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Abstract: Antimicrobial resistance (AMR) is one of the most important global public health problems.
The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-
resistant bacteria. The dissemination of these strains and their resistant determinants could endanger
antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to
combat antibiotic resistance. This review provides insights into the evolution and the mechanisms
of AMR. Additionally, it discusses alternative approaches that might be used to control AMR,
including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils,
bacteriophage, fecal transplants, and nanoparticles.

Keywords: antimicrobial resistance; antibiotics alternatives; quorum sensing; prebiotics; probiotics;
small molecules; antimicrobial peptides; bacteriophage; essential oils; fecal transplant; nanoparticles;
organic acids; vaccines; antibodies

1. Introduction

Antimicrobial resistance (AMR) is a major public health concern worldwide [1]. In-
fections with antibiotic-resistant pathogens have a negative influence on the health of
humans and other animals because they increase the risk of treatment failures and illness
severity [2,3]. Over the past few decades, the misuse of antibiotics in both humans and food-
producing animals has resulted in the emergence and dissemination of antibiotic-resistant
bacteria [4-6]. Between 2000 and 2010, 76% of the global increase in antibiotic use was
reported in BRICS countries (Brazil, Russia, India, China, and South Africa) [7]. For exam-
ple, in 2010, India was the largest antibiotic consumer (12.9 x 10° units; 10.7 units/person),
followed by China (10.0 x 10° units; 7.5 units per person), then the US (6.8 x 10° units;
22.0 units per person) [8]. Between 2000 and 2015, global antibiotic use significantly in-
creased by 65% (21.1-34.8 billion) DDDs (defined daily doses), especially in low- and
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middle-income countries [9]. In the US, approximately 80% of antibiotics are used in live-
stock production [10]. The uses of sub-therapeutic doses of antibiotics in food-producing
animals as growth promoters, therapeutic doses for control, and treatment of infectious
diseases [11,12] have also contributed to the development of antimicrobial-resistant mi-
croorganisms. Transmission of resistant bacteria from food-producing animals to humans
through direct contact, handling, or eating their product poses a substantial threat to hu-
man health [13,14]. Antibiotic resistance illnesses currently cause approximately 1.2 million
deaths worldwide [15]. However, if no steps are taken to control the spread of antibi-
otic resistance, the estimated number of deaths will rise to 10 million, with an economic
loss of more than $100 trillion by 2050 [15,16]. In the US, more than two million infec-
tions with antibiotic-resistant bacteria occur each year; with ~$20 billion in economic
losses [16]. Notably, foodborne illnesses caused by Campylobacter, Salmonella, E. coli 0157,
Listeria monocytogenes, Staphylococcus aureus, and Clostridium perfringens can affect one in
six people annually, leading to approximately 128,000 hospitalizations and 3000 deaths,
with about $90 billion in the US [17,18]. Many of these pathogens are on the global priority
pathogens list of antibiotic-resistant bacteria provided by the National Institute of Health
(NIH) and World Health Organization (WHO) [19,20]. Therefore, there is a critical need
to control AMR pathogens. In this review, we will highlight the evolution of the AMR
problem, the mechanism of acquiring resistance, and the novel non-antibiotic approaches
that can be used for reducing the burden of antimicrobial-resistant pathogens.

2. Evolution, Source, and Transmission of AMR

The non-prudent use of antibiotics in livestock production has resulted in an alarming
surge of antibiotic-resistant pathogens [21]. The first effective antimicrobial sulfonamide
drug Prontosil was discovered in 1932 and approved for human use in 1935 [22]. Resistance
to sulfonamide was observed in 1939 due to limitations in safety and efficacy [23]. Despite
compelling evidence that the discovery of antimicrobials was revolutionary for controlling
many serious and life-threating diseases, one of the major shortcomings associated with
their prolonged use is that many pathogenic bacteria may develop or acquire resistance
traits over time through a large variety of mechanisms [24]. For example, S. aureus was ini-
tially sensitive to penicillin; however, it became resistant over time due to the development
and production of penicillinase that inactivates the inhibitory impact of penicillin [21]. The
evolution and resistance acquisition of different antibiotics is shown in Figure 1. The FDA is
carefully seeking to produce new antibiotics to overcome microbial resistance. Eravacycline
dihydrochloride (Xerava) is a new synthetic fluorocycline belonging to tetracycline-class
antibiotics that was discovered in 2018 [25,26]. It has potent antibacterial activity against
Gram-negative and Gram-positive bacteria that usually have tetracycline-specific resistance
mechanisms [27]. It inhibits bacterial growth by binding to the bacterial 30S ribosomal
subunit [26]. Additionally, levonadifloxacin L-arginine tetrahydrate and the combination
of levonadifloxacin and lipoglycopeptide dalbavancin were approved in 2019 by the FDA
as antibiotics to treat acute bacterial skin and skin structure infections (ABSSSI) [28]. In
2020, the FDA approved pretomanid in combination with bedaquiline and linezolid for the
treatment of drug-resistant Mycobacterium tuberculosis [29] and approved remdesivir in com-
bination with baricitinib for the treatment of other pathogens [30,31]. In 2021, ozenoxacin
was approved for the treatment of impetigo and bacterial infections caused by S. pyogenes
or S. aureus in children [32,33] and rifapentine for the treatment of tuberculosis [33].

AMR can be caused by (1) microbial genetic mutations [34], (2) incomplete courses of
antibiotic, enabling some pathogens to survive and develop resistance to antibiotics [35],
(3) overuse of antibiotics [36], (4) using antibiotics at doses lower than recommended,
(5) consumption of animal products containing antibiotic residues and (6) using antibiotics
containing fertilizers in agriculture and/or animal farming [37]. The continuous environ-
mental overlapping between livestock and human activity provides many opportunities for
the transmission of antimicrobial-resistant bacteria or development of their AMR genes in
both directions [38]. AMR can be transmitted through (1) direct close contact between hu-
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man and livestock [39,40], (2) ingestion of contaminated food and water, (3) contaminated
bio wastes, (4) transportation/importation of animal products across the world, (5) clonal
transfer of resistance bacteria or horizontal transmission of AMR genes [36], (6) soil, manure
of animals, waste water and sewage, or vectors such as invertebrates (insects and bugs)
and wild animals [41,42].
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Figure 1. Timeline illustrates antibiotics evolution.

3. Mechanism of Acquiring AMR

Antibiotic resistance (AR) in the bacteria can be intrinsic or acquired. Intrinsic resis-
tance is seen in naturally resistant bacteria that exhibit certain inherited properties. For
example, the presence of lipopolysaccharide (LPS) in the cell walls of Gram-negative bacte-
ria provides an innate barrier against the penetration of antimicrobials [43]. This intrinsic
resistance includes limiting the drug’s uptake and increasing its efflux or inactivation [44].
Meanwhile, acquired antibiotic resistance mechanisms include modification of drug tar-
gets, drug efflux, and inactivation [44]. In addition to the aforementioned mechanisms,
adaptive mutations are exhibited by bacteria in response to the use of antibiotics as a
means of resistance [45,46]. Prior studies reported that adaptive resistance is responsible
for in vitro and in vivo differences in antibiotic effectiveness and the failure of clinical
antibiotic therapies [24]. Bacterial genetic plasticity aids the acquisition of AR. It appears
as either mutations in bacterial genes or gain of foreign DNA fragments coding resis-
tance determinants through horizontal gene transfer (HGT) of antibiotic resistance genes
(ARGs) [47]. Antibiotic-sensitive bacteria acquire resistance-modulating genes through
HGT, which enables bacteria to share their genetic material by one of three techniques,
including transduction, conjugation, and transformation [24]. Regarding transduction,
the genetic material from a donor-resistant bacterium is transferred to another bacterium
by a bacteriophage, a virus that infects and replicates inside bacterial cells. Basically, the
bacteriophage attaches to the donor bacterium and injects its genetic material into it, which
incorporates itself within the bacterial genome; by the replication of the bacteriophage,
multiple bacteriophages are produced carrying genomes containing resistance genes. When
the newly created bacteriophage infects another bacterium, it injects the resistance-genes-
containing genome into it [48]. Conjugation, which is referred to as bacterial sex, occurs
when the donor bacterial cell, containing a resistance-gene-encoding plasmid, attaches
to the recipient bacterium. This process requires a pilus (physical attachment between
bacterial cells through which the plasmid is transferred) and a type IV secretion system to
be accomplished successfully [49]. Unlike transduction and conjugation, transformation
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occurs after the death of bacteria carrying resistance genes. By bacterial lysis, genetic
material is released and naked DNA is picked up by another bacterium and is incorporated
into its genome [50]. After bacteria acquire resistance genes by any of the aforementioned
mechanisms, genes are expressed in one or more of the following ways (Figure 2):
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Figure 2. Mechanisms of antimicrobial resistance in bacterial cells.

3.1. Limiting Drug Uptake and Decreasing Permeability
3.1.1. Lipopolysaccharide (LPS) of Outer Bacterial Membrane

Bacterial LPS is a conserved major biologically active component of bacterial outer
membranes, primarily in Gram-negative bacteria. LPS has a direct role in AMR as a physical
barrier limiting the penetration of antimicrobials into bacterial cells. This may explain, at
least in part, why-Gram positive bacteria have a lower ability to limit the antimicrobials’
uptake than Gram-negative ones [51].

3.1.2. Bacterial Porins

Bacterial porins are membrane protein channels present in the outer membrane of
Gram-negative bacteria. They modulate crossing of hydrophilic molecules, including
hydrophilic antibiotics such as 3-lactams [52]. The bacteria can also limit drug uptake
via the modification of their porin channels, either by decreasing their numbers, as in
Enterobacteriaceae resistance to carbapenems, or by alteration of porin’s selectivity through
mutation, as in resistance of Neisseria gonorrhoeae to 3-lactam and tetracycline and resistance
of Enterobacter aerogenes to imipenem and some cephalosporins [44]. This clearly indicates
that the outer membrane of Gram-negative bacteria contains overlapping defensive systems
that confer not only protection against antibiotics but also to the host antimicrobial factors.

3.1.3. Biofilm Formation

Biofilm is the aggregation of bacterial cells in the form of clusters. Bacterial cells
piled up on one another prevent access of antimicrobials into the bacterial cells [53]. The
capacity for biofilm formation is widely distributed in bacteria, with approximately 40-80%
of terrestrial cells existing in biofilms as a defense mechanism [54]. Biofilm formation
supports antimicrobial resistance either directly, by acting as a physical barrier, or indirectly,
by facilitating horizontal transfer of resistance genes amongst bacterial cells by conjugation,
transduction, and transformation [54]; this is in addition to protection against the host’s
immune defenses. Bacteria are able to develop biofilms on inanimate surfaces as well as
inside living tissues [55]. For example, the resistance of cystic fibrosis of the lung (caused
by Pseudomonas aeruginosa infection) to antibiotics is thought to be due to bacterial biofilm
formation. Mechanical disruption or removal of biofilms will therefore improve the action
of antibiotics by exposing the causative agent to their effects [56,57].
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3.2. Enzymatic Destruction of Antibiotic Molecules

Resistant bacteria produce antibiotic-degrading enzymes which destroy certain sites in
the antibiotic, rendering it ineffective. These enzymes work by acetylation, phosphorylation,
glycosylation, or hydroxylation of certain sites in the antibiotic molecule that interfere with
the binding of the corresponding drugs to their ribosomal targets [45]. For example, 3-
lactams-hydrolyzing enzymes impede the ability of 3-lactams to inhibit bacterial cell wall
biosynthesis [58]. Additionally, macrolides are encountered by resisting bacteria through
modification of macrolide esterases (Eres) and macrolide phosphotransferases (MPHs)
enzymes [59]. Aminoglycoside (AGS)-resistant bacteria encode aminoglycoside-modifying
enzymes (AMEs) in their chromosomes or in mobile genetic elements (MGEs), which is the
most commonly utilized mechanism by bacteria for battling the effect of AGS [60].

3.3. Drug Target Site Modification

Resistant bacteria inhibit antimicrobials from binding by altering their antimicrobial’s
target proteins. It was noticed that most of the bacterial genes involved in these changes are
encoded on mobile genetic elements (MGEs) [45]. The changes can be achieved in several
ways, including replacement of target sites, enzymatic alterations of binding sites, and
mutations in genes encoding target sites [61]. Vancomycin-resistant S. aureus is an example
of resistance by replacement of a target site, where it replaces the alanine subunit in its cell
wall peptides, the target site of vancomycin, with a lactate subunit to which vancomycin
cannot bind properly. Eventually, the cross-linking enzyme of the bacterial cell wall can
fit into its site and perform its function [62]. Furthermore, macrolides-resisting bacteria
showed enzymatic alterations of their binding sites by methylation of the 50S ribosomes,
macrolides targets. They carry erm (erythromycin ribosomal methylation) genes, which
encode an enzyme responsible for catalyzing the methylation process. The methylated
ribosome becomes an unfit target for macrolide antibiotics, thus preventing antibiotic access
into the bacterial cell wall [45]. Also, rifampicin-resistant bacteria mutate the rpob gene,
which encodes the (3 subunit of DNA-dependent RNA polymerase (RNAP) that carries the
rifampicin binding site, resulting in the substitution of an amino acid in the RPOB protein.
Overall, mutations in genes’ encoding target sites decrease the affinity of antibiotics to their
targets inside bacteria [63].

3.4. Antibiotic-Specific Efflux Pumps

The plasma membranes of bacteria carry protein structures called bacterial efflux pumps
(EPs) [64]. These pumps can recognize foreign structures accessing the bacterial cells through
their cell wall and pump them out, thus preventing their intracellular accumulation and
interaction with their target cells [65]. Efflux pumps can be either substrate-specific for certain
antibiotic families or have broad antibiotic activity as in multi-drug-resistant bacteria [66].
However, single efflux pumps may target multiple antibiotics [67]. Thus, multi-drug resistance
(MDR) can be achieved by bacteria through either expression of a single efflux pump or
overexpression of multiple efflux pumps as in P. aeruginosa [68] and the SmeDEF or SmeVWX
efflux systems of Stenotrophomonas maltophilia [69]. There are five families of efflux pumps,
including small multidrug resistance (SMR), resistance-nodulation-division (RND), multidrug
and toxic compound extrusion (MATE), the major facilitator superfamily (MFS), and the
ATP-binding cassette (ABC) families [70]. All types are found in bacteria, except for the RND
family, which is exclusive to Gram-negative bacteria. The over-expression of efflux pumps is
associated with clinical antibiotic resistance [71].

