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Abstract: We report that phthalimides may be cyclized using a Mukaiyama-type aldol coupling to
give variously substituted fused lactam (1,2,3,9b-tetrahydro-5H-pyrrolo[2,1-a]isoindol-5-one) systems.
This novel process shows a high level of regioselectivity for o-substituted phthalimides, dictated by
steric and electronic factors, but not for m-substituted phthalimides. The initial aldol adduct is prone
to elimination, giving 2,3-dihydro-5H-pyrrolo[2,1-a]isoindol-5-ones, and the initial cyclisation can
be conducted in such a way that aldol cyclisation-elimination is achievable in a one-pot approach.
The 2,3-dihydro-5H-pyrrolo[2,1-a]isoindol-5-ones possess cross conjugation and steric effects which
significantly influence the reactivity of several functional groups, but conditions suitable for epoxi-
dation, ester hydrolysis and amide formation, and reduction, which provide for ring manipulation,
were identified. Many of the derived lactam systems, and especially the eliminated systems, show
low solubility, which compromises biological activity, although in some cases, antibacterial and
cytotoxic activity was found, and this new class of small molecule provides a useful skeleton for
further elaboration and study.

Keywords: pyrrolidinone; aldol; antibacterial

1. Introduction

The critical importance of natural products in the development of pharmaceutically
active compounds has been thoroughly documented, and although popularity of this ap-
proach has waned in recent years in favour of combinatorial and rational design, there have
been strong calls for its reinvigoration [1]. These calls are particularly relevant for antibacte-
rial agents, for which there is a serious deficit of new candidates in the drug pipeline [2,3],
at a time when there is considerable urgency to expand therapeutics as a result of the
rapid emergence of resistant bacterial strains [4]. The challenges peculiar to antibacterial
drug discovery [5–8] imply that natural products often provide biologically validated start
points suitable for immediate elaboration in the quest for new pharmaceutically useful
agents [9,10]. It has recently been recognised that existing strategies for the discovery of
new antibacterials have not been effective [11], probably as a result at least in part of over-
reliance of combinatorial approaches leading to structurally narrow libraries [12,13], and
there is an urgent need for the identification of novel leads for expanding the antibacterial
drug development pipeline [14,15]. The work of Waldmann [16,17] and Danishefsky [18]
has reiterated the importance of natural products as a starting point for drug discovery,
and our contribution to this area has been to show that chemical libraries modelled on
natural products [19], including equisetin [20], reutericyclin [21], kibdelomycin [22], and
streptolydigin [23], which all possess a core tetramate unit, or oxazolomycin [24] and
pramanicin [25], which possess an α-hydroxypyroglutamate core, may exhibit significant
antibacterial activity and provide useful opportunities for further optimisation. Critical
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to the success of this work has been the finding that C-acyl or C-carboxamide side chains
may be introduced under mild conditions to tetramate and pyroglutamate skeletons [19]
and that this leads to enhanced antibacterial activity. It would appear, therefore, that an α,
α, α-tricarbonyl unit comprises, at least in part, the active pharmacophore, and this was
corroborated by the finding that the core tetramate without an α, α, α-tricarbonyl unit had
little intrinsic antibacterial activity [26].

The recent discovery of pyrrolizilactone [27], UCS1025A and B [28–30] and CJ-16264 [31],
is of interest since all are comprised of a common lactam-lactone fused ring core and C-
acyl decalin side chain. Studies of the biosynthesis [32], synthesis [33–36], and SAR [37] of
UCS1025A suggest that the core skeleton might offer an opportunity for development, not least
because of its similarity with bioactive tetramates, which are also appended with decalins [38].
Of significance is the antibacterial bioactivity of these systems, with MIC values of typically
1–15 ug/mL against Gram-positive MDR strains and some Gram-negative ones [31]. Limited
SAR analysis with three CJ-16,264 stereoisomers shows MIC values of 2–16 ug/mL against
MRSA, E. faecelis, and E. faecium [39]. As a result, the development of methodology for their
total synthesis has attracted attention [40,41] and the total synthesis of myceliothermophins C,
D, and E [42], a related structural type, has also recently been achieved. The synthesis of the
azabicyclo[3.3.0]octane core provides a key background [43] and an unusual approach to the
pyrrolizidine core from an 8-membered ring by transannular cyclisation has been reported [44].
Of particular interest was the elegant ring cyclisation methodology originally reported by
Lambert [34] and developed later by both Hoye [35,45] and Christmann [33,46,47], since this
provided rapid entry to the core lactam system from maleimides by an aldol-like ring closure,
using in situ generated silyl enolates as nucleophiles. We have recently reported that this
approach is suitable for substituted maleimides, and can be used to access a small library
of novel pyrrolidinones [48]; of interest was their lack of antibacterial activity, but a similar
phenomenon had been observed for unsubstituted tetramates [19]. We report here that the
aldol cyclisation may be further extended to phthalimides, and that this gives rise to a range
of functionalised systems whose biological activity has been assessed.

