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Abstract: The urgent necessity to fight antimicrobial resistance is universally recognized. In the
search of new targets and strategies to face this global challenge, a promising approach resides in
the study of the cellular response to antimicrobial exposure and on the impact of global cellular
reprogramming on antimicrobial drugs’ efficacy. The metabolic state of microbial cells has been
shown to undergo several antimicrobial-induced modifications and, at the same time, to be a good
predictor of the outcome of an antimicrobial treatment. Metabolism is a promising reservoir of
potential drug targets/adjuvants that has not been fully exploited to date. One of the main problems
in unraveling the metabolic response of cells to the environment resides in the complexity of such
metabolic networks. To solve this problem, modeling approaches have been developed, and they
are progressively gaining in popularity due to the huge availability of genomic information and the
ease at which a genome sequence can be converted into models to run basic phenotype predictions.
Here, we review the use of computational modeling to study the relationship between microbial
metabolism and antimicrobials and the recent advances in the application of genome-scale metabolic
modeling to the study of microbial responses to antimicrobial exposure.

Keywords: metabolic modeling; antimicrobial resistance; bacterial metabolism

1. Introduction

Antimicrobial resistance (AMR), the ability of a microorganism to resist the action of
one or more antimicrobial agents, is one of the major public health problems of this cen-
tury [1]. Antimicrobial-resistant microbes are currently estimated to claim ~700,000 deaths
per year, and this mortality rate is predicted to increase to 10 million per year by 2050 [1].
Consequently, antimicrobial resistance has been identified as one of the most important
challenges to human health by several national and international bodies.

For bacteria, the current antimicrobials inhibit a narrow spectrum of cellular processes
(e.g., DNA replication, transcription, protein synthesis, and cell wall biosynthesis) [2].
Their action is traditionally seen as a linear process in which the antimicrobial enters the
cell, reaches and interacts with its target, and stops the growth or kills the bacteria [3].
Accordingly, it is generally assumed that antimicrobial resistance relies on a few specific
microbial genes [4]. However, this description represents only the immediate effects of
the antimicrobial. In many cases, what is not known and is still the subject of debate,
is how antimicrobials actually kill bacterial cells [5]. Microbial metabolism is impacted
by antimicrobials [4], and in recent years, the close link between bacterial metabolism,
antimicrobial action, and antimicrobial resistance has increasingly emerged. Indeed, on the
one hand, antimicrobials alter the metabolic phenotype (metabotype [6]) of bacterial cells,
giving rise to an altered metabotype. On the other hand, the metabotype of bacteria (normal
or altered) influences their susceptibility to antimicrobials (Figure 1) [2]. Consequently,
the antimicrobial efficacy can be enhanced by altering the metabolic state of bacteria.
Approaches that target the bacterial central metabolism for drug development or that use
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the control of nutrients’ availability as a mechanism for the selection of antimicrobial-
tolerant strains (for a definition of the differences between tolerance and resistance, see
below) are gaining more and more attention [2].
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Figure 1. Possible paths to resistant and tolerant metabotypes. Here, we show the hypothetical effects
of mutations, antimicrobials’ exposure, and non-genetic mechanisms on microbial metabotypes,
including the effects on the single reactions (thicker links among the nodes) and the most likely
objective function (“growth” or “?”).

Overall, antimicrobials can affect bacterial metabolism in three ways. First, they have a
direct effect on metabolism that affects their efficacy, which seems to be different depending
on whether the antimicrobial is bactericidal or bacteriostatic (even though it appears that
all antimicrobials are ultimately bactericidal, and the difference between the two types of
antimicrobials is only the rates at which they kill bacteria) [2,5].

The action of bactericidal antimicrobials on their primary targets causes damage to
other essential macromolecules (nucleic acids, proteins, and membrane lipids) within the
cell, resulting in the induction of stress response pathways. Stress responses increase
metabolic activity to meet the corresponding energy demands. This results in the produc-
tion of toxic metabolic byproducts such as reactive species, which damage macromolecules,
and leads to the induction of additional stress response pathways. Once again, the overall
cellular metabolic load results increased. The alteration of the metabotype, therefore, cre-
ates a cyclical process that ends with cell death [7–15]. Wong et al. [16] recently suggested
that the interactions of the toxic metabolic bioproducts with the membrane induce a loss
of membrane integrity, which results in cytoplasmic condensation through the leakage
of cytoplasmic contents, and then in cell death. Alternative cell death pathways may
involve cellular damage to nucleic acids and proteins resulting from both the primary
drug–target interaction and from the subsequent generation of reactive metabolic byprod-
ucts [16]. A similar process, involving reactive metabolic byproducts, seems to contribute
to antimicrobial lethality, also under anaerobic conditions [17].