4. Novel Strategies to Combat AMR
4.1. Small Molecules (SMs)

SMs are non-peptide organic molecules that are synthetic or obtained from natural
product extracts. They have drug-like properties that can interact with biological molecules,
including protein and nucleic acids, and can alter their normal functions. The low molecu-
lar weight (~200-500 Da) and high hydrophilicity of these molecules allow their effective
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absorption by both host and pathogen barriers [72,73]. SMs can be modified to enhance
the qualities desired for specific applications, such as stability and solubility under ad-
verse environmental conditions. These properties can be exploited to enhance the SMs’
antimicrobial efficacy and their mass applicability. High-throughput screening (HTS) of
SM libraries is commonly used for the development of antibacterial drugs and identifi-
cation of SM candidates that inhibit either bacterial growth in whole-cell assays or the
activity of a main bacterial enzyme or protein [74]. Indeed, a cost-effective, cell-based
HTS expedient approach has been recently developed to enhance anti-bacterial molecule
discovery [75,76]. A summary of the SMs identified using HTS is shown in Table 1. SM
antimicrobials targeting bacterial membranes are highly desired because they have low
potential for resistance development by pathogens, can potentiate the activity of many
antibiotics, are effective against slow-growing bacteria and biofilms, and have high sta-
bility in serum and good tissue penetration [77]. They have been reported to be effective
against several MDR bacteria, such as E. coli, P. aeruginosa, Enterococcus faecium, methicillin
resistant S. aureus (MRSA), Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter
species [78-80]. Recently, SMs were used for the treatment of plant pathogens such as
Xanthomonas spp., Erwinia tracheiphila, Acidovorax citrulli and Salmonella infection [81-84], as
well as for the potentiation of antibiotics, which can help in reducing the resistance of the
treated bacteria [85].

4.1.1. Mechanisms of Actions of SMs

The low molecular weights of SMs facilitate their infiltration into target cells [86].
Following infiltration, SMs interfere with or inhibit certain molecules involved in cellular
pathways [87]. Examples of these cellular pathways include (1) biosynthesis of microbial
cell envelopes that can be inhibited by SMs through inhibition of the dephosphorylation
of the central lipid carrier undecaprenyl pyrophosphate (Cs5-PP) to Css-P, such as THCz,
which in turn, interferes with lipid II (peptidoglycan), lipid IIlyyta (wall teichoic acid), and
lipid Icap (capsule), involved in cell envelope biosynthesis pathways, (2) interference with
bacterial cell division through inhibition of a key component in that process, FtsZ [88],
and (3) encountering quorum sensing through inhibition of LsrK, which is an essential
component for initiation of the QS cascade [89].

4.1.2. Limitations of SMs

Despite their beneficial effects, there are functional limitations of SMs. Limitations
include their action inside the recipient’s body, irrespective of the physiologic status. The
likelihood of binding to non-target molecules inside the human body leads to undesirable
effects [90]. In addition to these limitations, there are also some structural design constrains,
such as the difficulty of designing SMs to target unstructured disordered polypeptide, as
well as their low affinity to bind or modify the relatively flat protein surface mediators [91].
Moreover, it is challenging to accurately determine the modulating proteins to be targeted
by SMs [91].

Table 1. Identified SMs against different pathogens and their potential targets.

Bacteria Name of the SMs Evaluation Targets References
M. tuberculosis Benzimidazole and nitro-triazole In vitro Inhibit cell wall biosynthesis [92]
Uropathogenic E. Coli 120304 and 175472 In vitro TonB system [93]

Inhibit bacterial growth through
reduction of the nitro group to

E. coli and P. aeruginosa Nitrofurans In vitro an amine, followed by damage [94]
to bacterial DNA
P. aeruginosa and S Class
' Tvohi . ' 2 4-disubstituted-4H-[1,3 4]-thiadiazine-5-ones, In vitro, in mice Suppress T35S [95,96]
yphimurium L
Fluorothiazinon (FT)
Bacillus subtilis Adamantane derivatives (T6102) In vitro Inhibit bacterial protein [97]

synthesis and bacterial growth
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Table 1. Cont.
Bacteria Name of the SMs Evaluation Targets References
S. aureus and S. epidermidis 3-methoxybenzamide derivatives (PC190723) Ln vitro (CD—l.mOI}se Disrupt FtsZ [98]
epatocytes), in mice
S. aureus ZY-214-4 (C19H11BrNOy) In vitro Suppress biofilm formation [99]
Mycoplasma gallisepticum SM4 and SM9 In vitro, in chickens Alter cell membrane [76]
conformation
Methanesulphonic acid,
3-[(2E)-3-(3,4-dihydroxyphenyl)
prop-2-enoyloxy](1S,3R 4R,5R)-
M. bovis 1,4,5-trihydroxycyclohexane carboxylic acid, In vitro NI* [100]
S-carboxymethyl-l-cysteine, l-aspartic acid,
dihydrotachysterol, eriodictyol and
(+)-a-tocopherol acid succinate)
C. jejuni Campynexin A In vitro, in chickens Inhibit flagellar expression [101]
T Piperazine, aryl amine, piperidine, . "
C. jejuni sulfonamide and pyridazinone molecules I vitro NI 751
C. jejuni TH-4 and TH-8 In vitro, in chickens Alter cell membrane integrity [102]
Inhibit bacterial growth by
distorting cytoplasmic
S. Typhimurium JD1 In vitro, in mice membranes through increasing [103]
fluidity and disrupting
barrier function
. . . . In vitro, Galleria mellonella . . s
S. Typhimurium Imidazole and methoxybenzylamine larvae, in chickens Alter cell membrane integrity [104]
. . . . » Inhibit quorum-sensing
Avian pathogenic E. coli QSI-5 and GI.7 In vitro, Ga_llnrm.mellonella autoinducer-2 and outor [105-108]
(APEC) larvae, in chickens .
membrane proteins
E. faecium 6-indolyl compounds In vitro NI* [109]
Clostridium difficle R20291 2-aminoimidazole (2-Al) In vitro NI* [110]
Chlamydia INPs (Innate Pharmaceuticals AB) Epithelial cells Supress Type III secretion [111]
Clostridium botulinum In vitro, In mice Inhibit neurotoxin serotype A [112]
In vitro: murine bone Decrease the vacuole escape
L. monocytogenes Pimozide (antipsychotic drug) marrow-derived and cell-to-cell spread of [113]
macrophages (BMM) L. monocytogenes
Block the LapB gene, that
L. monocytogenes SM-3,5,7 In vitro: on catfish fillets encodes cell wall surface [114]
anchor protein
. L In vitro on human THP-1
S. aureus, S. epidermidis, monocytes and mouse
S. pyogenes, S. pneumoniae and F19 and F12 4 Host cell lysis [115]

Bacillus cereus

macrophage cell line
- In mice

NI*: Not identified.

4.2. Quorum-Sensing/Antivirulence Inhibitors

Bacterial cells adapt to their surrounding environment and regulate their density and

behavior via a cell-to-cell communication process named quorum sensing (QS). This process
is mediated by bacterial secretion of extracellular signaling molecules called autoinducers
(Als) [116]. The bacteria produce and release Als to coordinate their gene expression for
survival as multicellular organisms. Additionally, Als are also key regulators of biofilm
formation, stress adaptation, secondary metabolite production, swarming motility, enzyme
production, and virulence factor production [117,118]. Active transport or diffusion is
used to release autoinducers into the environment to achieve efficient communication
between bacterial cells [119]. As the bacterial population density rises, Als build up in the
environment, and, after this reaches a certain threshold, bacteria use them as extracellular
signaling molecules to adjust their density and coordinate their gene expression [120].
QS systems are based on three fundamental concepts. (1) One is the bacterial cells
density: at a high cell density, the cumulative generation of Als results in local accumulation
at a high concentration, which facilitates detection and response. However, at a low cell
density, the Als diffuse away, as they are present at concentrations below the detection
threshold [121]. (2) Receptors generated in the cytoplasm or on the membrane are used

7
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to identify Als. (3) The recognition of Als leads to increased bacterial synthesis of Als in
addition to stimulation of gene expression required for cooperative behaviors [122].

Generally, the bacterial QS systems are classified into three types: (1) LuxI/LuxR-
type QS, which is found in Gram-negative bacteria and uses acyl-homoserine lactones
(AHL) as signaling molecules [123], (2) oligopeptide-two-component-type QS, which is
found in Gram-positive bacteria and utilizes oligopeptides as signaling molecules, and
(3) luxS-encoded autoinducer-2 (AI-2) QS, a general system, which is found in both Gram-
negative and Gram-positive bacteria and uses Al-2 as signaling molecules [117]. The Als are
categorized into acylated homoserine lactones (AHLs), utilized by Gram-negative bacteria,
oligopeptides, utilized by Gram-positive bacteria, and furanosyl borate diester, utilized by
Gram-negative and Gram-positive bacteria. In addition, there are other signaling molecules
of the QS system called autoinducer-3 (AI-3), which are utilized by P. aeruginosa and do not
belong to any of the previous classes. This complex network of signals allows the bacterial
community to react and adapt to different environments [124].

Interrupting the connection system between bacterial cells results in a reduction in bac-
terial biofilm formation and pathogenicity [124,125]. Therefore, many strategies have been
developed to hinder this connection and control the QS-dependent bacterial infections [126].
The inactivation, blocking, or degradation of QS signal molecules refers to QS inhibition or
quorum quenching (QQ) [26]. The perfect QS inhibitors (QSIs) are low-mass compounds
with a great selectivity for the QS regulator and no deleterious side effects on the bacterium
or a potential eukaryotic host. They must also be chemically stable and extremely effi-
cient [124]. QSIs may be natural or artificial molecules. In fact, many anti-QS compounds
are isolated from plants and microbes. Natural products, including plant extracts, as shown
in Table 1, are the main source of QS Inhibitors (QSIs), because they contain compounds
such as phenylpropanoids, flavonoids, benzoates, and gallotannins [127]. For example,
grape seed extract reduces autoinducing activity and inhibits flagellum synthesis and Shiga
toxin production in E. coli (STEC), verotoxigenic E. coli (VTEC), and enteroaggregative
E. coli (EAEC) [128]. In addition, Melia dubia bark extracts suppress «-toxin hemolysin
production, biofilm formation, and the mobility of enterohemorrhagic E. coli [EHEC] [129].
Furthermore, rosemary, ginger, and broccoli extracts inhibit the synthesis of AI-2 and
the production of virulence factors and affect the mobility-type swarming of EHEC [130].
On the other hand, synthetic QSIs, as displayed in Table 2, include chitosan, limonene
nanoemulsion, and N-phenyl-4-phenylaminothioxomenthyl amino-benzenesulfonamide,
inhibiting the QS system in uropathogenic E. coli (UPEC), EHEC, and S. enterica serovar
Typhimurium, respectively. The mechanisms by which QSIs inhibit QS signals include
inhibition of the synthesis of AI-2 by blocking Al synthase and methyltransferase, blocking
the LsrB receptor protein, inhibition of the QseC regulator protein responsible for inducing
virulence factor gene expression, and inhibition of the transcriptional protein regulator
LsrR or the SdiA LuxR solo regulator. Examples of QSI enzymes include AHL acylases and
AHL oxidoreductase; the latter has a modified chemical structure among the AHLs [131].
The acyl side chains of the homoserine lactone are cleaved by AHL acylases, a new family
of N-terminal nucleophile (NTN) that renders the AHLs activity [132]. Acyl homoserine
lactone acylases have been isolated from Streptomyces sp. strain M664 as AhIM [133], while
AHL oxidoreductase was first isolated from Rhodococcus erythropolis [132].

4.2.1. Mechanisms of Action of QSIs

The mechanism of inhibition of QS systems includes different pathways: (1) prevention
of Al synthesis [134], (2) Al receptor antagonism, (3) blocking the targets downstream of
receptor binding [135], (4) application of antibodies for sequestration of Als, (5) breakdown
of Al-catalytic antibodies (abzymes) or enzymes (i.e., lactonases, acylase, and oxidoreduc-
tase) [133,136], (6) attenuation of Al secretion/transport [130], and (7) competition with
autoinducing signal molecules to bind to the transcriptional protein regulators of bacterial
QS systems, including LuxS, LsrB, LsrR, and QscE regulator proteins in foodborne bacteria,
such as E. coli and Salmonella [136].
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4.2.2. Limitations of QSIs

Limitations of QSIs include (1) the development of resistance to QSIs: bacteria might
evolve and develop resistance to QSIs due to the presence of plenty of QS systems in
bacteria. Bacteria can regulate and induce their QS system by activating and enhancing the
production of QS signal molecules, which enhance virulence factor production to promote
bacterial resilience to the environment [137]. (2) Modification of virulence genes: Gram-
negative bacteria can evade the action of QSIs by developing mutations in the amino acid
residue of the LuxR protein regulator, which encodes virulence factors, motility, biofilm
formation, and antibiotics biosynthesis [138]. (3) Indole signaling: QS systems in E. coli and
Salmonella respond to indole in a nutrient-poor environment that enhances the production
of virulence factors, plasmid stability, adaptation, and resistance to antibiotics. During
these conditions, indole competes with Als to bind with the AHL domain of the SdiA
transcriptional regulator. Indole also competes with other QSIs that cause reduction of
P. aeruginosa’s virulence factors, resulting in bacterial resistance from anthranilate break-
down [129,139]. (4) Disturbance of microbiota homeostasis: QSIs cause distribution of AI-2
signaling and affect human microflora activities, including adherence, biofilm formation,
and production of antimicrobial metabolites, resulting in disturbance of human microbiota
homeostasis [140].

Table 2. Quorum-sensing inhibitors with their target.

