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Abstract: In a previous study published by our group, successful modification of the antibiotic
chloramphenicol (CHL) was reported, which was achieved by replacing the dichloroacetyl tail with
alpha and beta amino acids, resulting in promising new antibacterial pharmacophores. In this study,
CHL was further modified by linking the basic amino acids lysine, ornithine, and histidine to the
primary hydroxyl group of CHL via triazole, carbamate, or amide bonding. Our results showed
that while linking the basic amino acids retained antibacterial activity, it was somewhat reduced
compared to CHL. However, in vitro testing demonstrated that all derivatives were comparable in
activity to CHL and competed for the same ribosomal binding site with radioactive chloramphenicol.
The amino acid–CHL tethering modes were evaluated either with carbamate (7, 8) derivatives, which
exhibited higher activity, or with amide- (4–6) or triazole-bridged compounds (1–3), which were
equally potent. Our findings suggest that these new pharmacophores have potential as antimicrobial
agents, though further optimization is needed.

Keywords: antibiotic resistance; antibiotics; chloramphenicol; peptidyl transferase; ribosome

1. Introduction

Antibiotic resistance is a major problem for therapeutic medicine, although this phe-
nomenon is as old as the appearance of antibiotics in the living world [1]. Isolated caves
and permafrost sediments have shown that resistance is not the result of the relatively
recent use of antibiotics, but rather the non-stop competition for resources among microor-
ganisms [1,2]. Today, two basic methods exist to address this critically rising antibiotic
resistance: a vaccine or medicine. Keeping in mind that vaccination in this area is only
recently being successfully explored, a vaccine has been developed only for one of the
leading pathogens up to now, S. pneumoniae [3]. In reality, it will take a long time to reach
vaccine sufficiency for the rest of the most dangerous pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi-
nosa, and Enterobacter species) [4]. Therefore, the derivatization of known antibiotics in
the production of safe and effective antibiotics is a one-way road [5–7]. Following the
successfully established procedure here, we present the chemical synthesis and evalua-
tion of new (CHL) chloramphenicol-pharmacophores that tether the basic amino acids
lysine, ornithine, and histidine to the CHL C3 position using three different bridges: amide,
triazolium, or carbamate (Figure 1, green color). Earlier research with basic amino acids
tethered to CHL demonstrated that these compounds increased their ribosome affinity
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and severely inhibited ribosome function [8,9]. Chloramphenicol (CHL), first released in
1947 [10], is a broad-spectrum antibiotic that acts on ribosomes and is effective against
a variety of Gram-positive and Gram-negative bacteria. The medicine quickly gained
popularity when it was approved for clinical use due to its inexpensive cost, efficacy, and
the limited number of moderate adverse effects. However, soon after, its initial minor
adverse effects developed into significant conditions, including aplastic anemia and bone
marrow depression [11,12]. As a result, the indications for prescribing chloramphenicol
were reduced due to the drug’s toxicity and the discovery of safer substitute antibiotics, and
its usage was eventually discontinued. Although CHL was medically devalued, it never
lost its appeal as a tool for research into protein synthesis, particularly ribosome structure
and function. It has been determined through several structural and functional studies
that CHL binds in the large ribosomal subunit, partially obscuring the A-site substrate’s
binding surface and impeding protein synthesis [13–15]. More precisely, the aromatic ring
of the ribosome-bound CHL (Figure 1) overlaps with the placement of side chains of the
incoming aa-tRNAs, thus efficiently preventing the aminoacyl moiety of aa-tRNA from
properly accommodating into the peptidyl transferase center (PTC) active site [16]. This
model has recently been revised based on novel data that support the theory that CHL acts
as a context-specific inhibitor of translation whose action depends on the nature of specific
amino acids in the nascent chain and the identity of the residue entering the A-site. More
precisely, chloramphenicol-mediated inhibition is stimulated when a nascent peptide in
the ribosome carries an alanine amino acid in the penultimate position and preferentially
aspartic acid and lysine in the P-site and A-site, respectively [17,18].