2. Results and Discussion

Substituted phthalic anhydrides 1a–d (Scheme 1) and 2a–e (Scheme 2) and γ-aminobutyric
acid (GABA) were condensed by heating without solvent to 170 ◦C for 6 h, during which
the molten mixture slowly turned to a straw yellow colour, using the previously reported
procedure [49–53], and successfully gave a range of substituted systems in excellent yields.
Upon completion of the reaction, the cooled solid mass was dissolved in dichloromethane
and washed using 0.5 N HCl, giving the desired products 3a–d and 4a–e in excellent yields
(Schemes 1 and 2, and Table 1). Esterification of acids 3a–d and 4a–e to their corresponding
methyl esters 5a–d and 6a–e using thionyl chloride and MeOH at rt over 16 h gave the products
in quantitative yields in many cases (Table 1); however, this was ineffective for 4b due to
its unexpectedly low solubility, and synthesis of 6b required direct condensation of methyl
γ-aminobutanoate hydrochloride with the anhydride in toluene with DIPEA under reflux for
16 h, giving the desired product 6b (quantitative yield), the structure of which was confirmed
by single crystal X-ray diffraction (Figure S1, Supporting Information (SI)) [54–57]. Protection
of the free hydroxyl group of hydroxyphthalimide 5d as the OBn and OMe ethers 5e and 5f
was achieved using standard procedures in excellent yields. Benzylation of 3a using thionyl
chloride/benzyl alcohol gave benzyl ester 7 in up to 60% yield (Scheme 1) and conversion to
anilide 7b and 8-amidoquinoline 7c using the appropriate amine was similarly possible.
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Table 1. Yields for Phthalimides 3,4, Esters 5,6 and Lactams 8, 12 and 13 (Schemes 1 and 2). 

R Phthalimide Temperature (°C) Yield 
(%) 

Ester Yield (%) Lactam Yield 
(%) 

H 3a 170 100 5a 100 8a 97 
NO2 3b 175 93 5b 80 8b 82 

F 3c 170 100 5c 100 8c/9 61 * 
OH 3d 195 92 5d 96 - - 
OBn - - - 5e 73 8d 70 
OMe - - - 5f 100 8e 87 
NO2 4a 175 100 6a 100 12a,13a 72 * 
Br 4b 170 84 6b 0 (100) 12b,13b 55 * 
F 4c 170 100 6c 100 12c,13c 55 * 

CO2H 4d 205 74 - - - - 
CO2Me - - - 6d 62 12d,13d 92 * 

CH3 4e 170 100 6e 100 12e,13e 85 * 
* Yields are the total for both isomers. 

 
Scheme 1. Synthesis and ring closure of substituted phthalimides. Scheme 1. Synthesis and ring closure of substituted phthalimides.
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In fact, the cyclisation of 5a was found to be unreliable, instead often giving 10a directly 
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Table 1. Yields for Phthalimides 3,4, Esters 5,6 and Lactams 8, 12 and 13 (Schemes 1 and 2).