Compound Name Source Target Pathogen Mechanism of Inhibition References
Inhibit quorum sensing via inhibiting AI-2 production,
C1-C10 Synthetic APEC O78 genes associated with biofilm formation, such as the [107]
Y hha gene, and genes associated with bacterial cell
morphology, motility, and division.
Inhibits the signaling cascade of bacteria and biofilm
Savirin Synthetic S. aureus formation by targeting AgrA to disrupt agr [141]
operon-mediated QS.
N-phenyl-4-(3-phenylthioureido) . . Inhibits biofilm formation and virulence factors by )
benzene sulfonamide Synthetic E. coli [EHEC] modifying the AI-3 receptor (QseC). [142]
. . Inhibits the QS signaling molecule autoinducing
Anti-autoinducer monoclonal . ) . 2 s )
antibody AP4-24H11 Synthetic S. aureus [RN4850] peptide (.AH_’)AIby targeting AgrA, res‘ultmg in QS [143]
inhibition and biofilm formation.
Reduces AI-2 synthesis; inhibits the production of E.
Limonene nanoemulsion Synthetic E. coli [EHEC] coli flagellum by inhibiting QseB and the promoter [144]
region of flhDC binding that encodes bacterial motility
N-phenyl-4-phenylaminothioxomen Syntheti E. coli [EHEC] Inhibits the histidine kinase QseC and results in a 145
hyl amino-b Ifonamid ynthetic S. Typhimuri d in th ion of virulence fact [145]
yl amino-benzenesulfonamide . Typhimurium ecrease in the expression of virulence factors.
Inhibit the expression of the IsrB gene which encodes
. S . . the AI-2 receptor, and interferes with fimH, which y
Thiophene inhibitor (TF101) Synthetic E. coli (EPEC) encodes virulence factors and imhibits [146]
biofilm formation.
Reduces the synthesis of Al and its activity by blocking
E. coli (STEC), Al synthase activity. Inhibits the production of E. coli
Grape seed extract Grape seed extract E. coli (VTEC), flagellum by inhibiting QseB and the promoter region [128]
E. coli (EAEC) of flhiDC binding that encodes bacterial motility and
inhibit Shiga toxin production.
Thymol-carvacrol-chemotype (I and Lippia origanoides E. coli [O157:H7] Inhibits the synthesis of AI-3 and prevents the [147]
1I) oils Thymus vulgaOris oil E. coli [O33] formation of biofilm.
S. Typhimurium E. coli Inhibits the activity of Al-2, interferes with the activity
furocoumarin Grapefruit juice - YP ) ’ of AI-1 molecules (AHLs), and inhibits [148]
[0157:H7] ecu )
biofilm formation.
Basil, oregano, Inhibits the activity of AI-2 synthase and inhibits
Broccoli extracts thyme, rosemary, E. coli [EHEC] synthesis of AI-2. Affects E. coli mobility and inhibits [149]
ginger, and turmeric production of virulence factors.
Vinegar, Lemon, . Typhimurium E. coli Inhibit the producing of the signaling molecules AI-2
Acetic acid, citric acid, and lactic acid fermented soy - Hyp MUt £ by inhibiting AI-2 synthase. They also inhibit the [150]
[0157:H7] i tha !
products, yogurt activity of biofilm formation.
it i o oo fIDC oeron i
Star anise (Illicium verum Hook. f.) evergreen tree S. Typhimurium 8 Y- sn [151]

Mlicium verum

receptors [ux, rhl, and las systems and inhibits
biofilm formation.
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Table 2. Cont.
Compound Name Source Target Pathogen Mechanism of Inhibition References
Reduces E. coli mobility by inhibiting QseB binding to
Chitosan Shells of crustaceans E. coli [UPEC] the promoter region of fIhDC. Inhibits AI-2 production [152]
and biofilm formation.
(Z)-4-Bromo-5-(bromomethylene)-3- . . Reduces the activity of AI-2 by reducing the activity of
methylfuran-2(5H)-one Synthetic E. coli [RP437] AI-2 synthase. [153]
Decreases the expression of the genes fliA, fliY, fljB, fliC,
Punicalagin Pomegranate rind S. Typhimurium and fimD encoding the swimming and swarming [154]
v g 8 [SL1344] motility of Salmonella and represses the expression of ’
sdiA and srgE QS-related genes.
’ N . Inhibits biofilm formation and decreases the expression
23 meth};l N-(2-phenylethyl) Halobacillus salinus E. coli [JB525] of virulence factors by competing with signaling [155,156]
utyramide .o
molecules (AHL) for receptor binding.
Competes with signaling molecules (AHL) for receptor
N-(2'-phenylethyl)-isobutyramide Halobacillus salinus E. coli [JB525] binding and inhibits bacterial QS resulting in [155,156]
biofilm formation.
Haloterrigena . Inhibits biofilm formation by interacting with signaling :
Cyclo(L-Pro-L-Val) hispanica E. coli [JB525] molecules (AHL). [157]
Diketopiperazines (DKPs):
Cyclo(L-Pro-L-Phe), . A . s
Cyclo(L-Pro-L-Leu), Marinobacter sp. E. coli [pSB401] Inhibits bgder.‘al blfoglk‘I“Lf".rma?"“ by llnhﬂf‘““g the [158]
Cvelo(L-Pro-L-isoLet production o signaling molecules.
yclo(L-Pro ),
Cyclo(L-Pro-D-Phe)
Altenaria sp., from . .
L . ! . Interferes with N-hexanoyl-L-homoserine lactone :
Kojic acid marine green algae E. coli [pSB401] (C6-HSL) and with LuxR reporters. [159]
Ulva pertusa
O-prenylated flavonoid buchapine Melicove Inhibits biofilm formation and decreases violacein
and 3-(3-methyl-2-butenyl)-4-[(3- P . production, motility, and bioluminescence production ’
lunu-ankenda E. coli [pSB401] ! N [160,161]
methyl-2-butenyl) by downregulating the expression of lecA and
T (leaves extract)
oxy]-2(1H)-quinolinone lux genes.
Sesquiterpenes, monoternpenes Targets lecA and lux genes resulting in the inhibition of
hq P ’ penes, . QS-regulated phenotypes and violacein factor
ydrocarbon, and phenolic Syzygium . ] - .
X E. coli [pSB1075] production, which are considered secondary [162]
compounds. Eugenyl acetate, aromaticum (bud) boli ble f hand .
eugenol, and B-caryophyllene metabolites responsible for growth and propagation
’ and are a useful indicator of QS systems in bacteria.
Aloe africana Represses the expression of biofilm phenotypic
Fructose-furoic acid (plant extract) E. coli [UPEC] characters by competing with quorum regulator (SdiA) [163]
plant extrac native ligand C8HSL.
Pseudoplexaura . s g . . . .
Cembranoids flagellosa and E. cglz [pSB403] Inhibits biofilm formation by interacting with [164]
. o . aureus LuxR receptors.
Eunicea knighti
Brominated alkaloids compounds Flustra foliacea E. coli [pSB403] Inhibits biofilm formation by targeting CepR and LuxR [165]

and interferes with N-acyl-homoserine lactone.

4.3. Probiotics

Probiotics are microorganisms that live in a symbiotic relationship with the host.
They provide health benefits and perform several biological functions when provided
in adequate amounts. Probiotics were discovered and selected based on certain criteria,
which ensure safety and effectiveness requirements [166]. The FAO/WHO have specified
several parameters that should be assessed in vitro when selecting probiotics, such as safety,
efficacy, cost effectiveness, function, and technological and physiological applications. The
selected probiotics can be characterized by a lack of pathogenicity, tolerance to changes in
the human gastrointestinal microenvironment, capacity for adherence to and colonization
of the intestinal epithelium, antimicrobial activity, genetic and phenotypic stability, and
immunomodulatory capabilities [167]. Several in vitro tests can be used to evaluate the
efficacy of probiotics before starting the clinical trials, such as the agar spot test [168],
the agar well diffusion assay [169], microdilution [170], antibiofilm analysis [171], 3D cell
cultures, and use of human tissues and animal models [172-174].

Additionally, probiotics have been found to help with a variety of pathological con-
ditions, including constipation, diarrhea, polycystic ovarian syndrome, ulcerative colitis,
stress and anxiety, inflammatory bowel disease, breast cancer, and diabetes [175]. Probiotics
are classified into four categories: (1) viable and active probiotics, (2) viable/non-active
probiotics, in the forms of spores or vegetative cells, (3) dead /nonviable probiotics [176],
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and (4) next-generation probiotics [177]. The biological properties of probiotics have been
extensively investigated, but only a few studies focused on their antimicrobial properties
as novel antibiotic alternatives.

1. Viable and active probiotics

According to the FAO/WHO, probiotics delivered into the body via the gastrointesti-
nal tract (GIT) need to be viable and active in vitro (externally), resistant to GIT condi-
tions, and viable and active in vivo (internally) [178]. Viable and active probiotics pro-
vide health benefits to the host via (1) increasing the hydrogen ion concentration (low pH
value) in the gut, (2) enhancing synthesis of essential vitamins and enzymes, (3) produc-
tion of antimicrobial substances, (4) restoring intestinal microbiota after diarrhea, (5) low-
ering serum cholesterol, (6) boosting the immune system, (7) production of antioxidants,
(8) reduction of food allergy sensitivities, and (9) increasing lactose and calcium absorp-
tion [179]. Probiotics should be alive when traveling from the mouth to the gut and resist
saliva enzymes, gastric fluid (acid and enzymes), bile salts, competitive gut microbiota,
and inhibitory GIT conditions. Lactic acid bacteria (LAB) are considered the major probi-
otic bacteria that are used as viable cells, including homofermentative lactobacilli, which
are represented by three groups, (i) the L. acidophilus group (L. acidophilus, L. johnsonii,
L. crispatus and L. gasseri), (ii) the L. salivarius group, and (iii) the L. casei group (L. paracasei,
L. zeae and L. rhamnosus). Additionally, Reuter and coworkers reported that L. fermentum is the
predominant heterofermentative lactobacilli associated with the human GIT [180]. Other LABs
that have been isolated either from dairy products or human GIT are Bifidobacterium animalis,
B. bifidum, B. breves, B. infantis, B. lactis, B. longum, and E. faecium. In addition, non-lactic acid
producers include B. cereus, E. coli Nissle 1917, Sporolactobacillus inulinus, Propionibacterium
freudenteichii, and Saccharomyces cerevisiae [181]. Applications of selected probiotics against
pathogenic bacteria and their mechanisms of action are summarized in Table 3 and Figure 3.
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Figure 3. Mechanism of probiotics action.

2. Viable and inactive probiotics

These are viable probiotics but are not metabolically active. They are considered
dormant probiotics because they are exposed to detrimental stresses such as tempera-
ture, extreme pH values, high osmotic pressure, and high O, supplementation (for anaer-
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obes) [182,183]. Bacillus species, such as B. coagulans, B. subtilis, B. clausii, and B. licheniformis,
have lately been authorized as inactive viable probiotics and utilized in human diets as well
as for the treatment of intestinal and urinary problems [184]. Bacteriocins are produced by
Bacillus spp. and are effective against Gram-positive and Gram-negative bacteria and fun-
gus found in the food. As a result, they are commonly used in the food industry as natural
preservatives [185]. B. clausii have been reported to treat child diarrhea, allergic children’s
immune systems, respiratory infections, and Helicobacter pylori infections (Table 3) [186].

3. Dead/nonviable probiotics (postbiotics/parabiotics)

The host can be protected from harmful microbes by using dead/nonviable probiotic
cells [176]. Different procedures are performed for obtaining nonviable/inviable/inactivated /dead
probiotic cells, including exposure to ultraviolet (UV) radiation for 530 min, heat at 121 °C
for 560 min, and ionizing radiation (10 kGy). Protein denaturation, enzyme inactivation,
nucleotide destruction, DNA breakage, and cell structural deformation are among the
structural and functional changes associated with the inactivation pathway. This is called
parabiotic/postbiotics, and is considered a new horizon in microbial therapy and the food
industry [187]. In mice, heat-inactivated L. plantarum has prevented S. enterica infection
in multiple organs, including the liver, spleen, and blood, by reducing pathogenic cell
translocation and adhesion into intestinal cells [188]. Through enhancing the host immune
responses (local and systemic), heat-inactivated Leuconostoc mesenteroides cells prevented
L. monocytogenes invasion into Caco-2 cells [189]. Along similar lines, inactivated heat-killed
yogurt prevent cytokine-induced barrier disruption in human intestinal epithelial cells [190].
Inactivated L. paracasei and L. rhamnosus cells have been found to prevent colon and stom-
ach cancer by reducing proliferative activity and improving cancer cell apoptosis [191].
They can also lessen allergic rhinitis symptoms by maintaining cell wall integrity [192].
In hamsters with allergic rhinitis, administration of heat-inactivated E. faecalis FK-23 cells
increased the number of T-regulatory cells in the spleen and altered the body’s immune
responses [193]. Heat-killed L. rhamnosus CNCM-I-3698 and L. farciminis CNCM-I-3699
exhibited coaggregation potential against foodborne pathogens, such as Campylobacter,
Salmonella, E. coli, and L. monocytogenes [194]. It is noteworthy that the strongest coaggre-
gation was mediated by a carbohydrate-lectin interaction between the heat-killed strains
and C. jejuni CIP 70.2 and resulted in inhibition of its attachment to intestinal tissues [194].
Additionally, L. brevis cells have been shown to suppress the transcription of tumor necrosis
factor, reduce the expression of sterol regulatory element binding protein 1 and 2, and
enhance the induction of heat-shocked protein in the gut [195]. Lipoteichoic acid (LTA) is a
microbe-associated molecular pattern (MAMP) expressed by Gram-positive bacteria and
detected by the Toll-like receptor 2 (TLR-2) expressed on the surface of gut enterocytes.
Ligation of LTA to TLR-2 initiates cellular signals, leading to induction of an inflamma-
tory cytokine response. LTA derived from probiotic Lactobacillus strains has anti-biofilm
properties against oral and enteric pathogens, such as S. mutans, S. aureus, and E. faecalis,
by inhibiting biofilm formation and destroying pre-existing biofilms [187]. Parabiotics
and postbiotics have several advantages over live probiotics, including easier creation
and storage, possession of particular mechanisms of action, better accessibility of MAMP
during contact with pattern recognition receptors (PRR), and greater likelihood of inducing
targeted reactions through specific ligand-receptor interactions [187].

4.  Next-generation and genetically modified probiotics

Next-generation probiotics (NGP) are those commensal and typical occupants of
GIT microbial strains that enhance host defense against gastrointestinal pathogens [196].
Most NGP are gut bacteria that are nutritionally finicky and oxygen-sensitive, such as
genera Bacteroides, Clostridium, Faecalibacterium, and Akkermansia, as well as genetically
engineered (GE) strains [177]. As such, they are difficult to mass-produce and keep alive
during processing and eventual product formulation [197]. They also require careful target
consumer selection and circumstances; unlike other conventional probiotics, they are not
suited to or safe for all users [196]. For example, Bacteroides spp. are essential gut micro-
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biota members with a high capacity to metabolize complex polysaccharides that can help
other bacteria. Bacteroide spp. such as B. thetaiotamicron have been found to interact with
intestinal cells and modulate the expression of the host genes by inducing dendritic cell im-
munotolerance [198,199]. With its zwitterionic polysaccharide, B. fragilis can stimulate the
host immune system. C. butyricum is a spore-forming, Gram-positive, butyrate-producing
anaerobe of human and animal guts. While butyrate is known to exert beneficial effects
on the host, supplementation of C. butyricum to newborns can induce necrotizing entero-
colitis and type E botulism [198,199]. Faecalibacterium prausnitzii is a non-spore-forming,
Gram-negative, butyrate-producing anaerobe (extremely oxygen-sensitive, EOS). The lower
abundance or absence of F. prausnitzii has been linked to a variety of gastrointestinal ill-
nesses [200]. This species is technologically problematic because of its great sensitivity to
oxygen. Many experiments with F. prausnitzii have used culture supernatants (SN) instead
of live cells to circumvent concerns with viability and stability [177]. The butyrate synthesis
and immunomodulatory activities of F. prausnitzii have been related to its potential health
benefits [177]. Additionally, F. prausnitzii (live cells or SN) was found to prevent colitis
caused by dinitrobenzene sulfonic acid (DNBS), trinitrobenzene sulfonic acid (TNBS), or
dextran sodium sulfate (DSS) (doses 10° CFU/day) [201]. Live cells of F. prausnitzii were
proven to reduce the incidence of diarrhea and mortality-associated diarrhea in dairy calves
and increase body weight [202].