Studies on derivatizing chloramphenicol to improve its antibacterial effectiveness
and reduce its harmful side effects were initiated early on because of the advent of un-
desired side effects and rising antimicrobial resistance. Numerous derivatives have been
designed and produced up to this point, but none have been found to be better than the
original chloramphenicol molecule [8,15,19–22]. Despite the derivatization approach’s lack
of success to date, efforts have not stopped because it is one of the most fruitful ways of
creating new-generation antibiotics to combat pathogenic resistance. Our findings indicate
that linking of the three basic amino acids maintained antibacterial activity, albeit to a
lesser extent, while in vitro assays revealed that all derivatives were comparably active to
CHL and additionally competed with radioactive chloramphenicol for the same ribosomal
binding site. Antimicrobial activity was optimized when tethering them through a carba-
mate bridge, while in vitro activity was a bit higher compared to CHL. That means there
is still room to further improve these derivatives and use them as potential antimicrobial
pharmacophores.
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Figure 1. Structures of the CHL derivatives encountered in this work. Pink represents the mother
molecule CHL, orange the modified prime hydroxyl group, green the linkers, and blue the basic
amino acids lysine (1, 4, 7), ornithine (2, 5, 8), and histidine (3, 6).

2. Results
2.1. Chemical Synthesis

The assembly of the various building blocks is described in Scheme 1. Regarding
the CHL modification, commercially available CHL was treated with 4-toluenesulfonyl
chloride (TsCl) in the presence of triethylamine (Et3N) and 4-dimethylaminopyridine
(DMAP), followed by the addition of NaN3 to produce the azide 10. The latter was then
reduced to the corresponding primary amine 11. On the other hand, the synthesis of the
amino acid building blocks containing an alkynyl group (15–17) was accomplished by
coupling the readily available Boc- or Trt- protected amino acids and propargylamine using
the system HBTU/DIPEA. Moreover, activation and subsequent reduction of the carboxylic
group of N-Boc-protected lysine and ornithine gave the corresponding primary alcohols 18
and 19, which were then activated using 4-nitrophenyl chloroformate in the presence of
triethylamine to obtain the corresponding carbonates 20 and 21.

The synthesis of various derivatives containing a triazole linker, CHL–amino acid
amides, and CHL–amino acid carbamates is described in Scheme 2. The desired derivatives
containing a triazole linker (1–3) were obtained through click chemistry involving the
CHL–azide 10 and the N-protected amino acids bearing an alkynyl group (15–17), followed
by TFA-mediated N-deprotection. The synthesis of CHL–amino acid amides (4–6) was
achieved through coupling of the CHL–amine 11 with the N-protected amino acids 12–14
using the HBTU/DIPEA system, followed by TFA-mediated N-deprotection. The CHL–
amino acid carbamates (7, 8) were subsequently synthesized through coupling of compound
11 with the activated carbonates 20 and 21, followed by TFA-mediated N-deprotection.

2.2. Antibacterial Activity

All synthesized compounds initially underwent in vivo screening with the E. coli
∆TolC strain. Following culture growth with increasing antibiotic concentrations, the
EC50 concentrations were determined, which represent the required concentration for the
half-maximal effect of the culture and which were calculated as described in the Materials
and Methods section. Growth inhibition as a function of concentration is represented
in Figure 2, and the calculated EC50 values are represented in Table 1. As it is shown in



Antibiotics 2023, 12, 832 4 of 14

Table 1, in contrast to the previous publication where the same amino acids had replaced
the dichloroacetyl tail, antimicrobial activity now exists for almost all derivatives, although
to a moderate level compared to the mother molecule CHL. The amino acid lysine, which
is linked with a carbamate bridge, was the most active of all, with ornithine being more
active than histidine. The bridges triazolium and amide showed an increased EC50 value,
almost an order of magnitude greater than carbamate, which exhibited the highest activity.
To further explore antimicrobial activity, S. epidermidis was used as a model Gram-positive
pathogen and EC50 was calculated with almost similar results (data not shown). Next, all
the compounds were tested in vitro.
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Scheme 1. Synthetic pathways for intermediates 9–21. Reagents and conditions: (a) TsCl, Et3N, THF,
DMAP, 0 ◦C to RT, 24 h, 80%; (b) NaN3, DMF, 100 ◦C, 24 h, 77%; (c) Ph3P, THF/H2O, RT, 24 h, 70%;
(d) propargylamine, HBTU/DIPEA, DCE, 0 ◦C to RT, 24 h, 65–70%; (e) (i) Et3N, ethyl chloroformate,
THF; (e) (ii) NaBH4, MeOH, 0 ◦C to RT, 4 h, 77–80%; (f) 4-nitrophenyl chloroformate, DCE, Et3N, RT,
24 h, 82–84%.
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Scheme 2. Synthetic pathways for compounds 1–8. Reagents and conditions: (a) CuSO45H2O,
sodium ascorbate, DCM/H2O 1:1, RT, 24 h,65–70%; (b) 50% TFA, TFE, DCM, 0 ◦C to RT, 4 h, 77–80%;
(c) HBTU/DIPEA, DCE, RT, 24 h, 75–82%; (d) DIPEA, DCE, 0 ◦C to RT, 24 h, 78–86%.
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Figure 2. Bacteria E. coli ∆TolC growth in the presence of CHL and selected derivatives. Antibiotic
concentrations were increased from 0.05 µM up to 200 µM. The calculated EC50 values are presented
in Table 1.