R Phthalimide Temperature
(◦C)

Yield
(%) Ester Yield (%) Lactam Yield

(%)

H 3a 170 100 5a 100 8a 97

NO2 3b 175 93 5b 80 8b 82

F 3c 170 100 5c 100 8c/9 61 *

OH 3d 195 92 5d 96 - -

OBn - - - 5e 73 8d 70

OMe - - - 5f 100 8e 87

NO2 4a 175 100 6a 100 12a,13a 72 *

Br 4b 170 84 6b 0 (100) 12b,13b 55 *

F 4c 170 100 6c 100 12c,13c 55 *

CO2H 4d 205 74 - - - -

CO2Me - - - 6d 62 12d,13d 92 *

CH3 4e 170 100 6e 100 12e,13e 85 *

* Yields are the total for both isomers.

With the required phthalimides in hand, 5a was treated with N,N-diisopropylethylamine
(DIPEA) and t-butyldimethylsilyl triflate (TBDMSOTf) according to a modification of the
literature’s procedure [34], and purification using flash column chromatography afforded the
silyl containing tricyclic pyrrolizidinone 8a with a good yield of 97% (Scheme 1 and Table 1). This
material was readily characterised by standard spectroscopic techniques; of interest were the
non-equivalent silyl dimethyl groups that had shifted upfield to−0.08 and−0.51 ppm due to the
anisotropy of the adjacent aromatic ring, consistent with ring closure. The stereochemistry was
confirmed by a combination of one and single crystal X-ray diffraction (Figure S1, ESI) [54–57];
the trans-relationship of the methyl ester and silyloxy moiety were evident, placing the methyl
ester into a pseudoaxial position, and with one of the silyl methyl groups located over the
aromatic ring, accounting for the shielding observed in the NMR spectrum. While the structure
of 8a was further confirmed by LRMS and HRMS, with the major mass ions being 362 [MH+]
and 384 [MNa+] as expected, importantly these signals were accompanied by a mass ion of 132
less than the desired product at 230 [MH+]; this was consistent with in situ desilyloxylation
giving 10a. In fact, the cyclisation of 5a was found to be unreliable, instead often giving 10a
directly and quantitively by in situ elimination. Synthesis of similar tetrahydro-1H-pyrrolo[2,1-
a]isoindoles [58–60] and their unsaturated systems [61–63] has been reported. In order to
understand the progress of this reaction, varying equivalents of TBDMSOTf were used with
phthalimides 5a,b and it was found that while the formation of the products 8a,b was achievable
in high yields with 1.1 equivalents of TBDMSOTf, nearly quantitative direct conversion of 8a
to unsaturated pyrrolizidinones 10a,b could be achieved using 2.0 equivalents of TBDMSOTf
(Table S1, ESI).

Application of these cyclisation conditions to phthalimides 5b–f successfully gave
cyclised products 8b–e in good to excellent yield (Schemes 1 and 2 and Table 1). TLC and
1H NMR spectroscopic analysis indicated formation of only a single regioisomer, except for
5c which gave an isomeric mixture of 8c also containing 9 (ratio 7:1). Structural assignment
was confirmed in the case of 8b,c, 9 and 12a by single crystal X-ray diffraction (Figure
S1, ESI) [54–57]. The mode of cyclisation appeared to be dictated by the sterically bulky
substituents on the aromatic ring, but in the case of 5c was biased by both the small size
and electronegativity of the fluorine substituent which also gave the alternative isomer 9.
Substituted phthalimides 6a–e were subjected to the same ring-closing conditions, giving
good to excellent yields of products 12a–e and 13a–e (Schemes 1 and 2, and Table 1), usually
as an approximately equal mixture of isomers, which proved to be difficult to separate by
flash column chromatography, and arising by ring closure onto either phthalimide carbonyl
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group. While the cyclisations using methyl esters were very high yielding and reliable
reactions, of interest was whether reactions of substrates with bulkier esters would be as
effective; benzyl ester variant 7a in fact cyclised to 11 with an excellent yield of 91% using
the standard conditions (1.1 eq TBDMSOTf, 3 eq DIPEA) fully diastereoselectively, as the
trans- isomer (Scheme 1), although both anilide 7b and quinoline 7c did not.