4.3.1. Mechanisms of Action of Probiotics

Probiotics exert their effects via (1) the sustainability of host-microbe interactions
and pathogen prevention through competitive exclusion. Probiotics competitively exclude
pathogens by a variety of mechanisms, including competing with them for nutrients,
blocking the epithelial adhesion sites, and decreasing the intestinal lumen pH [203]. (2) Pro-
duction of antibacterial compounds. Compounds that are produced in the metabolome of
probiotics include organic acids (butyric, lactic, and acetic acids), bacteriocins, hydrogen
peroxide, amines and peptides, which not only antagonize opportunistic pathogens but
also play a crucial role in regulation of host cellular proliferation, differentiation, inflamma-
tion, angiogenesis, and metastasis [204]. The mechanisms by which probiotics antagonize
microbial growth include a reduction in intestinal pH [205], pathogen agglutination, toxic
substance entrapment and metabolization [206], alteration of the intestine’s motility [207],
and production of bacteriocins, HyO;, and organic acids (Figure 3) [176]. (3) Promoting
the synthesis and secretion of mucus by intestinal goblet cells to form a protective layer
against pathogens [208]. (4) Stimulation of the host immune system [178,209]. (5) Produc-
tion of vitamins, minerals and trace elements and important digestive enzymes (e.g., b-
galactosidase) [210]. (6) Inhibition of the adherence and colonization of opportunistic and
pathogenic bacteria. (7) Enhancing and maintaining gut mucosal integrity.

4.3.2. Limitations of Probiotics

Despite variable scientific evidence reporting the beneficial health impact of probiotics,
concerns continue to grow about their clinical applications due to some obstacles, including:
(i) the loss of viability of true probiotics during the preservation period, particularly at room
temperature [211], (ii) different colonization patterns and variable tolerance to gut condi-
tions, (iii) the potential of acquisition of virulence genes from opportunistic or pathogenic
organisms, (iv) the capacity of some probiotic strains to transfer antibiotic resistance genes
within the GIT [212], and (v) the probability of production of toxic substances, such as
the heat-stable amylosin toxin from Bacillus amyloliquefaciens, B. subtilis, and B. mojavensis,
which may induce food poisoning [213].
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Table 3. Applications of selected probiotics against pathogenic bacteria and their mode of action.

References

Probiotic

Target Pathogen

Additional Benefits

Monitoring

Nissle E. coli 1917 (EcN)

In vitro: enhance tight junction functions and

C. jejuni

modulate the innate immune response on
HT-29 cells.
In chickens: reduce C. Jejuni colonization in

the cecum up to 2.5 logs; enhance the immune

response and intestinal morphology of the
treated chickens without showing adverse
effect on the gut microbe.

In vitro (HT-29 cell line)
In chickens

[172-174,214]

L. plantarum

L. monocytogenes, S. Enteritidis,
E. coli O157:H7 and
Staphylococcus

Attach to epithelial cells, stimulate the

production of IL-10 in the colon, and enhance

the induction of dopamine and serotonin.

In vitro & in mice

[188,215]

L. paracasei & L. rhamnosus

Boost mineral bioavailability in food products,

E. coli V517, S. Enteritidis
OMS-Ca, S. aureus 76 and L.
monocytogenes ATCC 15313

reduce serum parathyroid hormone via
synthesis of short-chain fatty acids, enhance
mineral solubilization and absorption,
production of phytase, and hydrolyze
glycoside linkages of estrogenic
food products.

In vitro

[191,216,217]

L. helveticus

L. monocytogenes ATCC 19115,

S. Typhimurium ATCC 14028,

S. aureus ATCC 25923, and E.
coli O157:H7 ATCC 43889

Stop GIT infections, improve protection
against pathogens, enhance the immune
system of the host, and makeup the
composition GIT microbiota.

In vitro

[218,219]

L. reuteri

E. coli ATCC25922, S. typhi

NCDC1183, L. monocytogenes

ATCC53135, and E. faecalis
NCDC115.

Reduce pro-inflammatory cytokines
production, promote regulatory T cells,
strengthen the intestinal barrier, and decrease
microbial translocation from the gut lumen to
the tissues.

In vivo

[220,221]

L. acidophilus

S. aureus, P. aeruginosa,
L. monocytogenes, V.
parahaemolyticus,

V. cholerae, H. pylori, Klebsiella,
Salmonella, Shigella, Bacillus,
Clostridium, Mucor, Aspergillus,
Fusarium, Trichoderma and
Candida spp.

Production of lactacins B and F, acidophilin,
acidocin, acidophilucin, and acidophilicin.

In vitro

[222]

L. rhamnosus GG and
B. lactis Bb12

APEC

Reduce the number of colonized APEC in
chicken cecum with modulation of the
gut microbiota.

In vitro
In chickens

[223]

S. lactis and L. delbrueckii

E. coli ATCC25922 and
S. aureus ATCC25923

Inhibit proliferation via production of
acid metabolites.

In vitro & in vivo

[224]

subsp. Bulgaricus

B. animalis AHC7

S. Typhimurium

Mediate weakness of activation of NF-«B that
includes recognition of the pathogen by
dendritic cells and production of T cells.

In humans

[225]

B. adolescentis and
B. pseudocatenulatum, and
B. longum

Vancomycin-resistant S. aureus
and Enterococcus,
Propionibacterium acnes, S. aureus,
and S. Epidermidis

Reduce pathogen growth and cell adhesion.

In vitro

[226]

B. bifidum and B.m infantis

S. enterica serotype Enteritidis

Reduce pathogen growth via production of
acids, hydrogen proxide, and bacteriocins.

In vitro

[227]

B. lactis

S. Typhimurium

Stimulate transient pro-inflammatory host
responses in the epithelial cells of
the intestine.

In vivo (rats)

[228]

Propionibacterium freudenreichii

Multidrug-resistant
S. Heidelberg

Anti-inflammatory effect.

In vitro (HT-29 cell line)

[229,230]

Pediococcus acidilactici Kp1

L. monocytgenes, S. enterica,
Shigella sonnei, Klebsiella oxytoca,
Enterobacter cloaca and
S. pyogenes.

Hender the adherence of pathogens to the
intestinal mucosa by forming a barrier via
auto-aggregation; production of
bacteriocin-like inhibitory substances.

In vitro

[231]

Leuconostoc mesenteroides

L. innocua, L. ivanovii, or
S. aureus

Production of bacteriocin, which inhibits the
growth of pathogens, and lowering the
medium pH.

In vivo (mice)

[189,232]

E. faecium NCIMB 11181

C. perfringens

Ameliorate necrotic enteritis and reduce
intestinal barrier injury.

In chickens)

[233]

S. salivarius K12

S. mutans and S. hominis

Antibiofilm of Schaalia odontolytica P10 and
Enterobacter cloacae.

In vitro

[234]

S. thermophilus SMQ-301

S. aureus, E. coli, and Gardnerella
vaginalis

Potential candidate for novel biotherapeutic
interventions against inflammation caused in
septic mice.

In vitro, in vivo

[235,236]

B. coagulans subtilis,
B. laterosporus

E. coli, P. aeruginosa,
K. pneumoniae, B. subtilis,
S. aureu, and Candida albicans

Stimulate human immune cells and change
the induction of anti-inflammatory cytokines
and chemokines.

In vitro (cell lines)

[237]
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Table 3. Cont.

Probiotic

Target Pathogen Additional Benefits Monitoring References

Saccharomyces boulardii

oxytoca, Yersinia enterocolitica,

S. aureus, E. coli, Klebsiella

C : C. dificil Affect the epithelial reconstitution; In vivo
Sal"zzggﬂgsns’ S h'l. Z/;';lse’ anti-secretory, anti-inflammatory, and (Lymphocyte-transferred [238-240]
p-, Mg P/ immunomodulating effects. SCID mice)

Candida albicans and
Entamoeba hystolitica

C. butyricum (CBM 588)

Inhibit growth by limiting the adhesion of
E. coli [EHEC] O157:H7 pathogen to epithelial cells and the production In vivo (mice) [241,242]
of butyric acid.

L. salivarius, L. johnsonii,
L. reuteri, L. crispatus, and
L. gasseri

Inhibit the quorum-sensing signals of C. jejuni.

Reduce the expression of C. jejuni

virulence-related genes, including genes

responsible for motility (flaA, flaB, and flhA),
C. jejuni 81-176 invasion (ciaB), and AI-2 production (/uxS). In vitro [243]

Enhance the phagocytic activity of

macrophages. Increase the expression of

cytokines and co-stimulatory molecules

in macrophages.

Microbial consortia

Enhance the intestinal mucosa via the
modulation of gut microbiome composition

(Aviguard and CEL) C. jejuni 81-176 by increasing the relative abundance of In vivo (chicken) [244]
Bacteroidaceae and Rikenellaceae
L oo, il induce ot lesions ke gne
salivarius, Limosilactobacillus C. perferingens P y ytheg In vivo (chicken) [245]

reuteri, and L. crispatus

microbiome composition. Improve
intestinal morphology.

4.4. Prebiotics

Prebiotics are defined as “non-digestible food materials that beneficially impact the
host by selectively enhancing the growth and/or metabolism of bacterial species inhabit-
ing the GIT, and thus improve the host health” [246]. Prebiotics are also defined as “any
substrate preferentially consumed by host microorganisms that result in increasing the
health benefit” [246]. Evidence indicates that prebiotics are promising alternatives in the
medicinal and food industries. Prebiotics are characterized by (1) the ability to withstand
the acidic environment during passage through the digestive tract (GIT) [247], (2) resistance
to digestive enzymes but susceptibility to probiotic-hydrolyzing enzymes [248,249], (3) non-
direct absorbance [250], (4) maintenance of gut microbial ecology [248], and (5) the ability
to stimulate the host immune response [247]. Prebiotics are non-digestible oligosaccharides
(fructans, inulins, xylans, galactans, and mannan), fibers (pectin, non-starch polysaccha-
rides (such as 3-glucan), xylooligosaccharides, andisomaltooligosaccharide), and seeds
containing gums [251,252]. Human milk oligosaccharide is considered an endogenous
source of prebiotics that increases the population of Bifidobacterium spp. in breastfeeding
newborns, thereby enhancing their immunity [253]. To use prebiotics as alternatives to
antibiotics, specific criteria must be met. Prebiotics should have a well-identified source
chemical composition and structure, be a pure product, be at a suitable dose, and have been
assessed in animal models or 3D cells to confirm their safety and beneficial health impact
on the microflora [252]. When used as feed additives for livestock and poultry, prebiotics
have shown an ability to improve host health and productivity via selective stimulation of
proliferation and metabolism of the gut microbiota, such as Akkermansia spp., Christensenella
spp., Propionibacterium spp., Faecalibacterium spp. and Roseburia spp., Lactobacillus spp., and
Bifidobacterium spp. [254]. In the context of their benefits for human health, fermentation
of the prebiotics konjac glucomannan hydrolysate and inulin in a batch culture of human
feces has been associated with the production of short-chain fatty acids and proliferation of
the genera Bifdobacterium, Lactobacillus and Enterococcus [255]. A meta-analysis of 64 studies
reported that addition of dietary fibers stimulated Bifidobacterium spp. and Lactobacillus
spp- resulting in an increase in the concentration of fecal short-chain fatty acids (SCFAs)
in healthy adults [256]. Moreover, other studies have revealed that these bacteria play a
key role in maintaining the composition of GIT microflora, enhancing the food and mineral
absorption, and promoting the host defense system [257].
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Prebiotics have also shown potential to eliminate harmful bacteria, such as Salmonella,
Campylobacter, Clostridium and E. coli [258,259]; however, their mechanism of action remains
to be elucidated. Fermentation of prebiotics by the gut’s resident microbiota and the
subsequent production of SCFAs results in a reduction in the gut pH, which, in turn, make
the condition unfavorable for the growth and colonization of invading pathogens [260].
It was reported that the activity of probiotic Bifidobacterium strains against C. difficile was
significantly stimulated in the presence of five prebiotics (oligosaccharides) [261]. Similarly,
the activity of Pediococcus acidilactici was enhanced against E. coli, Salmonella, E. fecalis
and S. aureus in the presence of garlic and basil (natural prebiotics) [262]. Moreover,
the use of the prebiotics mannan-oligosaccharides and fructooligosaccharides, as poultry
feed supplements, reduced the colonization of Campylobacter and Salmonella in the GIT
of poultry [259]. Supplementation of weaning pigs with prebiotic oligofructose resulted
in a significant increase in the number of Bifidobacteria and Lactobacilli and a significant
reduction in the number of clostridia, enterobacteria, and enterococci [263]. A reduction in
disease severity was observed following treatment of patients with C. difficile-associated
diarrhea with inulin and oligofructose [264].

4.4.1. Mechanisms of Action of Prebiotics

There is no distinctive mechanism by which prebiotics eliminate the pathogenic bacte-
ria, stimulate the host GIT microflora, or enhance immunity. Indeed, the mechanisms of
action of prebiotics are very complex, as they are associated with a set of actions on the host
physiology and intestinal microflora balance [252],. Nonetheless, it is well documented that
fermentation or degradation of prebiotics beneficially affect the host by (1) mediating the
growth and proliferation of beneficial intestinal microbes [260], (2) blocking adhesion sites
on the epithelial cells (the catabolic end products released from the bifidogenic degradation
of prebiotics might block the adhesion sites on the epithelial cells), (3) acting as receptor
analogues and blocking lectin receptors that present on the surface of the pathogens [265],
and (4) producing SCFAs, such as acetate, propionate, lactate, and butyrate, which result in
lowering of the pH of the intestine, leading to suppression of the growth and colonization of
pathogenic bacteria [266]. Additionally, SCFAs serve as a source of energy for the intestinal
cells, in addition to their role in maintaining intestinal integrity by enhancing the expression
of the tight junction proteins [267].

4.4.2. Limitations of Prebiotics

Prebiotics lack life-threatening or severe side effects. However, there are a few mod-
erate side effects that have been reported [249], including osmotic diarrhea, bloating,
cramping, and flatulence. It should be noted that these side effects depend upon the
chemical composition of the prebiotics and the length of side chain, with short side chains
reported to have more side effects than long ones [268]. Additionally, prebiotic dose is
a critical factor that affects their safety profile. The commercially recommended dose of
prebiotics is 1.5-5 g per portion [268].