Table 1. EC50 determination in µM and µgr/mL for all CHL derivatives.

Antibiotic EC50 (µM) EC50 (µgr/mL)

Chloramphenicol (CHL) 1.76 0.57
1 (Lys) 25.06 8.10
2 (Orn) 20.36 6.58
3 (His) 49.21 15.90
4 (Lys) 29.62 9.57
5 (Orn) 18.58 6.03
6 (His) 39.90 12.89
7 (Lys) 5.01 1.62
8 (Orn) 13.21 4.27

2.3. Protein Synthesis Inhibition
2.3.1. Cell-Free Transcription–Translation Inhibition

First, the effect of the new compounds was tested on overall protein synthesis using
a lysate-based cell-free transcription–translation experimental system from E. coli strain
B [23], which was achieved by using the Renilla reinformis luciferase gene as a template [24].
This assay is one of the most physiological in vitro systems for protein synthesis currently
available and is appropriate for the evaluation of translating inhibitors [25]. In each assay,
luminescence was measured and was expressed as percent of control (without inhibitor).

According to Figure 3, all derivatives were strong inhibitors of the synthesizing
machinery, with similar potency to the mother molecule. That means the new compounds
all keep the basic structure of the chloramphenicol pharmacophore with mild differentiation
in terms of binding and inhibiting ribosomal function. To further explore their binding
site and affinity for the ribosome, radioactively labeled chloramphenicol was used in
increasing amounts to study their competition, though this was not labeled antibiotic
concentration. As it is shown in Figure 4, there is competition for [14C] chloramphenicol
binding, supporting the conclusion that all compounds share either the same overlapping
sites or at least partially occupy them. Figure 4 does not show all experimental data to
avoid plots overlapping. From the same figure, IC50 inhibition concentration was measured
and the Ki values were calculated [26] for all the tested compounds, which are presented in
Table 2.
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Figure 4. Competition in [14C]-CHL binding to vacant reassociated 70S ribosomes by non-radioactive
CHL or CHL derivatives. Data are presented as the percentage of bound radioactive CHL in the
absence (100%) and in the presence of antibiotics versus the antibiotic concentration. (•) Chloram-
phenicol, (�) compound 8, (�) compound 4, (H) compound 5, (N) compound 7.

Table 2. Ki values determined according to the IC50 of each chloramphenicol derivative.

Antibiotic Ki (µM)

Chloramphenicol 1.7
1 (Lys) 3.8
2 (Orn) 16.8
3 (His) 12.3
4 (Lys) 22.5
5 (Orn) 8.3
6 (His) 8.5
7 (Lys) 4.7
8 (Orn) 2.3

2.3.2. Puromycin Reaction

The puromycin reaction was also carried out to further explore the functionality
of the binding site occupied by antibiotics and their mode of action. It is known that
puromycin is a pseudosubstrate that binds in the A-site mimicking aminoacyl-tRNA and
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forms a peptide bond (peptidyl-puromycin) with peptidyl-tRNA bound in the P-site [27].
Moreover, puromycin reacts only with the P-site-bound peptidyl-tRNA and not with A-site-
bound peptidyl-tRNA. Therefore, it is a tool for discrimination of the site of peptidyl-tRNA
binding, except for the kinetic measurement of peptidyl transferase activity, the catalytic
ribosomal center responsible for peptide bond formation. Additionally, CHL occupies
the ribosomal A-site and inhibits the puromycin reaction [26]. According to Figure 5, all
derivatives strongly inhibit the puromycin reaction, suggesting that all compounds occupy
the A-site, inhibiting either puromycin binding or its accommodation.
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at 37 ◦C for 2 min in the absence (control) and in the presence of antibiotics.