Bacteriostatic antimicrobials, instead, inhibit protein biosynthesis or transcription in
certain contexts, leading to a decrease in metabolic activity and subsequent cell stasis,
thus, again resulting in an altered metabotype [14,18]. As mentioned before, however,
bacteriostatic antimicrobials can also kill bacteria, probably depending, among other things,
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on the number of ribosomes. Indeed, when the number of ribosomes is reduced, ribosome-
targeting antimicrobials seem to become increasingly bactericidal, suggesting a kind of
lethal protein synthesis threshold. However, this could not be the ultimate mechanism
by which these ribosome-targeting ‘bacteriostatic’ antimicrobials kill bacteria [5]. There-
fore, the altered metabotypes resulting from antimicrobial treatment contribute to its final
outcomes. The second and the third ways in which antimicrobials can influence bacterial
metabolism are indirect. First, antimicrobial treatments generally involve the acquisition of
resistance, through mutations or horizontal gene transfer, this often come with a fitness
cost for the bacterial cell (Figure 1) [19,20]. Consequently, the acquisition of compensatory
mutations that counterbalance the decreased fitness is a crucial step for the success of
resistant strains [21,22]. These mutations generally restore normal growth, preserving
resistance, and their number and type varies with the organism and the particular envi-
ronmental conditions under which compensation occurs, indicating that fitness costs are
dependent on the habitat and on the metabolic adaptation required for colonizing such a
habitat [23]. Regarding the third mode, it has recently been demonstrated that, in addi-
tion to the acquisition of the classical mechanisms of resistance (target modification, drug
inactivation, and drug transport), antimicrobials can also induce mutations in metabolic
genes [24]. These metabolic mutations can confer resistance and are prevalent in clinical
pathogens, suggesting that metabolic adaptation may represent a mechanism of resistance
that confers tolerance, but may also mitigate the downstream toxic aspects of antimicrobials
(Figure 1) [24].

On the other hand, the metabolic state of the bacterial cells can affect the antimicro-
bials’ efficacy in various ways. It must be stated that, in addition to the classical molecular
mechanisms of antimicrobial resistance, bacterial cells can counteract antimicrobials in
several ways, each of which relies on a general metabolic downregulation. Indeed, the
term resistance is usually used to “describe the inherited ability of microorganisms to grow
at high concentrations of an antimicrobial, irrespective of the duration of the treatment,
and is quantified by the minimum inhibitory concentration (MIC) of the particular antimi-
crobial” [25]. If this resistant phenotype is observed only in a subpopulation of cells, it
is known as hetero-resistance [26]. The term tolerance, instead, is used to describe “the
ability, whether inherited or not, of microorganisms to survive transient exposure to high
concentrations of an antimicrobial without a change in the MIC, which is often achieved by
slowing down an essential bacterial process” [25]. It has been demonstrated that tolerance
often evolves during frequent and intermittent antimicrobial treatments, and that its emer-
gence often promotes the development of resistance [27]. Finally, the term persistence is
used when only a subpopulation of a clonal bacterial population is able to survive exposure
to high concentrations of an antimicrobial, without any genetic mutations [25]. Indeed, if
persisters are isolated and regrown in the presence of antimicrobials, they display the same
pattern of susceptibility as the original population [28].

The metabolic state of bacterial cells (normal or altered metabotypes, Figure 1) is
mainly involved in mechanisms of tolerance to the antimicrobials’ action. Indeed, most
of the so-called “phenotypic resistance”, in which metabolism has a fundamental role,
is mechanisms of tolerance rather than resistance. Indeed, this term refers to all the
transient situations in which a bacterial population, susceptible to an antimicrobial, becomes
resistant without any genetic change taking place; therefore, resulting as not inheritable [29].
For example, the growth rate is an important parameter that affects the susceptibility to
antimicrobials of bacterial populations. Resting cells are less susceptible to antimicrobials
than metabolically active cells, especially to the action of bactericidal antimicrobials [4].
However, a recent study showed that the metabotype of the cell, instead of growth, better
correlates with antimicrobial lethality, suggesting that antimicrobials should also be able to
kill non-growing bacteria if metabolism is active, and that the metabolic response, following
the initial interaction of an antimicrobial with its target, influences the bacterial response to
the antimicrobial action [30].
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Consequently, in all the conditions of an altered metabotype, in which the metabolism
is poor or not active, bacterial cells are less susceptible to antimicrobials’ action (Figure 1).
For example, during a stringent response, the accumulation of (p)ppGpp determines a
global switch on bacterial metabolism that also modulates their response to antimicro-
bials [31–34], while bacterial persisters (whose formation also involved (p)ppGpp), as
mentioned above, are subpopulations of metabolically repressed cells, which survive
antimicrobial treatment, although lacking genetically encoded antimicrobial resistance
determinants [35–38]. Additionally, during swarming motility, bacterial cells undergo a
metabolic shift which makes them less susceptible to antimicrobials, through a mechanism
that is poorly understood but that might be related to changes in the cell envelope [39–43].

