, the resistance rate of imipenem
escalated progressively to reach 60% in 2021 (Table 3 and Figure 4A). Like β-lactam an-
tibiotics, aminoglycosides (amikacin and gentamicin) showed a significant increase in the
resistance rate over the study period. Over the eleven years, the average resistance rate
of amikacin was 47.8%, whereas that of gentamicin was 54.9% (Table 3 and Figure 4B).
Similarly, ciprofloxacin and cotrimoxazole (trimethoprim-sulfamethoxazole) showed a
significant increase in the resistance rate over time, with average resistance rates of 71.6%
and 74.9%, respectively (Table 3 and Figure 4B). In addition, the results showed that the
overall resistance rates of colistin and tigecycline for the study period were 25.4% and 15.7%,
respectively. However, the results for both antibiotics were not statistically significant due
to the low sample size (Table 3).



Antibiotics 2023, 12, 164 6 of 12

Table 3. Antibiogram pattern of K. pneumoniae.

Antibiotics
Year-Wise Prevalence (%) of Resistant K. pneumoniae

Total p for
Trend2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Ampicillin 525/558
(94.1%)

592/610
(97%)

454/474
(95.8%)

279/285
(97.9%)

202/206
(98.1%)

282/285
(98.9%)

182/186
(97.8%)

207/210
(98.6%)

231/233
(99.1%)

540/546
(98.9%)

777/782
(99.4%)

4271/4375
(97.6%) <0.0001

Amoxicillin/
Clavulanate

163/485
(33.6%)

114/284
(40.1%)

272/634
(42.9%)

235/336
(69.9%)

135/274
(49.3%)

249/336
(74.1%)

181/246
(73.6%)

226/297
(76.1%)

170/271
(62.7%)

431/550
(78.4%)

561/775
(72.4%)

2737/4488
(61.0%) <0.0001

Piperacillin/
Tazobactam

57/419
(13.6%)

290/618
(46.9%)

172/520
(33.1%)

237/334
(71%)

155/201
(77.1%)

208/225
(92.4%)

284/324
(87.7%)

307/320
(95.9%)

214/271
(79%)

422/559
(75.5%)

588/823
(71.4%)

2934/4614
(63.6%) <0.0001

Ceftazidime 83/278
(29.9%)

216/501
(43.1%)

188/425
(44.2%)

195/288
(67.7%)

236/338
(69.8%)

345/421
(81.9%)

435/534
(81.5%)

623/715
(87.1%)

578/657
(88%)

804/907
(88.6%)

748/881
(84.9%)

4451/5945
(74.9%) <0.0001

Cefotaxime 64/244
(26.2%)

65/203
(32%)

142/330
(43%)

175/279
(62.7%)

146/247
(59.1%)

422/482
(87.6%)

67/74
(90.5%)

105/124
(84.7%)

136/212
(64.2%)

431/497
(86.7%)

491/577
(85.1%)

2244/3269
(68.6%) <0.0001

Cefepime 90/167
(53.9%)

86/233
(36.9%)

182/409
(44.5%)

175/230
(76.1%)

241/285
(84.6%)

336/396
(84.8%)

450/523
(86%)

637/712
(89.5%)

584/645
(90.5%)

828/915
(90.5%)

842/981
(85.8%)

4451/5496
(81.0%) <0.0001

Imipenem 41/623
(6.6%)

73/689
(10.6%)

116/655
(17.7%)

164/428
(38.3%)

243/454
(53.5%)

335/540
(62%)

444/627
(70.8%)

492/856
(57.5%)

390/576
(67.7%)

533/868
(61.4%)

547/913
(59.9%)

3378/7229
(46.7%) <0.0001

Gentamicin 264/598
(44.1%)

311/689
(45.1%)

310/656
(47.3%)

253/570
(44.4%)

271/699
(38.8%)

411/616
(66.7%)

497/876
(56.7%)

717/1037
(69.1%)

456\900
(50.7%)

672/1028
(65.4%)

614/1037
(59.2%)

4776/8706
(54.9%) <0.0001

Amikacin 76/641
(11.9%)

94/683
(13.8%)

120/648
(18.5%)

138/440
(31.4%)

158/387
(40.8%)

263/472
(55.7%)