4.5. Antimicrobial Peptides (AMPs)

AMPs are naturally produced by various immune cells and play a vital role in the
innate immune systems of various animals, plants, and microorganisms [269]. AMPs, have
a wide spectrum of antimicrobial activity against bacteria, fungi, viruses, and parasites [270].
In addition to their antimicrobial activities, AMPs possess biological functions, such as
immune modulation, angiogenesis, antitumor activity, and wound healing [271,272]. AMPs
are considered promising alternatives to antibiotics, due to many advantages; (1) they act
on multiple target sites on the intracellular targets and plasma membranes of pathogenic
bacteria, (2) they have potent killing activity against drug-resistant bacteria [270,273],
(3) they are a component of the innate immune system, (4) their natural production by the
host cells saves time and energy compared to antibody synthesis via acquired immunity;,
and (5) they reach the target sites faster than immunoglobulin [269]. AMPs are classified
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into several subgroups based on their amino acid sequences (10-100), the net charge of
the peptide (+2 to+9), and their protein structure and sources [274]. These subgroups
include (1) anionic AMPs, which consist of 5-70 amino acid residues and have a net
charge range of —1 to —8 [275]. Their structural characteristics include x-helical peptides
and cyclic cystine knots [275]. They use the negatively charged content of the microbial
membrane to form salt bridges, leading to disruption of the microbial membrane [276].
(2) Cationic -helical AMPs are <40 amino acids in length (50% hydrophobic in nature)
and have a charge of +2 to +9 and the C-terminus amidated [277]. The structure of cationic
a-helical AMPs is disordered in aqueous solutions [278]. They are capable of forming
amphiphilic structures when interacting with target cells [279]. (3) Cationic AMPs, where
the peptides consist of 2-8 cysteine residues forming 1-4 pairs of intramolecular disulfide
bonds. These disulfide bonds play a crucial role in 3-sheet AMP stabilization and biological
functions [280]. (4) Extended cationic AMPs containing amino acids including tryptophan,
arginine, proline, histidine and glycine and lacks the regular secondary structures [279].
(5) Fragments from antimicrobial proteins that have a broad-spectrum bactericidal effect,
such as lysozyme [281]. The helix-loop-helix (HLH) region in the human and chicken
lysozyme has a strong effect on the growth of pathogenic bacteria and fungi [282].

Many antimicrobial peptides, isolated from different sources, have shown activity
against a wide variety of pathogenic bacteria. For example, magainin-2 («x-helix (TFE))
was originally isolated from frogs and has been shown to be active against P. gingivalis,
E. nucleatum, P. intermedia, E. coli, and S. aureus [283]. Cecropin and cecropin P1 (x-helix
structure) were isolated from silk moth and pig, respectively. These peptides inhibited the
growth of E. coli ML-35p [284], S. aureus, B. subtilis, M. luteus, P. aeruginosa, S. Typhimurium,
S. marcescens and E. coli [285]. In addition, apo-lactoferrin («-helix structure), discovered in
bovine and human PDB code (1BOL), inhibited the growth of E. coli O157:H7 [286]. Melittin
(o-helix structure), extracted from bee, was active against S. salivarius, S. mitis, S. mutans,
S. sanguinis, S. sobrinus, L. casei, and E. faecalis [287]. Temporin A and temporin L, extracted
from frog, were active against MRSA [288], B. megaterium Bm11, S. aureus Cowan I, and
E.coli D21 [289]. Moreover, buforin II and clavanin A (x-helix structure), discovered in
extended toad and Styela clava, respectively, possess inhibitory activity against B. subtilis,
S. aureus, E. coli, S. Typhimurium [290], E. coli ML35p and L. monocytogenes [291]. Further-
more, protegrin-1 (3-sheet structure), isolated from human and porcine, has demonstrated
antagonistic activity against MRSA and P. aeruginosa [292]. Tachyplesin-I ((3-sheet structure),
discovered in horseshoe crab, was shown to inhibit the growth of S. Typhimurium [293]. Fur-
thermore, hepcidin (f3-structure), extracted from humans, has demonstrated capabilities to
inhibit E. coli, S. aureus, and S. epidermidis [294]. Daptomycin (cyclic lipopeptide membrane),
isolated from Streptomyces roseosporus, can kill MRSA [295] and nisin (lantibiotic), isolated
from L. lactis, was shown to kill MRSA, S. pneumoniae, Enterococci and C. difficile [296].
NPSRQERR [P1], PDENK [P2], and VHTAPK [P3]), derived from L. rhamnosus GG, showed
inhibitory activity against APEC in chicken [297].

4.5.1. Mechanisms of Action of AMPs

The antibacterial activity of AMPs depends mainly on the type and the nature of
the AMPs as well as the targeted bacterial pathogens. AMPs exert their antibacterial
activity through either direct killing mechanisms where they cause membrane disruption,
eventually causing bacterial cell death, and/or indirect mechanisma via modulation of
the immune system (Figure 4) [298,299]. Cationic AMPs exert antibacterial activity by
interacting with negatively charged bacterial membranes, leading to increased membrane
permeability and cell lysis [269]. a-helical AMPs can bind to an anionic lipid microbial
membrane and modify its disordered structure in aqueous solution into an amphiphilic
a-helical structure to enhance its interaction with the microbial membrane [300]. Other
modes of action of cationic AMPs were found to be dependent upon the pH of the medium.
At neutral pH, AMP (clavanin A) adopts the membrane permeation mode of o-helical
peptides [301], while at a slightly acidic pH, it induces cell death by disturbing membrane
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proteins. Additionally, AMPs such as buforin II, indolicidin, and Peptide-P2 [302] can
pass through the bacterial membranes and bind to DNA, inhibiting enzyme synthesis and
indirectly stopping DNA replication and transcription [303]. Some AMPs, such as PR-39,
a proline- and arginine-rich AMP, oncocin-type peptide, and Apil37, an apidaecin-type
peptide, inhibit protein synthesis via inhibition of mRNA translation, blocking the assembly
of the ribosome 50S large subunit, or binding to the tunnel of ribosomes and preventing
the transition from the initial stage to the elongation stage of translation [304]. Microcin J25
was found to bind to the secondary channel of the RNA polymerase and block trigger-loop
folding. LL-37 was shown to inhibit E. coli via stopping the activity of palmitoyl transferase
PagP [305]. NP-6 was found to inhibit the (3-galactosidase activity of E. coli [306]. Further,
cycloserine was also found to inhibit bacterial cell wall biosynthesis via blocking of the
activity of alanine racemase and p-Ala-p-Ala ligase and, consequently, the synthesis of
the p-Ala-p-Ala dipeptide of lipid II of the peptidoglycan precursor [269]. This suggests
that HNP1 kills bacteria by interacting with lipid II. Teixobactin inhibits the synthesis of
bacterial cell walls by binding to a highly conserved motif of lipid II and lipid III (precursors
of cell wall teichoic acid) [298]. Amyloidogenic peptide and amyloids cause direct protein
coaggregation leading to suppression of intracellular transport processes and eventual
bacterial death [307].
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Figure 4. The mechanisms of antibacterial action of AMPs.

4.5.2. Limitation of AMPs

Although large numbers of AMPs have been discovered and characterized, a small
number have been applied in clinical trials and a limited number have been approved by
the FDA [298]. Most clinically applied AMPs are limited to topical applications, due to
their systemic toxicity, the susceptibility of the peptides to protease degradation, and rapid
kidney clearance if they are administrated orally [308]. Additionally, oral administration
of AMPs can lead to proteolytic digestion by GIT enzymes, such as trypsin and pepsin,
while systemic administration leads to a short half-life, protease degradation, and cytotoxic
profiles in blood [309].
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4.6. Bacteriophages

Phages or bacterial viruses are obligate parasites that infect bacteria and archaea.
Phages are classified according to their size, shape, type of nucleic acid and mechanism
of action in the host bacterial cell [310]. The genomic sequences of phages range from
a few thousand base pairs to 498 kilobase pairs in phage G, the biggest phage ever se-
quenced [311]. Some phages have wide host ranges; however, the majority of them have
high host specificity [312]. Based on the last classification, bacteriophages are classified
as virulent (e.g., lysis of the bacterial cells to release new phages) or temperate (e.g., in-
corporation of its genetic material in the host genome and the host changes its genetic
characters) bacteriophages [310]. In vitro trials showed that phages have many advantages
over antibiotics, including (1) high host specificity (phages can target one strain of bac-
teria without perturbing the human or animal gut microbiota, while antibiotics do not
distinguish between pathogenic and beneficial bacteria); (2) cost effectiveness and time
saving [313]; (3) inhibition of multi-drug-resistant bacteria while antibiotics increase them;
(4) ease of delivery to the target site and ability to penetrate the blood-brain barrier [314];
(5) no antagonistic effect detected between phages when given as a cocktail (mixture of
different phages); (6) that phages could prevent biofilm formation [315]; and (7) phages
might be used as an alternative in antibiotic-allergic patients; however, very few reports
discussed this [316]. Several studies have reported that phage therapy development might
be a potential solution to bacterial antibiotic resistance as well as the treatment of numerous
bacterial infectious illnesses [317]. As the poultry gut is considered the main reservoir
of Campylobacter, most Campylobacter phages have been isolated from avian GIT. Many
studies have demonstrated that administration of individual phages resulted in a significant
decrease in the number of Campylobacter without altering the GIT microbiota [318]. The most
multi-drug-resistant bacterial strains, such as E. faecium, S. aureus, K. pneumoniae, A. baumanni,
P. aeruginosa, and Enterobacter spp, have been reported to cause serious human diseases.
The specific types of phages that have been applied for treatment of these pathogens are
summarized in Table 4.

4.6.1. Mechanisms of Action of Bacteriophages

The majority of phages are virulent (lytic) with a negligible probability of becoming
temperate (lysogenic) [314]. The lytic cycle of virulent phages starts by attachment of tailed
phage to the cell surface receptors of a host. This interaction is two steps, a reversible phase
followed by an irreversible phase. After the irreversible attachment, the lysis enzymes break
down the host cell wall and the phage ejects its genetic material into the host cell with the
assistance of processive host enzymes. The phage genome then manipulates the host cell
metabolism by redirecting it for DNA replication and protein biosynthesis to the production
of phage particles (nucleic acids and capsids); the host cell genome is degraded at this
stage, followed by phage particle assembly and host cell lysis. The new viral particles are
then released to re-attach to a new host cell. The lytic cycle of bacteriophages is performed
by key phage proteins (holins) that permeabilize the host cell membrane and endolysins
that degrade cell wall peptidoglycan. Consequently, the bacterial cells lose their cell wall
integrity and the selective permeability of cell membranes, eventually resulting in cell lysis
due to osmotic disruption [319].

4.6.2. Limitations of Phage Therapy

The main limitations for application of phage therapy are: (1) high host specificity.
This can be overcome by using a cocktail of phages that may kill a broader host range.
However, this is only feasible in chronic infection, not acute infection. Thus, a stable cocktail
and/or phage lytic enzymes are recommended as alternatives [312]. (2) The targeted
bacteria may develop resistance over time against phage attachment and adsorption by
altering the receptor sites [312]. (3) Some bacteria produce endotoxins during lysis by
phages, which may lead to septic shock. However, it should be noted that induction of
endotoxins by antibiotic treatments like amikacin, cefoxitin, and imipenem was reported
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to be higher than that released from coliphage treatments [320]. (4) It is difficult to obtain
regulatory approval for phage-based therapeutics in in vivo trials [317]. (5) It is difficult
to control the stability and purity of phages that are prepared for clinical trials, which
may result in low-quality control data [321]. (6) Temperate phages are not preferable for
therapeutic applications, due to the fact that phage-induced changes in the host DNA may
lead to spread of antibiotic resistance [319,322]. (7) There is a significant decrease in phage
concentrations by the reticuloendothelial system or neutralization by antibodies during
therapeutic application [323].

Table 4. Examples of identified phages against pathogenic bacteria.

Phage Target Bacteria PFU Application Reference
Cocktail of 12 natural virulent bacteriophages P. aeruginosa 10° In vivo in human [324]
coliphage PhiX174 S. aureus NI Patients with S. aureus bacteremia [325]
Phage cocktail DS-6A, GR-21/T, My-327 Mycobacterium abscessus 10° A cystic fibrosis patient [326]

cocktail 1 (P. aeruginosa 24, P. aeruginosa 25, and

Mice with chronic bacterial

P. aeruginosa 7) P aeruginosa 62 x 107 lung infections (3271
IME-AB2 A. baumannii 62 PFU/cell Reduce lung inflammation in mice [328]
Pyo phage phage cocktail from the Eliava Institute RS[;:;;{;;S(;SI;; giligritgfst%?:;;;;s 107-10° Patif:ctts ivr\:figgt?;izary [329]
T4-like coliphage cocktail E. coli 3.6 x 108 Diarrhea infected children [330]
WPP-201 phage coctail P. aeruginosa, S. aureus, and E. coli 8 x 107 Leg ulcer patients [331]
(If(; gi’;ﬁlgzse[; apr}ﬁ%e. smlﬁ'e/:s (x};ge,ilré%ag\)/[;r;gil:ﬁgg), P. aeruginosa and S. aureus 10° Colonized burn wounds [332]
PP01 phage, E. coli O157: H7 10° In vitro [333]
PlySs2 and PlySs9 S. uberis NI In vitro (bovine mastitis) [334]

S. equi, S. agalactiae, S. dysgalactie,
PlySs2 5. 7;}/ fﬁgg;j&;’iﬁgﬂis’ NI In vitro and in vivo (mice) [335]

group E streptococci

P7-izsam and P16-izsam C. jejuni 107 In chickens [336]
Phage cocktail e11/2, e4/1c, pp01 E. coli O157:H7 ND Meat surface [337]
Phage Cj6 C. jejuni 5 x 108 Raw and cooked beef [338]
Phage ®2 C. jejuni 107 Chicken skin [339]
Salmonella phage (P7) Salmonella 5 x 108 Raw and cooked beef [338]
phage SJ2 S. Enteritidis 104 Chedj;‘; ;};esetzig‘zﬁerggf raw [340]
phage A511 L. monocytogenes 5.2 x 107 Red smear cheese [341]
Cocktail of the two lytic phages S. aureus 10° Fresh and hard cheese type [342]

PFU; plaque-forming units per mL, NI; Not identified.

4.7. Nanoparticles (NPs)

NPs are considered one of the potential alternative candidates of antibiotics for con-
trolling multi-drug-resistant microorganisms [343]. They have demonstrated therapeutic
potential due to their unique chemical and physical characteristics [344]. NPs have a tiny
size (1-100 nm) with a large surface area to interact with target organisms [345]. They
can be chemically or naturally synthesized from different sources with variable chemical
structures that allow different chemical functionalities [346]. NPs exhibit antimicrobial
activities through targeting critical active sites in pathogens, leading to partial or complete
inhibition [346]. Organic or inorganic (metal and metal oxide) NPs can be synthesized from
different sources. Inorganic NPs possess bactericidal activity against bacteria using multiple
mechanisms and, therefore, they are denominated “nanobactericides”. The nanobacteri-
cides activity of inorganic NPs is attributed to (1) their tiny size [346], (2) formation of weak
and nonspecific interactions with bacterial surfaces [347], (3) Van der Waals forces (distance-
dependent interactions between atoms or molecules) [348], and (4) attachment through
specific receptor-ligand bonds [349]. Therefore, the bacterial cells’ susceptibility to NPs
depends on their structural components as well as their growth rate [350]. Gram-positive
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bacteria are more susceptible to NPs than Gram-negative bacteria. Gram-positive bacteria
have a permeable and negatively charged cell wall, making them an easy target for NP
penetration, while the non-porous cell walls of Gram-negative bacteria serve as penetration
barriers against the NPs [351]. Moreover, bacteria with slow growth rates are more sensitive
to NPs than those with rapid growth rates. This is due to different stress-response genes’
expressions in fast-growing bacteria [350].