The solventless phthalimide synthesis proved to be very effective with phthalic anhydride
and glutamic acid, giving the desired diacid product 14a in 60% yield (Scheme 3) [64–66].
However, this material was not easily soluble, but L-glutamic acid 5-methyl ester along with
phthalic anhydride gave the desired and much more soluble product 14b in 72% yield after
heating at 175 ◦C for 6 h; this reaction remained effective on a multigram scale. In addition,
L-glutamic dimethyl ester hydrochloride and phthalic anhydride under the same conditions
gave the product 14c in a yield of 30%; the same product could be prepared by esterification of
diacid 14a and with a similar yield (38%). This approach was similarly suitable for L-glutamic
acid 5-benzyl ester, which gave the product 14d with a yield of 38% [67,68]. The most effective
method for the monomethyl esterification of benzyl glutamate 14e used MeI, Cs2CO3, DMF,
which gave the desired product 14f in 40% yield. This approach could also be used for imide
formation with phthalic anhydride and 2-aminophenylacetic acid via solventless conditions
to give 15a, followed by esterification which gave the desired ester 15b with a yield of 38%
(Scheme 4); however, a better alternative proved to be direct condensation of the methyl ester
of aminophenylacetic acid to give 15b and in quantitative yield. Nitrile 18, was also readily
available, prepared as shown (Scheme 4).
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posed the intermediacy of a bis-silylketene acetal formed in situ from the starting 
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Cyclisation of these analogues was examined using the conditions optimised above.
The L-dimethyl ester glutamic acid appended phthalimide 14c cyclised in excellent yield
of 79% to give 16a as a diastereomeric mixture (Scheme 3); one of these was successfully
crystallised and the structure for the major one determined by single crystal X-ray diffrac-
tion (Figure S1, ESI). This clearly shows that the two methyl esters are cis-related, with
all substituents in a pseudoaxial-like arrangement [54–57]. The cyclisation of 14d under
the same conditions gave a single diastereomer of 16b, most likely due to the greater
steric hindrance of the two substituents, the structure of which was confirmed by single
crystal X-ray diffraction (Figure S1, ESI) [54–57]. Benzyl glutamate 14f was subjected to
TBDMSOTf mediated cyclisations, but gave poor yields of 16c of around 35% when using
1.1 eq of TBDMSOTf, although this improved to much higher yields (89%) with 3.0 eq of
TBDMSOTf, as a mixture of inseparable diastereomers (d.r of 1:0.6), the major of which was
assumed to have the same stereochemistry as 16a, based on comparison to established NMR
spectroscopic data. When compound 15b (Scheme 4) was subjected to standard cyclisation
conditions, product 17 was successfully obtained as a single stereoisomer in 39% yield. Of
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interest is that nitrile 18 also readily cyclised to the analogous product 19 as a mixture of
diastereomers; a related material has previously been reported by photocyclisation [69].

Antibiotics 2023, 11, x FOR PEER REVIEW 6 of 14 
 

(2 equiv.) for the ring closure reaction of both phthalimides 5a,b,c,e and 14c,f adducts and 
in excellent yield (Scheme 5). 

 
Scheme 3. Synthesis and ring closure of glutamyl substituted phthalimides. 

 
Scheme 4. Synthesis and ring closure of substituted phthalimides. 

 
Scheme 5. One-pot ring closure and elimination of substituted phthalimides. 

Hoye described the mechanism of this ring-closing process as an intramolecular 
Mukaiyama-like addition in which formation of a silyl ketene acetal is followed by addi-
tion to one of the imide carbonyls via in situ silyl activation [45], and Christmann pro-
posed the intermediacy of a bis-silylketene acetal formed in situ from the starting 

Scheme 4. Synthesis and ring closure of substituted phthalimides.