411/726
(56.6%)

645/830
(77.7%)

379/628
(60.4%)

635/938
(67.7%)

605/972
(62.2%)

3524/7365
(47.8%) <0.0001

Ciprofloxacin 282/609
(46.3%)

338/689
(49.1%)

345/635
(54.3%)

293/413
(70.9%)

270/416
(64.9%)

369/477
(77.4%)

557/678
(82.2%)

755/895
(84.4%)

644/819
(78.6%)

763/918
(83.1%)

739/925
(79.9%)

5355/7474
(71.6%) <0.0001

Colistin 0/2
(0%)

4/4
(100%)

0/5
(0%)

31/98
(31.6%)

32/184
(17.4%)

40/118
(33.9%)

8/37
(21.6%)

2/2
(100%)

0/4
(0%)

147/501
(29.3%)

105/504
(20.8%)

369/1455
(25.4%) NS

Tigecycline 0/0
(0%)

31/159
(19.5%)

61/426
(14.3%)

25/179
(14.0%)

15/136
(11.0%)

11/96
(11.5%)

0/49
(0%)

10/10
(100%)

12/97
(12.4%)

90/717
(12.6%)

170/846
(20.1%)

425/2715
(15.7%) NS

TMP/SMX 240/433
(55.4%)

421/697
(60.4%)

400/648
(61.7%)

312/458
(68.1%)

364/509
(71.5%)

323/455
(71%)

514/656
(78.4%)

763/919
(83%)

689/849
(81.2%)

874/1003
(87.1%)

820/1006
(81.5%)

5720/7633
(74.9%) <0.0001

The data are presented as the number of resistant isolates/total number of isolates (%). Zero (0) indicates no isolates were tested against the antibiotic. Note: not all isolates were tested
against all antibiotics listed here. The p-value for trends was calculated using the chi-square test for trends. A p-value of less than 0.05 indicates an increase in the resistance trend. NS:
Nonsignificant p-value (i.e., >0.05).
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Figure 4. Schematic demonstration of the antimicrobial resistance trends of K. pneumoniae. (A). Evolu-
tion of resistance to β-lactam antibiotics. (B). Evolution of resistance to aminoglycoside. (C). Evolution
of resistance to ciprofloxacin and cotrimoxazole (trimethoprim-sulfamethoxazole).

Next, we examined the prevalence and antimicrobial susceptibility pattern of the
extended-spectrum β-lactamase (ESBL) K. pneumoniae (Figure 5). The results showed that
the average prevalence of ESBL throughout the study period was 21.3%. In addition, our
result showed that ampicillin and cephalosporin exhibited low activity against ESBL K.
pneumoniae, with an average resistance rate of more than 90%. In contrast, the most effective
antibiotics against ESBL K. pneumoniae were imipenem, with an average resistance rate of
14.63 ± 18.20, followed by tigecycline (19.67 ± 22.97), amikacin (21.31 ± 17.44), and colistin
(21.52 ± 35.01) (Figure 5).
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3. Discussion

Antimicrobial resistance (AMR) is a global threat to human health. More than 1 million
deaths could have been avoided in 2019 if sensitive drugs had been replaced by resistant
drugs in the world [16]. The misuse and overuse of antibiotics, together with the ability
of resistant microbes to transmit from person to person, have significantly amplified the
problem of AMR [17,18]. For instance, the emergence of multidrug-resistant K. pneumoniae
was directly linked to the misuse and overuse of antibiotics when treating hospitalized
patients [19]. Therefore, active surveillance of AMR trends is essential worldwide. In Saudi
Arabia, only a limited number of studies were conducted to monitor the AMR trends of K.
pneumoniae. Thus, in this study, we helped to fill the gap by investigating the prevalence
and trends of AMR of K. pneumoniae.