3. Discussion

Our findings suggest that modification of CHL’s primary hydroxyl group and sub-
sequent tethering with lysine, ornithine, or histidine provided derivatives that still retain
considerable antibacterial activity, though at a lower level than the original molecule.
Among the three basic amino acids, lysine demonstrated higher in vivo activity compared
to ornithine and histidine. However, all three amino acids showed similarly high or higher
activity compared to CHL in vitro. Additionally, competition for binding with radioactive
chloramphenicol (as shown in Figure 4) demonstrates that the new compounds bind at the
same ribosomal site or partially occupy the previously determined chloramphenicol bind-
ing site [13,14]. This site was further confirmed through high-resolution crystal structure
data (as seen in Figure 6) from recent studies [16]. According to these studies (Figure 6),
the tail of the aromatic ring adopts a unique conformation due to stabilization provided by
the H-bond formed with the nucleotide A2062 of the 23S rRNA. This base rotates by ~160◦

around its N-glycosidic bond into a position where it forms a H-bond between the keto
oxygen of CHL and the N6 atom of A2062. Another H-bond also exists between the primary
-OH group of CHL and the phosphate group of G2505 (Figure 6C) [16]. This bond is missing
in the new compounds because the primary -OH has been replaced. Moreover, the fact that
the new compounds are still strongly bound to the ribosome (see low Ki constants, Table 2)
supports the possibility for a new H-bond, considering that all inserted groups contain a
nitrogen atom which can also offer an uncoupled electron pair; however, this remains to be
elucidated. Furthermore, the rotation of base A2062, which occurs in the presence of CHL,
is uncertain in the presence of our derivatives. However, it is suggested that this may still
occur because binding of not only CHL, but also erythromycin, causes the same characteristic
rotation of A2062 to thus form a Hoogsteen base pair with m2A2503, as observed in the case of
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CHL [16]. According to recent crystallographic data with different peptidyl-tRNAs bound on
the ribosome, the CHL binding site is formed not only by the ribosome alone but also by the
growing polypeptide, and the shape of the drug-binding pocket continuously changes as the
nascent chain is created by the ribosome [28]. This can easily explain why chloramphenicol
and its derivatives are more effective in an in vitro transcription–translation system compared
to their Ki values as they were calculated on vacant ribosomes (Table 2). From this viewpoint,
the nascent peptide plays the role of a drug-affinity modulator [18] and should be considered
as a part of the CHL binding site. That is why Mankin and colleagues suggest that chlo-
ramphenicol should be considered as an uncompetitive, rather than competitive, ribosome
inhibitor. Uncompetitive inhibitors bind adjacent to the active site of an enzyme and require
a substrate to be present before binding [28]. Based on this recent theory of CHL’s mode of
action, our derivatives could also be considered as uncompetitive ribosome inhibitors, but
this new suggestion must be proved.
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Figure 6. Structure of CHL in complex with programmed 70S ribosomes and A-, P-, and E-site tRNAs.
(A,B) Overview of the CHL binding site (green) in the Thermus thermophilus (Tth) 50S ribosome
viewed from the PTC down the tunnel, as indicated by the inset (A), or as a cross-cut section through
the 70S ribosome (B). The 30S subunit is shown in light yellow, the 50S subunit is in light blue, the
mRNA is in magenta, and the A-, P-, and E-site tRNAs are colored green, dark blue, and orange,
respectively. (C,D) Close-up views of the CHL bound in the PTC, PDB entry 6ND5 [16]. E. coli
nucleotide numbering is used. Potential H-bond interactions are indicated with dashed lines for the
keto oxygen and solid lines for the prime -OH. Note that rotation of A2062 is forming a H-bond after
Hoogsteen base pairing with the m2A2503 of the 23S rRNA (red dashed arrow). The N6 and N7
atoms of nucleotides A2062 and m2A2503 are highlighted in dark blue. The unrotated conformation
of A2062 observed in the absence of the drug is shown in dark blue (PDB entry 4Y4P [29]).
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Another important question concerns the success of the linker connecting CHL’s
C3 position with basic amino acids and its contribution to the derivative’s biological
effects. According to the results, the carbamate is more effective concerning triazolium
and/or amide, depending perhaps on the number of available hydrogen bonds which
could take place in the new accommodation. The length of the replacing group is also
another issue of interest but considering that the three inserted basic amino acids have
around the same length, all can be accommodated in a successful way around the peptidyl
transferase center. In conclusion, our new compounds offer new dynamic pharmacophore
structures with room for further modifications and development. Our next goal will
be the combination of these prime HO group modifications with previously inserted
derivatizations in the dichloroacetyl tail [24] to improve our molecule’s characteristics as a
promising antibacterial agent.