4.7.1. Mechanisms of Action of NPs

The lethal impact of NPs on microbial cells is performed through (1) damaging the
cell membrane and inhibition of permeability regulation due to direct attachment with
the bacterial cell wall, (2) blocking electron transport and oxidative phosphorylation [352],
(3) altering bacterial metabolism by interfering with enzymes, DNA and ribosomes, leading
to protein and enzyme deactivation, prevention of DNA replication, and alteration of gene
expression levels [353], (4) impeding the development of biofilms, (5) causing oxidative
stress by releasing reactive oxygen species (ROS), and (6) excitation of host immune re-
sponses (Figure 5) [354,355]. Antimicrobial activities of NPs against different pathogenic
bacteria, and mechanisms of action, are shown in Table 5.
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Figure 5. Mechanism of action of nanoparticles in bacterial cells.

4.7.2. Limitations of NPs

The major limitations of NPs are (1) local and systemic toxic complications in the
human body and potential inhibition activity on gut microbiota [350]; (2) silver NPs” Ag
accumulates in human organs such as colon, lung, bone marrow, liver, spleen, and the lym-
phatic system, leading to damage and/or decrease of organ efficacy and dysfunction [344]
(additionally, Al;O3 NPs were reported to exhibit toxic effects on neurons [356]); (3) ox-
idative damage induced by CuO NPs, ZnO NPs, or TiO, NPs [344,357]; (4) the buildup of
metallic NPs in various tissues might cause renal damage, and liver or lung toxicity [358];
(5) the lack of a well-described standard technique that is not influenced by the properties of
the NPs; and (6) that although resistance of bacteria to NPs rarely happens, some literature
mentions that bacteria may develop NP resistance following exposure to metal NPs, such
as Ag, Au, or Cu [359-361], or metal-oxide NPs, such as Cu?* and Cu-doped TiO, and
Al,O3 NPs [362].
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Table 5. Effects of nanoparticles on different pathogenic bacteria and the mechanism of their antimi-
crobial activity.

NPs Particle Size Target Bacteria Mechanism of Action Reference

S. epidermidis, MRSA,
vancomycin-resistant Enterococcus

(VRE), extended-spectrum beta Generate reactive oxygen species
lactamase (ESBL)-producing (ROS), stopping cytochrome chains,
Silver (Ag) 1-100 nm organisms, MDR E. coli, P. aeruginosa, membrane damage, dissipation of [343,351,352,363]
K. pneumoniae, carbapenem and proton gradients, destabilization of
polymyxin B-resistant A. baumannii, RNA and DNA
and carbapenem resistant P. aeruginosa,
E. coli

Damage membranes and respiratory
chains, inhibit ATPase activity,
Gold (Au) 1-100 nm MRSA decrease the binding between tRNA [344,351,352]
and ribosomes and formation of pores
in the cell wall

Dissipation of cell membranes,
generation of ROS, lipid peroxidation, [3:

Copper (Cu) 2-350 nm MDR E. coli, A. baumannii protein oxidation, and 343,364]
DNA degradation
Silica (Si) 20-400 nm MRSA Generation of ROS and lysis of [351,352]
cell walls
Aluminum (Al) 10-100 nm E. coli Generation of ROS and lysis of [344]
cell walls
ROS-generated oxidative stress:
. MDR E. coli, MRSA, superoxide radicals (072, hydroxyl
Tron oxide NP 1-100nm K. pneumoniae, radicals (OH ™), hydrogen peroxide [351]
(H202)
Titanium E. coli, P. aeruginosa, S. aureus, E. ROS generation and adsorption to the "
dioxide (TiO,) 30-45nm Faecium cell surface [344]
Zinc oxid Enterobacter aerogenes, E. coli, K. oxytoca, Generation of ROS, disruption of
(ZCI?O) € 10-100 nm K. pneumoniae, MRSA, K. Pneumoniae, membranes, adsorption to cell surface, [365]
ESBL-producing E. coli and damage to lipids and proteins
Magnesium . . . L ,
oxide (MgO) 15-100 nm S. aureus, E. coli ROS generation, lipid peroxidation [343]

4.8. Organic Acids (OAs)

Organic acids are widely used as antimicrobials in food processing and many indus-
tries [366]. Bacteria, fungi, and yeast play a critical role in the synthesis of organic acids
during their lifecycle with high yields that can be achieved using cost-effective substrates.
The bioproduction of OAs depends on many factors, such as the species of microorganism,
inoculum size, substrate or carbon source, and environmental conditions (aeration, temper-
ature, pH and agitation) [367]. Increasing the acidity by adding an acidulant or integrating
natural fermentation is one of the commonly used methods to minimize and/or inhibit
microbial growth. Using organic acids as an alternative to antibiotics depends on several
factors, such as chemical formula structure, molecular weight, the value of the dissociation
constant (pKa), minimum inhibitory concentration (MIC), nature of the microorganism,
and exposure time to the food [368], where the pKa is an important criterion because of the
undissociated part of the acid that is responsible for the antimicrobial effect.

Common OAs that are microbially produced and commercially used for microbial
inhibition and food processing (Table 6) include (1) acetic acid, which is produced after fer-
mentation of many substrates, such as glucose, lactose, and sucrose. This has the European
code E260 and is used in the production of vinegar, stabilizer, flavor enhancer, and firming
agent [367]. (2) Adipic acid is a crucial intermediate in the pathways of cyclic alkanes,
long-chain aliphatic dicarboxylic acids and cyclic alcohols [369]. It is commonly used in the
synthesis of polymers, plasticizers, nylon, clothing, automobile parts, and lubricant [370].
(3) Butyric acid is used in the fuel, plastic pharmaceutical, and textile industries. (4) Citric
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acid is used as a pH regulator, flavor enhancer, pharmaceutical reagent, and firming agent,
in addition to its antimicrobial properties [371]. It is also used in soft candies, baked goods,
gelatins, snacks, dairy products, and cheese warps as an antimicrobial and in the fuel
industry. (5) Lactic acid is used in dairy products, biochemical processes, and the leather,
pharmaceutical, textile, and biodegradable biopolymer industries [372]. (6) Malic acid,
which is an intermediate compound in the tricarboxylic acid cycle, is naturally found in
fruits including apricot, blackberry, cherry, mango, peach, and plum. It has been used in the
food, water treatment, textile, metals, and pharmaceutical industries [373]. (7) Phenyl lactic
acid naturally exists in honey and has an effective and broad microbial activity against
bacteria, fungi, and yeast [374]. (8) Propionic acid naturally presents in apples, strawberries,
grains, and cheese [375]. Adding propionic acid to chick diets was found to improve their
growth, exert an antimicrobial effect in the intestine, and reduce the yellowness of the
meat [376]. (9) Succinic acid is used in food preservation, perfume intermediates, herbicide
production, and the plastics and textiles industries [377].

4.8.1. Mechanisms of Action of OAs

The inhibitory mechanism of OAs is mainly due to the passage of the compound in
proton-like form into the pathogen’s plasma membrane. When organic acid molecules
pass through the cell membrane, they subsequently dissociate, resulting in the release
of charged anions and protons that could not pass through the plasma membrane on
their own [378]. It has been reported that these accumulating anions are poisonous and
capable of blocking metabolic processes [379]. OAs limit microbial growth through altering
lipophilic properties and, thus, allowing the uncharged form of weak acids to diffuse into
the cytoplasm through the microbial plasma membrane until reaching an equilibrium. The
decrease in the intracellular pH leads to microbial growth inhibition through denaturation
of enzymes and structural proteins and DNA damage [380]. OAs were also reported to
cause perturbation of membrane function by intercalation or chelation of ions essential
to bacterial membrane stabilization [381]. There is also evidence that weak acids result
in accumulation of anions inside the cytoplasm, which may have an osmotic effect and
alter metabolic processes within the cells [380]. Furthermore, the inhibitory activity of mild
organic acid might be due to an induced response involving an integral membrane protein
(Hsp30) that strives to restore equilibrium. This protein inhibits the rise in membrane
ATPase by serving as a ‘molecular switch” to save the cellular energy reserves that the
enzyme would otherwise utilize to establish equilibrium. However, this reaction is energy-
intensive and the process reduces the available energy pools for growth and other vital
metabolic functions [382].

4.8.2. Limitations of OAs

The increase in OAs concentrations could change the sensory quality (color, odor,
flavor, and taste) of preserved food [383]. Some pathogens possess several mechanisms to
counteract the inhibitory impact of OAs, which may result in resistance to their antimicro-
bial activity and/or to the harsh acidic conditions [384]. Additionally, the procedure to get
production approval from regulatory agencies is very complex and time-consuming [382].
Direct applications in living organisms, such as poultry, may reduce their growth perfor-
mance because OAs are rapidly metabolized in the foregut [385].
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Table 6. The structures of commonly used organic acids, their main producers, and their activity
against various pathogenic bacteria.

Organic Acid (pKal) Chemical Structure Main Microbial Producers Active against References
Acetic acid (4.76) CoH,0, C. formicoaceticum, Acetobacter, L. monocytogenes, S. Typhlmurlum and [367]
Gluconobacter, E. coli
.. . , Alternaria solani, Botrytis cinerea,
Adipic acid (4.41) CoH1004 E. coli Phytophthora capsici, and P. citrophthora [386]
C. butyricum, Butyrivibrio sp., g . .
Butyric acid (4.82) C4HgO, Eubacterium sp., Fusobacterium, S. Enteritidis, C. perfr Hmgens, E. faccalis, [387,388]
. and S. pneumoniae
Megasphera sp., Sarcina sp.
Caprylic acid (4.89) CgHy60 Mixculture from brewery wastewater Vibrio parahaemolyticus & [389]
’ 817162 Dermatophilus congolensis g
Aspergillus ficum,
Acremonium, Bacillus, Bostrytis, Candida,
Aschochyta, Eupenicillium, Debaromyces, Yersinia enterocolitica
Citric acid (3.13) Ce¢HgOy Hansenula, Trichoderma, Mucor, Pichia, Shigella dysenteriae [390,391]
Saccharomyces, Talaromyces, Penicillium, E. coli O157:H7
Torulopsis, Yarrowia, and
Zygosaccharonyces
Fumaric acid (3.02) C4H4O4 Rhizopus arrhizus Talaromyces flavus [392]
Rhizopus oryzae,
. . Aspergillus, Bacillus, Carnobacterium, B. coagulans,
Lactic acid (3.86) CaHe0s Enterococcus, Escherichia, Lactobacillus, L. monocytogenes [393]
Lactococcus, Rhizopus, Saccharomyces
Ustilago trichophora, E. coli,
S Saccharomyces, Aspergillus sp. L. monocytogenes, E. coli O157:H7, ,
Malic acid (3.40) C4HeO5 and Zygosaccharomyces S. Enteritidis and S. gaminara, [394]
Aureobasidium pullulans
B. coagulans,
Lactobacillus, Enterococcus, Leuconostoc, L. monocytocenes
Phenyllactic acid (4.31) CoH1903 and Weissella, Leuconostoc, L. plantarum Asper ilh'ts S ]I/JE ficillium [10,142]
1081, L. acidophilus 1063, PeTSULLS Spp- SPP-
L. paracasei 1501
L. plantarum, Sarcina lutea, S.
.. . . , L. L ellipsoideus, Proteus vulgaris, S. aureus, ,
Propionic acid (4.87) C3HgO, Propionibacterium acidipropionici and Torula spp. E. coli K12 [154]
and Salmonella
Yarrowia lipolytica, Anaerobiospirillum
Succinic acid (4.21) C4H(O; succmzczyrgducens, Mannheimia S. Typhimurium, E. cglz, B. subtilis, and [395,396]
succiniciproducens, and S. suis
Actinobacillus succinogenes
Tartaric acid (2.98) C4HgOg Gluconobacter suboxydans L. monocytogenes, E.‘colz O157:H7 and [397]
S. gaminara
Valeric acid (4.82) CsH190; Megasphaera elsdenii C. jejuni [398]

4.9. Essential Oils (EOs)

Essential oils are volatile, aromatic, and oily liquids extracted from plant parts, such
as seeds, leaves, buds, twigs, flowers, bark, herbs, wood, fruits, and roots [399]. Plants
generate EOs as a natural defense against pathogens and herbivore feeding by reducing
the appetite of herbivores. As a result, the Department of Health and Human Services
has designated EOs as safe antibacterial additives [400]. To date, about 3000 EOs have
been recorded, 300 of which are economically valued in the pharmaceutical, agronomic,
food, sanitary, cosmetics and perfume industries [401]. EOs are complex natural mixes
that contain anywhere from 20 to 60 distinct components in various proportions. The
antibacterial effects of EOs are dictated by their primary ingredients (85%), which include
terpenes, terpenoids, and aromatic and aliphatic groups from different natural sources [402].
These groups are characterized by low molecular weights, which are limonene (31%) and
a-phellandrene (36%) in Anethum graveolens leaf oil, d-limonene (over 80%) in citrus peel
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oils, ot/ B-thujone (57%) and camphor (24%) in Artemisia herba-alba oil, carvacrol (30%) and
thymol (27%) in Origanum compactum oil, x-phellandrene (36%) and limonene (31%) in
Anethum graveolens leaf oil, menthol (59%) and menthone (19%) in Mentha piperita oil, and
carvone (58%) and d-limonene (37%) in Anethum graveolens seed oil [403].

Menthol, pulegone, linalool, thymol and camphor, extracted from Salvia lavandulifolia
Lavandulaangustifolia, Mentha piperita, Mentha pulegium, and Satureja montana, respectively,
have shown antagonistic effects against P. aeruginosa, S. pyogenes, S. mutans, S. sanguis,
S. salivarius, and E. feacalis [404]. Thymol and carvacrol, extracted from many sources, such
as Origanum compactum, Lavandula latifolia, Lavandula angustifolia, Rosmarinus officinalis, Ori-
ganum vulgare, Thymus vulgaris, and Thymus zygis chemotype thymol, have shown activity
against S. aureus, C. hystoliticum, C. perfringens, E. coli O157:H7, S. Typhimurium, S. Enteri-
tidis, and L. monocytogenes [404,405]. Linalool, linalyl acetate «-terpineol, 3-caryophyllene
and nerol, produced by Mentha citrata Ehrh, have shown inhibitory effects against P. aerug-
inosa, K. pneumoniae, E. coli (DH5«), E. coli (MTCC 723) and S. Typhimurium, S. aureus,
S. epidermidis and S. mutans [406]. Additionally, E-anethole, linalool, 1,8-cineole, x-pinene,
camphor, camphene, menthol, menthone, and limonene, produced by Ocimum basilicum,
Rosmarinus officinalis, O. majorana, Mentha piperita, Thymus vulgaris, and Pimpinella anisum,
have shown activity against C. perfringens [407]. Epilobium parviflorum, Salvia desoleana,
S. sclarea, and Allium sativum were reported to produce palmitic acid, linoleic acid and
a-linolenic acid, which have shown an ability to inhibit E. faecalis, S. aureus, P. aeruginosa,
S. epidermidis, and E. coli [408]. Moreover, cinnamomum was reported to produce cin-
namaldehyde, which was shown to inhibit E. coli, S. aureus, and S. Typhimurium [409].
Dipterocarpus gracilis was reported to produce elemicin and geranyl acetate, which were
shown to suppress B. cereus and Proteus mirabilis [410].