Our results showed a gradual increase in the rate of infections with K. pneumoniae over
the years. The prevalence of K. pneumoniae dramatically increased from 7.7% in 2011 to
a peak in 2020 of 25.9%. The average rate of infections with K. pneumoniae in this study
was 14.7% (n = 9014) over 11 years. This rate of infections with K. pneumoniae is lower than
that reported previously in other regions in Saudi Arabia. For example, the prevalence of
infections with K. pneumoniae was 39% and 18.6% in Asser and Bisha, respectively [13,20].
Nevertheless, the prevalence of infections with K. pneumoniae in Saudi Arabia is similar to
that reported worldwide (i.e., 18.8 to 87.7% in Asia and 5 to 35% in Western countries) [21].
In this study, the majority of K. pneumoniae isolates were found to be from male patients,
with an average of 58.5% ± 4.9. However, it is crucial to notice that the majority of total
isolates were also obtained from male patients with an average of 59.3 ± 2.8. This result is
in agreement with the previous studies, where the majority of K. pneumoniae isolates were
obtained from male patients [20,22].

In addition, a direct correlation between the rate of infections with K. pneumoniae and
age was observed. A similar observation was reported in Aseer, Saudi Arabia, where 42%
of K. pneumoniae infections were in patients >60 years old [13]. This is possibly due to the
decline of the immune system with aging, which allows the bacteria to multiply and cause
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infection [23]. Moreover, this study showed a significantly higher rate of K. pneumoniae
isolated from inpatients compared to outpatients. Taken together, these findings may
suggest that weakened immunity due to aging and extended hospitalization are potential
risk factors for K. pneumoniae infection.

With regard to K. pneumoniae detection from different samples, the results showed that
the highest rates were in blood samples, followed by sputum. This finding is consistent
with the previous reports from Saudi Arabia, in which the majority of K. pneumoniae were
isolated from blood and respiratory specimens [12]. The present finding relies on the
fact that K. pneumoniae is one of the main causative agents of bloodstream infection and
respiratory tract infection, and it should be taken into consideration during the diagnosis
of respiratory infection [24,25].

In agreement with national and international reports, our results revealed the emer-
gence of antimicrobial resistance, where K. pneumoniae is resistant to the most commonly
used antibiotics [11,20,26]. Throughout the study period, ampicillin showed the highest
resistance rate among the tested antibiotics, with a 97.6% average resistance rate. Sim-
ilar results were reported in previous studies in Saudi Arabia; for example, in Aseer
and Medina, ampicillin showed a 100% and 99.9% resistance rate, respectively [13,14].
Similarly, the results revealed that the resistance rate of K. pneumoniae to third- and fourth-
generation cephalosporin rose significantly with 74.9% (n = 4451), 68.6% (n = 2244), and
81.0% (n = 4451) for ceftazidime, cefotaxime, and cefepime, respectively. This finding is
in agreement with previous reports from Saudi Arabia, which indicated an increase in
the resistance rate of K. pneumoniae to cephalosporin antibiotics [13,14]. The same find-
ing was also reported in China and other countries worldwide, which suggests a global
rise in resistance to third- and fourth-generation cephalosporins by K. pneumoniae [11,27].
A similar increase in the resistance rate of K. pneumoniae was also detected for amikacin.
Interestingly, during the earlier years of the study, amikacin was one of the most effective
antibiotics, with a resistance rate of 11.9%. Unfortunately, the rate of resistance started to
increase aggressively over the period of study to reach its peak of 77.7% in 2018. A similar
finding was reported in Medina, Saudi Arabia, where the resistance rate of K. pneumoniae
to amikacin increased from 28.9% to 39.7% over the four-year duration of the study [14].

Carbapenem is a potent antibiotic to treat infections caused by Gram-negative bacteria.
It has been used for a long time as a first choice to treat infections caused by ESBL-producing
bacteria. However, resistance to carbapenems is alarmingly increasing, resulting in a future
global crisis [28,29]. In this study, we assessed the resistance profile to imipenem, which
showed a remarkable increase in the resistance rate over the study period from only 6.6%
in 2011 to 59.9% in 2021. The rapid increase in carbapenem-resistant Enterobacteriaceae
(CRE) has been reported both locally and globally [12–14,30,31]. This increase in CRE is
linked to the increased use and consumption of β-lactamase inhibitors [32,33].