4. Materials and Methods
4.1. Chemical Synthesis

More detailed information on the synthesis and structural characterization of the
synthesized derivatives can be found in the Supplementary Materials, which includes
synthetic schemes and procedures, as well as 1H, 13C NMR, and ESI–MS spectra.

4.2. Bacterial Strains

The wild-type E. coli K12/MG1655 strain was used to isolate the components of the
functional assays, such as ribosomes and tRNA, and the SQ110 ∆TolC variant [23] was used
to test antibacterial activity. All strains were grown at 37 ◦C in LB medium with continuous
shaking, and for the ∆TolC strain we also included 50 µg/mL kanamycin.

4.3. Biochemical Preparations

70S reassociated ribosomes free of endogenous tRNAs were prepared from E. coli
K-12/MG1655 cells as described by Blaha et al. [30] and were kept in buffer contain-
ing 20 m MHEPES/KOH, 50 mM CH3COONH4, 6 mM (CH3COO)2Mg, and 4 mM
mercaptoethanol (buffer A) at a pH of 7.6. MF-mRNA, encoding Met-Phe [sequence:
GGG(A4G)3AAAAUGUUC(A4G)3AAAU] [31] was prepared according to Schafer et al. [32].
EF-G with C-terminal His-tags was isolated from E. coli, as described previously [25].
Ac[3H]Phe-tRNA was prepared using specific tRNA under standard conditions (Rhein-
berger et al., 1988 [33]) and was separated from uncharged tRNA by reverse-phase HPLC
on a Nucleosil column using a programmed binary gradient of buffer 1 (20 mM ammonium
acetate, pH 5.0, 10 mM magnesium acetate, 400 mM NaCl) and 2 (60% v/v methanol in
buffer 1). 70S ribosomes (0.3 µM) were first incubated at 37 ◦C for 15 min with MF-mRNA
(2.0 µM) and 0.6 µM uncharged tRNA phenylalanine initiator-phenylalanine specific (dea-
cylated tRNAf

Met in order to prefill the P-site). Nonenzymatic binding was then performed,
followed by the addition of appropriately charged Ac[3H]Phe-tRNA at a final concentration
of 0.5 µM, which occupied the A-site. The complex named pre-translocation was then
incubated with EF-G (final concentration 0.3 pmoles/pmol 70S) in the presence of GTP
(0.12 mM) and was incubated at 37 ◦C for an additional 10 min. The post-translocation
complex that was formed as described above carried a deacylated tRNA in the E-site and
a peptidyl-tRNA in the P-site, resembled the elongating ribosome, and was isolated free
of the unbound ligands (tRNAs, EF-G, GTP) via centrifugation through a 10% sucrose
cushion at 65,000× g for 18 h at 4 ◦C. The pellet was diluted in buffer A and was used for
the puromycin reaction.

L-[2,3,4,5,6-[3H]-phenylalanine was purchased from Amersham Pharmacia Biotech
(Piscataway, NJ, USA), whereas [14C]-chloramphenicol was obtained from Perkin Elmer
(Richmond, CA, USA). Specific tRNAs were purchased from Sigma.
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4.4. Inhibition of Translation Using an E. coli-Based In Vitro Cell-Free Expression System

In this study, the S30 T7 high-yield protein expression system (Promega Corporation)
was used. Screening assays of our compounds were performed in small-scale in vitro
transcription/translation reactions, using the included control DNA template containing
the Renilla reniformis luciferase gene as previously described [24]. From each reaction, 2.5 µL
samples were taken and diluted by adding 97.5 µL of the lysis buffer from the Renilla
Luciferase Assay kit (Biotium) used. The mix was thoroughly mixed and 50 µL was then
placed into a 96-well white opaque plate (Greiner). Right before the measurement, 50 µL of
the assay reagent was added to all the samples, which were then mixed and immediately
placed in a luminometer (Perkin Elmer Victor2) for measurement. Data were presented as
percent of control (without antibiotic).