Another example of phenotypic resistance is growth in biofilms, microbial communi-
ties embedded in an extracellular polymeric matrix [44–46]. Bacterial cells grown in biofilm
are less susceptible to antimicrobials through a combination of resistance and tolerance
mechanisms. Indeed, bacterial cells in biofilm are more resistant to antimicrobials than
planktonic cells due to higher levels of both spontaneous and stress-induced mutagenesis,
but also of horizontal gene transfer [45]. In addition, biofilm cells are also more tolerant
to antimicrobials than their planktonic counterparts through a combination of different
known mechanisms, in which the metabotypes of the cells play a key role. Indeed, biofilms
are characterized by a gradient of nutrients and oxygen which decrease passing from the
outermost to the innermost layers [46]. Consequently, they are composed of subpopulations
with different metabotypes: metabolically active populations are located on the oxygenated
and richer in nutrients surface of the biofilm, while non-growing subpopulations reside in
the central anoxic and low in nutrient zones [45,46]. This stratified bacterial physiology cor-
responds to stratified layers of susceptibility to antimicrobials, with internal cells generally
more tolerant than external ones [45]. In addition, the metabolic active cells at the surface ex-
hibit increased expression of antimicrobial resistance genes, while the metabolically inactive
subpopulation exhibits reduced or negligible expression of the antimicrobial targets and a
reduced antimicrobial uptake [45]. Moreover, the gradient of nutrients and oxygen also
induces a progressive activation of stringent and SOS stress responses that impairs the effi-
cacy of antimicrobials, contributing to the antimicrobial tolerance of biofilms [45]. Finally,
the presence of the biofilm matrix slows antimicrobials’ penetration and also favors their
degradation due to the presence in the matrix of antimicrobial-modifying enzymes [45].

However, besides tolerance, bacterial metabolism is also involved in antimicrobial
resistance. For example, classical elements involved in intrinsic resistance to antimicrobials,
such as chromosomally encoded β-lactamases or multi-drug efflux pumps, play an impor-
tant role in bacterial physiology, and they are not just an adaptive response to the presence
of antimicrobials [4]. Furthermore, mutations in genes involved in cellular metabolism can
contribute to intrinsic resistance [47]. Since, as stated before, bacterial metabolism is part
of the antimicrobial-induced cell death process, mutations in the genes involved in these
pathways (both their impairment and their overproduction) can influence the bacterial
susceptibility to antimicrobials [4]. Moreover, all the regulatory genes involved in the
control of metabolism, global regulators [48], signal transduction pathways controlled by
two-component systems [49], and regulatory RNA [50] can influence bacterial susceptibil-
ity to antimicrobials. Finally, the metabolic adaptation that bacteria undergo during the
colonization of a new environment (for example, during the early stages of host infection)
might select antimicrobial-resistant bacteria (even in the absence of selective pressure with
antimicrobials), thus further highlighting the existence of a tight link between bacterial
metabolism and their susceptibility to antimicrobials [4].