Since TFA elimination reactions had been previously reported on silyloxyethers [60,70–73],
similar reactions were then carried on 8a–d and 12a–e, 13a–e, giving quantitative conversions
to the eliminated products 10a–d, 20a–e, 21a–e, 22a–b (Schemes 1–4). When the diastereomeric
mixture of 19 was stirred in TFA/H2O (9:1) for 30 min, only the trans- isomer reacted, leaving
the cis-isomer unconverted, consistent with a fast antiperiplanar elimination; the structure of
the unsaturated product 23 was confirmed by single crystal X-ray diffraction (Scheme 4 and
Figure S2, (SI)) [54–57]. Moreover, it was found that the eliminated cyclised products could
also be obtained directly by using TBDMSOTf (2 equiv.) for the ring closure reaction of both
phthalimides 5a,b,c,e and 14c,f adducts and in excellent yield (Scheme 5).
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Hoye described the mechanism of this ring-closing process as an intramolecular
Mukaiyama-like addition in which formation of a silyl ketene acetal is followed by addition
to one of the imide carbonyls via in situ silyl activation [45], and Christmann proposed the
intermediacy of a bis-silylketene acetal formed in situ from the starting carboxylic acid [46].
Although the Mukaiyama aldol addition [74] is very well known [75–80], Mukaiyama-type
additions to imides are not; however, a one-pot approach, in which silyl ketene acetals
are intermediates, has been described for addition to imines [81]. We propose a similar
mechanism for a Mukaiyama-imide aldol addition involving the formation of the silyl
ketene acetal followed either by coordination of the imide carbonyl giving a 5,6-bicyclic
transition state that undergoes aldol addition (Route A), or cyclisation involving separate
imide activation by a second molecule of TBDMSOTf (Route B) (Figure 1).
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Figure 1. Possible mechanism for aldol ring closure.

With the pyrrolidinones in hand, of interest was an examination of their further
reactivity; it was expected that this might not be straightforward, since low solubility
was found for many compounds, especially the planar derivatives such as 10, 20 and 21.
Additionally, the high level of cross-conjugation along with significant steric effects in
these densely functionalised systems was expected to significantly modify their chemical
behaviour. Functionalisation of the (electron deficient) carbon-carbon double bond of the
unsaturated system of cyclised adducts, for which there was some precedent literature [82],
was examined [83] using 35% aqueous hydrogen peroxide in the presence of 4-methyl
morpholine. The unsubstituted variant 10a proved to be unreactive under these conditions,
although when dissolved in dichloromethane with mCPBA and left stirring for 16 h at room
temperature, α-ketoester 24 was obtained in low yield (Scheme 6). Such a product would be
expected to arise by initial epoxidation of the double bond, followed by a further attack by
mCPBA leading to a ring opening. However, it was found that if this reaction was conducted
in the presence of calcium carbonate, successful epoxidation was achieved, giving 25. This
approach proved not to be successful for 10b, since 1.2 equivalents of mCPBA gave not
the expected epoxide but adduct 26 (Scheme 6), whose structure was confirmed by careful
NMR spectroscopic analysis. Catalytic hydrogenation gave highly efficient conversion of
lactams 10a–d, 20a–e, 21a–e to lactams 27a–j, in a reaction in which the strong yellow colour
of the starting material was fully discharged, consistent with the removal of the extended
conjugation (Table 2 and Scheme 7). In the case of the nitro derivatives 10b, 20a, and 21a,
concomitant reduction to the amine derivatives 27b–d occurred. The structures of 27b and
27f were confirmed by single crystal X-ray diffraction (Figure S2, ESI) [54–57]. Reduction
of 10d also involved hydrogenolysis and afforded phenol 27h. Glutamate derivatives 22a,b
were subjected to the same hydrogenation conditions and gave cis-dimethyl esters 29a,b
(Scheme 3), whose stereochemistry was shown from nOe analysis.
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Table 2. Reduction of unsaturated bicyclic lactams 10a–d, 20a–e, 21a–e.

Substrate Product R1 R2 R3 R4 Yield (%)

10a 27a H H H H 100

10b 27b NH2 H H H 100

20a 27c H NH2 H H 100

21a 27d H H NH2 H 100

10c 27e F H H H 50

10c’ 27f H H H F 14

20c 27g H F H H 100

10d 27h OH H H H 86

20e 27i H Me H H
95

21e 27j H H Me H
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With 27b in hand, conversion to corresponding amide 28 using 1-adamantanecarbonyl
chloride (Scheme 8) was made, as this group had given some of the highest levels of
antibacterial activity seen for tetramates [19]; although this reaction proceeded successfully,
the yield was low (28%), and this most likely arose by the combination of an electronically
and sterically deactivated amine with a hindered acid chloride.