4.9.1. Mechanisms of Action of EOs

EOs and their components are characterized by their hydrophobic nature that allows
them to interact with the lipids of the microbial cell membrane [411]. They can sensitize
cells and cause severe membrane damage, resulting in leaking of essential intracellular
contents, bacterial cytoplasmic membrane collapse, and bacterial cell death. Cell wall break-
down, cytoplasmic membrane damage, cytoplasm coagulation, and membrane protein
degradation are the common causes of the leakage [412]. EOs also directly target biofilm
formation. A recent study has shown that EOs can limit biofilm formation by binding
to them, in addition to reducing cell-wall-related virulence factors and the translation of
particular target microorganism regulatory gene products [413]. EOs can also operate as
transmembrane carriers by swapping their hydroxyl protons for potassium ion, causing
the electrical potential and the pH gradient across the membrane to dissipate. They also
result in a reduction in proton motive force and depletion of intracellular adenosine triphos-
phate (ATP) pools. Potassium deficiency can also be troublesome, since it is necessary for
the activation of several cytoplasmic enzymes, the maintenance of osmotic pressure, and
intracellular pH regulation [413]. A phenolic group in EOs exhibits a direct antibacterial
activity by altering bacterial membrane permeability and energy production. Moreover, the
hydroxyl groups of EOs are thought to attach to bacterial proteins and block the function
of amino acid decarboxylases in E. aerogenes [405].

4.9.2. Limitations of EO Applications

Application of EOs in food processing reduces the availability of EOs as antimicrobial
agents because food constituents contain many fatty, proteinaceous, and sugary compo-
nents that may interfere with the action of EOs. Additionally, the concentration and the
dose of EOs added to the food is 10-100 times lower than the in vitro concentrations, which
may consequently result in a decreased efficiency of these EOs [414]. Moreover, addition of
EOs in the food industry even at a low concentration may change the physical properties
of the food product, such as odor and taste [415]. Since the optimum antimicrobial activity
of EOs is at an acidic pH, many EOs are sensitive to high pH values [416]. The relation-
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ships between the toxicity of bioactive components of Eos, their chemical structures and
functional groups, the influence of hydrophobicity, and the makeup of the microbial lipid
membrane should be investigated extensively before EOs are used [415].

4.10. Fecal Microbial Transplant (FMT)

FMT is a process of transferring processed fecal material from the intestine of a healthy
donor to the intestine of a recipient patient [417]. Processed fecal matter can be administered
to the recipient through several methods, such as a nasoduodenal tube [418], nasojejunal
tube [419], colonoscopy, or retention enema [420]. Colonoscopy administration of fresh or
frozen and thawed fecal matter from stool banks into the cecum and colon of C. difficile-
infected children in Maryland resulted in complete resolution of CDI in recipients as well
as reductions in both AMR and multidrug resistance genes. Moreover, FMT resulted in
sustained elevations in alpha diversity post-FMT as well as significant changes in beta diver-
sity, in addition to improving the biosynthetic pathways [420]. In another study performed
in mice, when a combination of FMT and lytic phages was used for treatment of S. Ty-
phimurium, a complete clearance of Salmonella, a reduction in inflammatory cytokines, and
restoration of the intestinal microbial diversity was observed [421]. Additionally, patients
with MRSA enteritis who were treated with FMT through nasointestinal tube, jejunostomy
fistula tube or gastrostomy fistula tube had negative stool cultures for MRSA, and gut
microbiota analysis also revealed that all recipients developed donor-related bacterial di-
versity [422]. FMT has also shown satisfactory results when given to patients infected with
beta-lactamase-producing Enterobacteriaceae. Four weeks after the first FMT dose through
nasoduodenal tube, decolonization was detected in 20% of the recipients, with recipients’
microbial composition showing a shift toward the donors” microbial diversity [423]. Admin-
istration of fresh fecal matter using nasojejuneal tube into K. pneumoniae-infected patients
stopped sepsis and resulted in elimination of K. pneumoniae, as demonstrated in the blood
cultures and general improvement of the health status. Moreover, a restoration of microbial
diversity was observed after 6 weeks of treatment [419]. Administration of fresh fecal
matter using nasoduodenal gastroscope into the third part of the duodenum of chronically
infected hepatitis B patients (CHB) also resulted in suppression of the hepatitis B virus as
well as clearance of the HBeAg [418]. In addition to its use in the treatment of microbial
infections, FMT has also shown potential to improve non-infectious GIT conditions, such
as ulcerative colitis, where it resulted in a lowered pediatric ulcerative colitis activity index
(PUCALI) following completion of the FMT treatment course [424]. Similar observations
were made for other inflammatory bowel diseases [425]. Moreover, several experiments
were undertaken to assess the safety and efficacy of FMT in treating other extra-intestinal
disorders, such as obesity and metabolic disorders [426] and psoriatic arthritis [427].

4.10.1. Mechanisms of Action of FMT

Although the mechanism of treatment by FMT is not fully clear yet, it has been
noticed that the restoration of healthy gut microbial diversity [428], including Firmicutes
in recipients after FMT [428], is associated with improvement in the recipients” health
status [429]. It has been hypothesized that restoration of gut beneficial microbes, such as
Roseburia hominis and Bacteroides ovatus, inhibits the pathogens’ growth [428] or competes
with the pathogens for nutrients and growth environment [428]. The restored commensal
microbes compete with C. difficile directly through competitive niche exclusion or indirectly
through production of bacteriocins, such as thuricin CD [430].

4.10.2. Limitations of FMT

While the development of FMT may seem easy [431], there are still some challenges
associated with its preparation. These challenges include donor selection, stool processing,
method of sample administration, colonization resistance, and relapse of infection. The
donor for FMT has to be healthy, free from autoimmune, metabolic, and malignant disorders
as well as pathogenic microorganisms [417]. It was noticed that microbiota from donors
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encounter resistance to colonizing the recipient’s intestine from the recipient’s gut flora,
thus preventing them from performing their function [432]. Therefore, it is recommended
that the donor should be one of the recipient’s relatives to achieve what is called “donor-
recipient microbial matching” to overcome colonization resistance [433]. Additionally,
naso-gastric administration is associated with respiratory side effects, while diarrhea is
a common adverse effect of a colonoscopy [434]. Processing of a donor’s stool under
aerobic conditions diminishes its quality, as it affects bacterial diversity by inhibiting the
viability of normal anaerobes in the sample while inhibiting bacterial ability to produce
short-chain fatty acids, which are crucial processes for homeostasis [432,435]. However, it
is noteworthy that processing and freezing storage duration did not significantly impact
the efficacy of FMT in C. difficile infection (CDI) [436]. For better FMT outcomes, proper
site administration should be applied at the site of dysbiosis [432]. Relapse of infection is
also one of adverse effects of FMT, as seen in about 20% of FMT-treated CDI [428]. It can
be concluded that, to date, there is no perfect approach without adverse effects for FMT
application. More studies concerning safety and efficacy are required to approve FMT for
wide use in treatment.

4.11. Vaccines

Vaccines are preparations used to stimulate the body’s immune response against dis-
eases by exploiting the ability of the human immune system to respond to, and remember,
the antigens of pathogens. Several vaccines have been developed to make a revolutionary
change in the world, such as fowl (avian) cholera, anthrax, polio, norovirus, rift valley
fever, and rabies vaccines [437-439]. Vaccines play a pivotal role in reducing the need for
antibiotics and controlling the emergence of AMR bacterial strains [440]. Vaccines reduce
the burden of antimicrobial resistance through disease prevention and thus reducing the
use of antibiotics [441,442]. This occurs as a vaccine curbing the ability of the pathogen
to establish a foothold in the host, by conferring immunity against these pathogens, thus
minimizing the chances of some bacterial mutations and the development and spread of
resistant genes to other bacteria [443,444]. For instance, a 67% reduction in the circulation of
penicillin-resistant invasive pneumococcal strains was demonstrated in a group of children
that received pneumococcal conjugate vaccine 9 (PCV9) compared to controls in South
Africa [445]. Conjugate vaccines combine weak antigens with strong antigens (which serve
as the carriers) to increase the response of the body to the weaker antigen. In this context,
the typhoid conjugate vaccine (TCV) has been introduced in children in order to protect
them extensively from drug-resistant S. Typhi [446]. It has been observed that TCV can
avert 44% of typhoid cases, of which 35% are resistant to antibiotics [447]. Salmonellosis,
caused by Salmonella spp., is one of the most common zoonotic diseases associated with
consumption of dairy and beef [448]. S. enterica serotype Dublin, which infects cattle and
can be shed in milk, colostrum, and feces, also poses a threat to public health. S. Dublin
causes bloodstream infections in humans, with a relatively high case fatality [449]. Data
from the CDC (Centers for Disease Control and Prevention) showed that Salmonella Dublin
infections caused more hospitalization during 1996-2004. Additionally, a higher percentage
of Salmonella isolates were resistant to more than seven classes of antimicrobial drugs
during 2005-2013 (50.8%) compared to only 2.4% during the period 1996-2004. Resistant S.
enterica causes at least 100,000 foodborne human infections annually [450]. A commercial
modified-live Salmonella Dublin vaccine (EnterVene-d) is approved by the USDA for use
in calves, but vaccination does not reduce the likelihood of contamination or the risk to
public health; it only improves clinical outcome [451]. C. perfringens enterotoxin (CPE) and
Shiga-toxin-producing E. coli (STEC) are also common causes of food poisoning. Research
has been conducted on possible development of a vaccine for CPE and STEC in the form of
a bivalent food poisoning vaccine. The bivalent vaccine uses a fused protein (Stx2B-C-CPE)
consisting of the B subunit of E. coli Shiga toxin 2 fused to CPE to enhance its antigenic-
ity [452]. Two other extremely important bacteria, C. jejuni and C. perfringens, have been the
subject of many vaccine studies in poultry [453-456]. The efficacy and commercial potential
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of these vaccines has been described and reviewed in detail elsewhere [457]. It is worth
mentioning that the conserved N-glycan heptasaccharide conjugated to GlycoTag, or fused
to the E. coli lipopolysaccharide core, has shown tremendous potential to reduce C. jejuni
colonization in the gastrointestinal tract of chickens by up to 10 logjg [458]. Despite the
demonstrated efficacy of this vaccine, its commercialization remains murky.

Vaccination can cause indirect effects on infections. While resistance is a predictable
outcome of antibiotic use, resistance to vaccines is very rare [459]. Vaccines are administered
prophylactically, whereas antibiotics are administered only once symptoms have begun to
show. Thus, by the time antibiotics are administered, there are possibly already millions
of copies of the pathogen, raising the probability of mutation occurring. Vaccines prevent
the pathogen from gaining a foothold and multiplying in the first place. In many cases,
the use of vaccines has globally eradicated some diseases, while decreases of 95% in the
incidence of diseases like diphtheria, tetanus, and pertussis have been observed [460].
Much progress has been made in bacterial vaccine development. Bacterial vaccines can and
should help address the global AMR problem. It is reasonable to believe that reductions in
MDR infections as well as the prevention thereof can be achieved using bacterial vaccines.
Attention should also be paid to the role of veterinary bacterial vaccines to reduce antibiotic
use in animals, especially food-producing animals. The role of bacterial vaccines is set to
expand dramatically in response to the crisis of AMR and MDR [461]. Although vaccines
against major AMR pathogens are still missing, predictions of the impact of vaccines against
AMR hint that vaccines could have a significant impact in controlling resistance [462].

4.11.1. Mechanisms of Action of Vaccines

Vaccine types are quite varied in their formulations and mechanisms of action. The
mechanisms through which different types of vaccines work include: (1) live, attenuated
vaccines: these vaccines contain a live version of the pathogen that has been attenuated or
weakened to the point where it loses its pathogenicity, but is still capable of inducing an
immune response [463]; (2) killed whole-cell vaccines: the pathogen is killed or inactivated
by treatment with gamma irradiation or a chemical agent; this preserves the structure of
the epitopes but removes the pathogen’s ability to replicate or be virulent [464]; (3) toxoid
vaccines: the pathogen’s toxin is purified and treated with formalin to destroy its toxic ac-
tivity, while retaining enough antigenic activity to protect against disease [465]; (4) subunit
vaccines: these contain protein or glycoprotein components of a pathogen that are able to in-
duce a protective immune response [466]; outer membrane vesicles (OMVs) are comprised
of bacterial outer membrane constituents naturally released from Gram-negative bacteria,
and contain key antigenic components that can elicit a protective immune response but
cannot cause disease [467]; (5) protein—polysaccharide conjugates: conjugate vaccines are
composed of covalently linked bacterial polysaccharides to proteins; polysaccharides on
their own do not elicit T-Cell response, whereas polysaccharides linked to certain proteins
do elicit a T-cell response [468]; (6) recombinant viral and bacterial vector vaccines: these
use harmless bacteria or viruses as vectors to introduce the genetic code of the antigens
of the pathogen to the cells, to train the immune response [469]; and (7) nanovaccines: a
new generation of vaccines using NPs as carriers and/or adjuvants; nanovaccines could
target the area of the body where the disease originated from, while other vaccines target
the whole body [470]. Table 7 shows examples of vaccines that have been developed and
approved or are still currently being developed against foodborne bacterial pathogens in
humans and livestock.
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Table 7. Vaccines against infectious bacterial pathogens, either approved or in the research stage.

Vaccine Name Target Pathogen Indicated for Use in Notable Observations Reference

Vaccine extremely well tolerated.
Adverse events did not differ between cohorts or from

MO01ZH09 vaccine subjects receiving placebo; M01ZH09 was highly
Live attenuated S. Typhi, S. Typhi Humans immunogenic in all dose ranges. [471]
strain S. Typhi ZH9 Serologic responses measured by S. Typhi LPS-specific

IgA and IgG ELISA were seen in most volunteers at all
dose levels and time points post-vaccination.

The 45% observed reduction in the basic reproduction
ratio of S. aureus is encouraging, but highlights that

vaccination is only an additional tool in the control of

Whole cell S. aureus S. aureus Cattle S. aureus infections on dairy farms. [472]
vaccine (StartVac) ’ Efficacy was dependent upon the age group of the
animals, where first-lactation animals showed a
higher value.
Compared with animals in third and higher lactation.

Lower mean duration of clinical mastitis.
Whole cell S. aureus

S. aureus Cattle No evidence that the vaccine reliably prevented S. aureus, [473]
vaccine (Lysigin) ’ but Lysigin showed a benefit in reducing the clinical -
severity and duration of clinical disease after challenging.
The vaccine induced the immune response via stimulation
Modified live S. dublin 5. enterica serotype of cell-mediated, humoral, and mucosal immunity.