In contrast to, for example, single mutations on specific genes that lead to antimicro-
bial resistance phenotypes, a causal relationship and/or mechanistic understanding of
metabolism-dependent resistance/tolerance is much harder to achieve. Essentially, this
is due to the inherent complexity of metabolic networks in which thousands of elements
(reactions and metabolites) give rise to an intricate set of interconnections.
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One of the most powerful tools to study cellular metabolism at the system level
is represented by genome-scale metabolic models (GSMMs) [51]. The starting point to
work with GSMMs is the reconstruction of the metabolic network of the organism of
interest, starting from its genome annotation. The methods that can be implemented to
reconstruct metabolic networks include KBase server, Model SEED, or CarveMe [52–54].
The resulting models are then validated using several databases (such as KEGG, PubMed,
and BiGG, the more the better [55–57]), genomes from related microorganisms, and further
manual curation using experimental data as potential benchmarks. Ultimately, GSMMs
are formal representations of cellular metabolism that include genes, enzymes, reactions,
and metabolites, describing the associated gene–protein reaction (GPR) rules [58]. This
facilitates computation and prediction of phenotypes through techniques such as Flux
Balance Analysis (FBA) [59]. Using the optimization of an objective function of interest
(usually cellular growth), these models are capable of predicting the activity (rate) of
each reaction in the model. Despite being far from flawless, these simulations permit
speculation on the role of specific reactions/pathways in the simulated conditions. Indeed,
one of the most promising applications of GSMMs is the possibility, by key interventions
on the model itself, to include environmental conditions in the modeling framework,
i.e., researchers can opportunely tune some model parameters to represent the actual
(experimental) intracellular and extracellular contexts in their GSMMs. The two most
valuable examples in this context are represented by: (i) the possibility to define the
nutritional landscape of the model by setting the boundaries of uptake reactions to mimic
experimental nutrients’ availability, and (ii) the use of transcriptomic (as well as other
-omics) data to define the set of enzymes that the cell is actually expressing in vivo. Both
these methodologies constrain the model and create context-specific representations of the
bacterial metabolism, according to the conditions used to obtain such extra information
(nutrients’ availability and gene/protein/metabolite abundance). Since the first model ever
developed, for Haemophilus influenzae [60], several groups have continued with this task,
constructing models for other bacteria. Originally, GSMM have been exploited in metabolic
engineering of biotechnologically relevant strains, as the optimization of natural products
encoded by biosynthetic gene clusters (BGCs) [61,62].

GSMMs, however, have been progressively applied to many other areas of research.
Recently, several works have illustrated the tools for the development of metabolic net-
works of Gram-negative pathogens and the metabolism of priority pathogens reported
by the World Health Organization, the possible drug targets for them (antimicrobial phar-
macology), and the awareness of the spread of antimicrobial resistance pathogens [63–65].
Here, we rather focus on the study of the intertwined relationship between microbial
metabolism and antimicrobial resistance (including the development of novel drug tar-
gets) [66], and through a survey of currently available case studies, we show how GSMMs
can improve its understanding.

2. Case Studies

We have performed an operational classification of available case studies on the use
of GSMMs to study antimicrobial (AM) exposure/resistance into antimicrobials: non-
informed vs. informed (AM-non-informed vs. AM-informed) works. In the first group, we
include all those works that did not use experimental data obtained from cells exposed to
antimicrobial compounds to constrain and refine the model predictions. Conversely, all the
studies that used experimental data (mostly -omics data) obtained from cells exposed to
the antimicrobial molecule(s) to constrain the GSMM of the corresponding microorganisms
(Figure 2) will fall in the second group. This latter group of studies will include, for
example, those that used transcriptomic data obtained from microbial cells exposed to the
antimicrobial compound to “inform” the model on which reactions can be used to represent
the antimicrobial-exposed metabolic network. In other words, this approach permits to
“turn on/off” those reactions whose genes are/are not expressed or active during the
exposure to the antimicrobials.
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Figure 2. Schematic representation of AM-informed and AM-non-informed GSMM. (A) The combi-
nation of automatic metabolic reconstruction tools, literature, and strain-specific experiments leads to
the creation of general, strain-specific GSMM models that can be further used for downstream simu-
lations, leading, for example, to the prediction of possible drug targets. The integration with -omics
data obtained from ad hoc designed experiments permits the generation of context-specific GSMM,
capable of mimicking in a more reliable way the metabolic state of cells in the tested experimental
conditions. Such AM-informed models can then be used to study the differences in flux distributions
under such stressful conditions and/or to obtain to a more focused identification of condition-specific
gene essentiality patterns. (B) The approach proposed by Brynildsen et al. [67], to demonstrate the
link between ROS production and antibiotic efficacy. Including ROS-producing reactions in the
original Escherichia coli GSMM and using simulations of gene knockouts, they identified targets
(genes) whose removal would lead to an increased intracellular production of ROS. These mutant
strains were then (successfully) tested for increased ROS production and increased sensitivity to
antibiotics’ killing.

All the metabolic reconstructions cited in this work and that have been used in anti-
microbial resistance studies are reported in Supplementary Material Table S1.