Of interest was whether this approach might be able to be adjusted to allow the ready
introduction of ring substituents on the core skeleton, including C-H functionalisation,
since related systems had been shown to be amenable to such manipulation [84]. Since the
use of 8-aminoquinoline as a directing group for C-H activation is now well-known [85–87],
8-hydroxyquinoline ester 30 was prepared via N,N’-dicyclohexylcarbodiimide coupling
with 8-hydroxyquinoline (64%), and although this could be effectively cyclised to 31 under
standard conditions, in subsequent reactions 31 did not undergo remote C-H arylation.
However, 31 when treated with TFA:H2O afforded the desired unsaturated system 32 quan-
titatively (Scheme 8). While ester hydrolysis of 8a and 11 was found to be straightforward,
giving acids 33 and 34, the attempted DCC/DMAP coupling of 33 with 8-aminoquinoline
proved to be unsuccessful, giving only the rearranged N-acylurea intermediate; 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide (EDC) along with 1-hydroxybenzotriazole (HOBt)
gave a similar outcome. It was also found that 10a could be hydrolysed directly under
basic conditions in excellent yield to give 33 directly, and that this, when treated with
TFA, water, and methanol, gave acid 34 in quantitative yield (Scheme 8). With 34 in hand,
amide formation was examined (Scheme 8) but the products 35a–c could be obtained only
in modest yield, and aniline was completely unreactive. This likely reflects the unusual
electronic character of the extended conjugated push-pull system in the starting material.
Alternatively, 36 could be obtained by direct reduction of acid 34 or by hydrolysis of 27a in
good yield (Scheme 8) and conversion to the picolyl amide 37 under a variety of conditions
gave a modest yield of product.
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3. Bioassays

The compounds were tested using a primary 96-well plate screening assay against
MRSA (Gram+) and E. coli (Gram−) bacterial strains and MIC values and along with the
calculated molecular weights, ClogP, tPSA along with HBD and HBA (Table S2, ESI). The
only systems showing activity were 12e/13e, 31, and 32. This probably reflects the high
level of hydrophobicity of the silyloxy ethers and the particularly low solubility of the
unsaturated systems, even though their cheminformatic descriptors are broadly desirable.
This outcome suggests that some fragments might be suitable for further elaboration to
identify better antibacterial activity. Some compounds were also tested for cytotoxic activity
against four different cell lines: HeLa, HEK 293, CaCo, and MDCK (Table S3 (SI)). Nearly
all the compounds that were tested showed some weak activity, but 35c was found to be
moderately active against HeLa and HEK 293 with lesser activity against CaCo and MDCK.
Once again, the low solubility of these compounds under assay conditions is likely to be an
important limitation of this compound class.

4. Materials and Methods

Full experimental details are provided in the Supplementary Materials File S1.

5. Conclusions

We have shown that phthalimides may be effectively cyclized using a Mukaiyama-
type aldol coupling leading to variously substituted fused lactam (1,2,3,9b-tetrahydro-5H-
pyrrolo[2,1-a]isoindol-5-one) systems. This novel process shows a high level of regiose-
lectivity for o-substituted phthalimides, dictated by steric and electronic factors, but not
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for m-substituted phthalimides. The initial aldol adduct is prone to elimination, and the
cyclisation can be conducted in such a way that aldol cyclisation-elimination is achievable
in one pot. The eliminated skeletal systems (2,3-dihydro-5H-pyrrolo[2,1-a]isoindol-5-one)
possess cross-conjugation and steric effects which significantly influence the reactivity of
several functional groups, but conditions suitable for epoxidation, ester hydrolysis and
amide formation, and reduction, were identified. Many of the derived lactam systems,
and especially the eliminated systems, show low solubility, which compromises biological
activity, although in some cases, antibacterial and cytotoxic activity was found and this
new class of small molecule provides a useful skeleton for further elaboration and study.
We have earlier shown that a core bicyclic tetramate displays no intrinsic antibacterial ac-
tivity [26], but that this can be restored after appropriate heterocyclic ring substitution [19].
The work herein shows that the core tetrahydro-5H-pyrrolo[2,1-a]isoindol-5-one system
is now synthetically readily available, and further investigation is needed to develop the
understanding of both its medicinal chemistry and biological activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12010009/s1. File S1: Supporting Information (SI).
References [88–96] occur only in the supplementary materials.
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