Colistin was an antibiotic commonly used to treat infections caused by Gram-negative
bacteria in the 1960s and 1970s [34]. However, as a result of colistin renal- and neurotoxicity,
the drug was discontinued [35]. Nevertheless, due to the emergence of CRE, the use of
colistin has become a necessity since colistin is the last resort to treat CRE infections [15].
Consequently, even a low resistant rate could result in a threatening situation in the future.
In this study, no significant change in the resistance rate of colistin was observed over
the years, which could be due to the low number of tested isolates. Nevertheless, the
resistance pattern showed some fluctuation during the study period. Multiple studies
revealed a notable rise in colistin resistance both in the Kingdom of Saudi Arabia and
globally. For example, the prevalence of colistin resistance in Medina, Ha’il, and Asser
(Saudi Arabia) was reported to be 40.7%, 26.80%, and 35.10%, respectively [13,14,36].
Internationally, the prevalence of colistin resistance varies widely, with 13% in the USA and
73% in Italy [37,38].

In conclusion, our study revealed that the prevalence of K. pneumoniae increased
significantly during the study period. In addition, we observed a significant increase in
the resistance rate to nearly all of the tested antibiotics (except colistin and tigecycline)
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over the study years. Unfortunately, no significant decline in the resistance pattern was
found in any of the tested antibiotics. Therefore, the reasonable use of antibiotics, an active
antimicrobial stewardship program, and intensive educational programs for physicians
as well as clinical pharmacists must be implemented to control and reduce antimicrobial
resistance among K. pneumoniae and other multidrug-resistant bacteria. This study was
limited to a single center from Makkah in Saudi Arabia. This investigation was conducted
with a total sample size of 61,027 isolates collected over 11 years. Thus, we can comfortably
state that this is a representative sample of Makkah. However, this does not exclude
the need to perform similar studies in other regions and include more cities and centers
to obtain a representative sample of the country. Nevertheless, such a study will need
more funding and time to perform. Due to the unavailability of antimicrobial prescription
patterns over the study period, we were unable to analyze the impact of prescription
practices in Makkah on the emergence of antimicrobial resistance. Thus, we recommend
further studies in this field that include more cities and centers and with more details on
prescription patterns and patient characteristics such as comorbidity and mortality.

4. Materials and Methods
4.1. Study Design

This retrospective study was conducted to explore antibiotic susceptibility patterns
among all K. pneumoniae isolates from a tertiary hospital for a duration of eleven years.
Samples from January 2011 to December 2021 were included in the study. During that
period, the total number of isolates was 61,027. Samples were collected from different
wards and included different sample types, such as urine, blood, pus, sputum, swabs,
and body fluid. Standard microbiology techniques were performed, and all samples were
cultured at 37 ◦C for 24–48 h in two different media: blood sheep agar and McConkey
agar, except for urine samples which were cultured in cystine–lactose–electrolyte-deficient
agar (CLED). After 24–48 h, bacterial identification and antibiotic susceptibility patterns
were determined using the Vitek-2 (bioMérieux, Marcy-l’Étoile, France) automated system
(GN-21341 cards were used for identification, whereas the N291, N292, and N204 cards
were used for antibiotic susceptibility) and Microscan walkaway (Beckman Coulter, Brea,
CA, USA) automated system (Negative Breakpoint Combo 50, NBC 50). Antibiotics investi-
gated in this study included ampicillin, amoxicillin/clavulanate, piperacillin/tazobactam,
ceftazidime, cefotaxime, cefepime, imipenem, gentamicin, amikacin, ciprofloxacin, colistin,
tigecycline, and cotrimoxazole. The interpretation of the MIC results relied on Clinical
Laboratory Standard Institute guidelines [39]. Identification of ESBL was performed using a
simultaneous examination of the inhibitory effects of ceftazidime, cefotaxime, and cefepime,
with and without clavulanate.

4.2. Statistical Analysis

The total number of patients, specimen type, and antibiograms were entered into a
database. Descriptive analysis was conducted to identify the frequency and distribution
of all variables. A comparison of antibiotic susceptibility from different years was made
using the chi-square test for trends. A p-value less than 0.05 was considered statistically
significant. Statistical analysis was performed using GraphPad Prism 9.3.0 (GraphPad
Software Inc., San Diego, CA, USA).
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and A.M.M.; investigation, A.M.M., A.A.B. and H.M.A.-S.; resources, N.A.J.; data curation, A.M.A.-G.,
A.M.M. and N.A.J.; writing—original draft preparation, N.A.J.; writing—review and editing, N.A.J.,
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