Cattle Calves that received colostrum from vaccinated cows had [474]
significantly higher S. Dublin titers compared to calves
born to unvaccinated cows.

vaccine (EnterVene-d) Dublin

Overall, the vaccine appeared to be safe, with no observed
systemic reactions or adverse effects on performance
or reproduction.
Vaccination of broiler breeder hens induces the
C. perfringens Poultry production of antibodies in the circulation of the hen, [475]
which remain at significant levels throughout the laying
cycle. Antibodies are transferred from the hen to egg yolk,
resulting in antibodies in the circulation of

7-day-old chicks.

Alpha toxin (CPA) toxoid
vaccine (NetVax)

N-glycan-based vaccine * C. jejuni Poultry Reduce the cecal Campylobacter by 6 logio [458]
S. Typhimurium, MV1 was effective at reducing cecal S. Enteritidis counts.
AviPro Megan Vac 1 S. Enteritidis and Poultry The live attenuated vaccine had the added advantage of [476]
S. Heidelberg not persisting in the chicks.

Reduced C. jejuni colonization by up to 2.4 logio,
modulated intestinal immune responses, modulated the
gut microbiome composition, enhanced the production of
C. jejuni-specific antibodies

PLGA-encapsulated CpG

ODN and C. jejuni lysate [453,454,456]

C. jejuni Poultry

* Still in the research and development stage.

4.11.2. Limitations of Vaccines

(1) Highly variable pathogens pose a challenge, as their genetic diversity within and
between hosts make it difficult to identify an antigen that can be used for vaccine devel-
opment [477]. (2) Vaccine failure is always a risk. This refers to an organism contracting
an illness despite being vaccinated against it. This is usually due to individual immune
response differences [478]. (3) Live attenuated vaccines usually need the cold chain to
stay potent, which adds extra cost that especially affect developing countries that lack
widespread refrigeration [463]. (4) Killed whole-cell vaccines lead to a weaker immune
response than live vaccines, thus requiring many booster doses to maintain immunity [463].
(5) Toxoid and subunit vaccines usually require adjuvants and several doses because they
are not highly immunogenic. High doses may lead to toxoid tolerance [479]. (6) Virus-like
particle (VLP) vaccines are multimeric structures with no viral genome, making them very
unstable. The levels of expression of VLP vaccines in different platforms vary greatly [480].
(7) OMV vaccines have an incredibly low yield because they are released spontaneously
by bacteria in low quantities. The key antigens on their surface can also be in low quan-
tities [481]. (8) Polysaccharide—protein conjugate vaccines have inconsistent numbers of
conjugates in each batch, affecting vaccine efficacy. The carrier protein k, and the linker
between the polysaccharide and carrier protein, may also be immunogenic and trigger an
immune response against itself [482]. (9) Bacteria, such as Streptococcus pyogenes and
S. aureus, develop AMR gradually and with little selective pressure [442]. Similarly,
Bordetella pertussis shows AMR towards unprotected or partially protected people, due to
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incomplete vaccine protection [461]. Acellular vaccines against B. pertussis provide shorter
protection than whole-cell vaccines [445]. Collectively, vaccination has a role in specific
cases, and should be used in combination with other approaches to manage infection or
lower the demand for antibiotics [462].

4.12. Antibodies

Antibodies, also known as immunoglobulins, are the most diverse set of proteins [483].
They have two major functions: antigen binding and effector functions [484]. Most of these
effector functions are induced via the constant Fc (fragment crystallizable region, the tail
region of an antibody) of the antibody, which can interact with complementary proteins
and specialized Fc-receptors. This can activate or inhibit pathways, depending on the
type of receptor [485]. Therapeutic antibacterial monoclonal antibodies (mAbs) are gaining
traction as an alternative in treating infectious diseases [442]. Monoclonal antibodies could
offer more effective ways of addressing antibiotic resistance and bacterial infections due to
their superb specificity, by which they target conserved pathways. This allows for fewer
off-target effects and less selective pressure for cross-resistance to other mAbs or antibiotics.
Monoclonal antibodies also do not harm the beneficial microbiome [486,487] In 1879, Amil
von Behring and Shibasaburo Kitasato were the first to develop antibodies called antitoxins
that target specific toxins. Blood-serum-containing antitoxin was directly injected to convey
immunity to diphtheria in humans [488,489]. The toxin/antitoxin approach provided a
steady treatment against numerous pathogens, such as Haemophilus influenzae, Neisseria
meningitides, Corynebacterium diphtheria, Clostridium tetani, S. pneumonia, and Group A
Streptococcus. However, the antitoxin approach exhibits heterogeneity between lots, allergic
reactions, and a limited spectrum, eventually leading to its replacement by antibiotics
in 1930 [490]. Antibiotic production peaked for the next 80 years because of their safe
application and their ease of formulation and manufacture [491]. However, due to the
development of the hybridoma technology and recent advances in mAb engineering,
awareness has shifted back to antibacterial mAbs [492].

4.12.1. Mechanisms of Action of mAbs

mAbs provide their anti-virulence effect through the following mechanisms: (1) mAbs
binding to their target antigen: This can be a soluble ligand or a receptor; either way, the
interaction is blocked between the ligand and receptor. This can also lead to internalization
of receptors or apoptosis of the targeted cells [486]. (2) Blockage of the bacterial virulence
factors (bacterial toxin neutralization): Neutralization of the toxin occurs when it binds
to the mAb and forms an mAb-toxin complex. This complex eventually gets cleared by
the reticuloendothelial system (Figure 6A). Monoclonal antibodies may also bind to the
structural components of the cell surface, invoking immune-system-dependent cytotoxicity
or direct bactericidal effects [493]. This also limits collateral damage, such as development
of drug resistance, as mAbs often target virulence proteins rather than proteins required
for survival, leading to lower virulence [494], while aiding both the host’s adaptive and
innate immune systems.

Several bacteria, such as Bordetella pertussis, V. cholerae, Bacillus anthracis, C. diphtheriae,
C. botulinum, C. tetani, C. difficile, C. perfringens, Salmonella spp., and EHEC, secrete disease-
causing toxins to which mAbs can bind [488]. Other virulence factors such as type III
secretion systems (T3SS), adhesins, and pili, along with outer membrane transporters,
which are exposed on the bacterial cell membrane, have also been identified as potential
antibody targets. mAbs targeting these antigens cause bactericidal effects (Figure 6A) [495].
Ideally, these toxins (antigens) should be in abundance to allow the mAbs to bind to them
specifically, avoiding any off-target binding. Additionally, the binding of these mAbs
does not cause immediate bactericidal effects. Their action is closely associated with the
phagocytic cells (antibody-dependent cellular cytotoxicity—ADCC) and/or complement
(complement-dependent cytotoxicity—CDC), which eventually causes the bactericidal
effect [496] (Figure 6B).
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Many different mAbs are currently in clinical trial phases or have already been ap-
proved. For example, the isotype IgG1(k) human monoclonal antibody auvratoxumab
(MEDI-4893) targets pneumonia-causing S. aureus alpha-hemolysin toxin and neutralizes it,
thereby preventing its colonization. This approach is much more effective than antibiotics
because the use of antibodies is not expected to lead to resistance in the future. In addition
to this, antibodies work irrespective of the antibiotic resistance status of the pathogen [494].
A new antibody—antibiotic conjugate (DSTA4637S) was developed to target intracellular
S. aureus. It consists of anti-S. aureus thiomab human immunoglobulin G1 (IgG1) mono-
clonal antibody linked to a novel rifamycin-class antibiotic [497]. Following its phagocytosis
by phagocytic cells, the intracellular cathepsins cleave the link between the mAbs and
antibiotic, resulting in release of a rifamycin-class antibiotic, which subsequently kills the
intracellular S. aureus [497].
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Figure 6. Monoclonal antibodies’ (mAbs) mode of action. (A) Depicts the neutralization of bacterial
toxin by mAbs. Bacterial toxins are secreted by bacteria. The antibodies attach to the toxins and get
cleared by the reticuloendothelial system. The reticuloendothelial system is a cluster of phagocytes
that clear matter. (B) mAbs adhere to the pili structures of the bacteria. Pili are hair-like appendages
found on the surface of many bacteria that function to attach cells to surfaces. The antibodies
attach along with the phagocytic cells (antibody-dependent cellular cytotoxicity—ADCC) and/or
complement (complement-dependent cytotoxicity—CDC) and eventually cause the bactericidal effect.

Co-mixtures of IgG1 human monoclonal antibodies with efficacy against botulinum
toxin, produced by C. botulinum, (BoNT) serotypes A (BoNT/A, NTM-1631) and B (BoNT/B,
NTM-1632), were developed [498]. Their mode of action involves high-affinity binding of
the mixture to the toxin, blocking cellular binding epitopes on the toxin, and increasing
hepatic clearance of the toxin—Ab immune complexes. The results revealed that NTM-1632
does not bind human epitopes, which means that it is less likely to have off-target effects
and can be used post-exposure without having any negative consequences [498]. Similarly,
Obiltoxaximab (Anthim®, ETI-204) is a monoclonal IgG1(k) antibody that is being devel-
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oped for the prevention and treatment of B. anthracis and works by neutralizing the free
protective antigen of B. anthracis, thereby inhibiting the toxin [499]. Another mAb, rax-
ibacumab (ABthrax) is a human IgG1(A) monoclonal antibody that is capable of neutralizing
lethal antigens of B. anthracis, inhibiting cell death [500]. A human chimeric monoclonal
antibody (isotype IgG), pagibaximab, is currently in phase II of clinical trials for treatment
of S. epidermidis (lipoteichoic acid) causing staphylococcal sepsis. Pagibaximab enhances
serum opsonophagocytic activity, making all staphylococci opsonizable [501]. In addition,
setoxaximab /pritoxaximab are mouse/human chimeric IgG1(k) antibodies that target
Shiga toxin 1 and Shiga toxin 2, produced by E. coli. The combination is named Shigamab
and developed for the treatment of hemolytic-uremic syndrome (HUS). The neutralizing
mAbs target their specific Shiga toxin, eliminating it from circulation [502]. Shigamab
was found to be safe and well tolerated in phase I and II clinical studies. An additional
pre-clinical study has also been completed in a HUS baboon model, in which Shigamab was
shown to protect the animals against a lethal dose of toxin when administered up to 48 h
post-intoxication. A human IgG1 monoclonal antibody, Aerucin, is being developed by
Aridis Pharmaceuticals. Aerucin targets P. aeruginosa alginate using opsonophagocytosis
as the mechanism of action. Specific OprF/I IgG antibodies were detected in all IC43
administered groups. From day 0 to day 14, a four-fold or more increase in the antibody
titers was observed in >90% of subjects. At 90 days, titers started to decline but remained
higher than the placebo groups for up to six months [503]. Additionally, DSTA4637S was
safe and well tolerated in healthy volunteers in the phase 1 single-ascending-dose study.
DSTAA4637S for S. aureus infections is safe and has a favorable PK profile [497]. However,
antibody-antibiotic conjugates can still increase the incidence of AMR, whereas pure mAb
treatments, such as suvratoxamab, are not likely to. In terms of P. aeruginosa, a phase II
clinical trial (NCT03027609) of Aerucin saw no significant difference between Aerucin
and placebo patient groups for treatment of P. aeruginosa patients, whereas panobacumab
improved clinical outcome in a short time [504].

4.12.2. Limitations of Abs

Despite the undeniable impact of mAbs in controlling many diseases, there are still
some challenges concerning mAbs: (1) Production expenses: currently, mammalian cells,
which allow human-like N-glycosylation and other post-translational modifications, are
used to produce mAbs. This requires specialized eukaryotic machinery produce mAbs
in the active form [505]. Mammalian cells also have several drawbacks when it comes
to bioprocessing and scale-up, which results in long processing times and elevated costs.
Moreover, high doses of the antibodies are required to reach clinical efficacy [506]. These
factors limit the availability of the wide use of mAbs. (2) Systemic administration of mAbs
is unsuitable for non-invasive routes of administration, such as oral, nasal, or pulmonary,
as they are susceptible to chemical and enzymatic degradation in the gastrointestinal tract.
In murine models, mAbs have been shown to largely remain in the blood.

Only about 20% of the administered dose reached the target tissue. Penetration and
retention in the target area rely on the characteristics of the mAbs, such as molecular
size, shape, affinity and valency [505]. By using methods such as in vivo gene transfer,
costs can be greatly reduced, as one injection can produce mAbs in vivo long-term [507].
However, hybridoma mAb technology carries with it the risk of cancer, as the cell lines
used are immortalized using the Epstein-Barr virus. There is also the risk of contamination
of different cell lines, genetic instability of the cell line, and consistency and level of the
expression and stoichiometric ratio of both the heavy and light chains [208,508]. Imbalances
in the chain production can be toxic to the cell [509]. Nonetheless, mAbs remain one of the
most promising technologies in the age of growing AMR threats.

4.13. Conclusions and Future Perspectives

The alarming rise in the emergence and spread of AMR and the associated global
impact necessitate an urgent intervention of alternatives to combat the growing threat
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of antibiotic-resistant bacteria. Beside their potential adverse events, the inappropriate
prescription or dispensing of antibiotics for humans and their irrational use in animal
agriculture are among the factors contributing to the growing incidence of AMR in humans.
As such, averting AMR could be achieved by focusing on two aspects: one is to implement
antimicrobial stewardship programs through promoting prudent use of antibiotics in
healthcare and agricultural settings, and the other is to develop effective antimicrobial
alternatives to substitute antibiotics in animal food production. In fact, developed countries,
including Europe and North America, have taken steps to ban the use of sub-therapeutic
doses of antibiotics as growth promoters in livestock and poultry production; however, such
steps have yet to be implemented in developing countries. Thus, a global solution is crucial
to tackle AMR, as the world has become increasingly interconnected. Research efforts have
been made to limit AMR in both humans and animals by exploring various interventions,
including SMs, QSIs, probiotics, prebiotics, phage therapy, nanoparticles, EOs, AMPs, OAs,
FMT, vaccines, and immune-based strategies, as potential replacements for antibiotics.
Despite the promising role of most of these strategies in promoting host immunity and in
antagonizing a range of human and animal pathogens, their variable effects, combined
with their limited spectrum, safety concerns, and poor efficacy, are among the potential
limitations to their use. Nonetheless, the exuberant development of molecular technologies
may improve the efficacy of existing strategies and reduce their limitations. For instance, the
recent breakthroughs in CRISPR-Cas9-based genome editing offer a revolutionary platform
for designing safe and effective vaccines. Likewise, computational molecular biology has
directed vaccine development towards genome-based reverse vaccinology approaches, a
process of analyzing the whole genome sequence for identification of novel target antigens.
The processes of 165 rRNA next-generation sequencing and bioinformatics analysis have
enabled the identification of bacterial strains at species level. This technology can be utilized
to not only identify novel probiotic species, but also to develop a consortium of beneficial
microbes, which may offer a safer and acceptable alternative to FMT. With millions of people
travelling around the world and the uncontrollable spread of AMR, holistic AMR control
requires global solidarity to expand and implement robust antimicrobial stewardship
programs in both medical and veterinary practices.
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