4.5. EC50 Determination

Cells were grown overnight in Luria–Bertani medium and were diluted into fresh
Luria–Bertani medium again and were grown. Early exponential-phase cultures were then
diluted to a final absorbance at 600 nm equal to 0.050 and were incubated with each one
of the antibiotics at indicated concentrations at 37 ◦C for the appropriate time to reach
absorbance equal to 0.700 of the control sample, which was grown without antibiotics.

From dose–response curves, the half-maximal effective concentration (EC50) for each
compound and strain was estimated. EC50 represents the molar concentration of a com-
pound that produces 50% of the maximum possible effect. The EC50 values were mathemat-
ically determined by non-linear regression fitting of the observed culture optical density
values (expressed as a percentage of 0.700 (y)) into the Hill equation,

y = min +
max−min

1 +
(

x
EC50

)−n

where min and max are the lowest and highest observed values of the culture’s optical
density, respectively, x is the concentration of the tested compound, and n is the Hill
coefficient that represents the largest absolute value of the curve slope. EC50 is equal to
the x value of the sigmoid’s midpoint. Fitting was performed using the Four Parameter
Logistic Curve of Sigma Plot Version 11.0 (Systat Software, Inc., San Jose, CA, USA) for
exact graphs and data analysis.

4.6. Competition in [14C]-Chloramphenicol Binding

Reassociated 70S ribosomes (0.20 µM final concentration) were incubated in buffer
A [26] with [14C]-chloramphenicol (150 dpm/pmol) and increasing concentrations of ra-
dioactive CHL, to choose the best radioactive CHL concentration for competition exper-
iments [26]. After incubation for 10 min at 37 ◦C, the mixture was diluted with 3 mL of
cold buffer A and was filtered through a 25-mm in diameter cellulose nitrate membrane
filter (Millipore, 0.45 µm pore size) [26]. The filter was immediately washed twice with
3 mL of cold buffer A and the bound radioactivity was determined by measuring the
radioactivity bound on the filter in a liquid scintillation counter. Next, the binding of
[14C]-chloramphenicol was studied in competition experiments with cold chloramphenicol
or CHL derivatives by maintaining a constant concentration of [14C]-chloramphenicol
(6 µM) and increasing concentrations of non-radioactive competitors.

4.7. Puromycin Reaction

The reaction between the previously prepared post-translocation ribosomal complexes
and an excess of puromycin in buffer A was carried out at 37 ◦C for 2 min [34]. The ionic
conditions were 20 mM HEPES-KOH (pH 7.6), 4.5 mM magnesium acetate, 150 mM ammo-
nium acetate, 2 mM spermidine, 0.05 mM spermine, and 4 mM β-mercaptoethanol, which
were kept constant throughout all the steps of complex formation and puromycin reaction.
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This buffer approximates physiological conditions with respect to the concentrations of the
essential ions using NH4

+ ions instead of K+ [30].
The reaction volume was 20 µL with a final puromycin concentration of 1 mM, in the

absence or presence of 10 µM of each antibiotic. The reaction was stopped by the addition
of an equal volume of 0.3 M sodium acetate saturated with MgSO4 at a pH of 5.5, with the
resulting volume extracted using 1 mL of ethyl acetate and the radioactivity contained in
700 µL of the organic phase quantified by liquid scintillation. The results were expressed as
the pmol ratio of acetyl-[3H]phenylalanine-puromycin per ribosome.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12050832/s1, Scheme S1: Modifications of CHL’s primary
alcohol group; Scheme S2: Synthesis of modified (L)-Lysine building blocks; Scheme S3: Synthesis
of modified (L)-Ornithine building blocks; Scheme S4: Synthesis of modified (L)-Histidine building
blocks; Scheme S5: Synthesis of derivatives 1–3; Scheme S6: Synthesis of amides 4–6, 25–27; Scheme S7:
Synthesis of carbamates 7–8, 28–29. Moreover, the section contains detailed synthetic procedures
describing the preparation and the structural characterization by 1H, 13C NMR, and ESI–MS spectra
of each compound synthesized for the purposes of this work.
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