2.1. AM-Non-Informed Models

Studying the metabolism of bacteria with the aim to prevent or fight AMR can be
carried out by performing analyses such as gene/reaction or metabolite essentiality (GE
and ME, respectively) in order to identify possible points of metabolic weakness of the
cell. This approach removes a gene/reaction (or a metabolite in case of ME analysis)
from the metabolic network and then simulates growth with FBA. In other words, every
time a gene, reaction, or metabolite is deleted, an FBA is performed using the biomass
production as the objective function. In 2009, in one of the first works of this kind, the
Acinetobacter baumannii’s AYE GSMM was reconstructed and used in combination with a
filtering framework of essential metabolites (EMFilter) to predict the most effective drug
targets [68]. The first part of the analysis predicted 211 essential metabolites and, on this
pool, the EMFilter was applied. The EMFilter is an algorithm that follows four steps. First,
it removes currency metabolites that participate in reactions shared by several organisms,
such as ATP and NADH. In the A. baumannii AYE case study, 179 metabolites remained
after this step. Second, it selects essential metabolites that are surrounded by at least
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two metabolite-consuming reactions, in order to enhance the drug impact (97 metabolites
remained). Third, it prunes essential metabolites that participate in human metabolism
as well (22 metabolites remained). Fourth, it removes essential metabolites that are being
consumed by human homologous enzymes, in order to avoid the possible interaction
between the drug and the human (rather than the microbial) drug target. After all the
steps of the filtering pipeline, the enzymes involved in the consumption of nine essential
metabolites were predicted as final drug-target candidates. As a confirmation, some of the
enzymes identified by this approach have been previously reported as drug targets.

Analogously to the A. baumannii AYE case study, Jenior’s group [69] decided to use
this methodology to explore the possible metabolic pathway targets of Clostridioides difficile.
They reconstructed the GSMMs of two strains (630 and R20291), and after the GE analysis,
they compared the prediction of essential genes for growth in silico and in vitro, obtaining
89.1% and 88.9% accuracies, respectively. This group identified the minimum subset of
metabolites necessary for growth, and subsequently, the carbon sources needed. Since
C. difficile utilizes phase variation to generate phenotypic (rough- or smooth-edge colony
morphology) and metabolic heterogeneity to maximize its fitness and virulence expression,
Jenior’s group aimed to characterize the differences between in vitro and in vivo conditions
using context-specific metabolic reconstructions derived from expression data. They found
differences in alanine transport and utilizations, as well as in glycolysis’ transporters
and metabolic reactions during periods of increased virulence expression. With the gene
essentiality analysis, they found numerous reactions that were essential only for the smooth
phenotype (especially in the pentose phosphate pathway, PPP), and surprisingly, no unique
essential reactions for the rough phenotype. Finally, by comparing the predicted core
metabolic activity of high- and low-sporulation conditions, Jenior’s group described how
both N-acetylneuraminate and cytidine are being consumed during infection and decrease
sporulation. These findings could help to find solutions to AM use in order to mitigate
C. difficile infections.

López-López’s group [70] also performed gene essentiality analysis in order to study
what could be the best way to develop drugs for ampicillin-resistant H. influenzae. They
refined its previous GSMM, and after the GE analysis, they found 11 genes of the fatty
acid biosynthesis pathway (FASII pathway), 6 genes for the phospholipid biosynthesis
pathway, and 12 genes encoding enzymes involved in lipid A biosynthesis. Since the
FASII pathway generates acyl carrier proteins (key components of the bacterial membrane),
these authors proposed that genes related to this pathway could work as a drug target,
specifically, beta-ketoacyl-ACP, which initiates fatty acid elongation cycles.

To link the (complex) carbon sources that one microbe might encounter in vivo and the
overall metabolic reprogramming during the infection process, Payne et al. [71] studied the
metabolic responses of Pseudomonas aeruginosa to different mucins. Mucins are polymeric,
highly glycosylated proteins produced by airway epithelial cells and submucosal glands
that play a key role in the microbe clearance and infection prevention. Even though
these proteins are not considered as antimicrobial agents, it is clear that the mucin–drug
interaction may have a remarkable impact on drug absorption since mucus is the first barrier
that drugs must overcome to be adsorbed [72]. This impact could be at the metabolic level,
i.e., by changing the metabolic state of bacteria. Payne’s group developed a high-quality
GSMM for P. aeruginosa (iPau21) that has 40 genes, 24 metabolites, and 76 reactions more
than the previous model, iPau1129. This new high-quality model was constrained using
transcriptomic data from the literature of four different conditions: casamino acids (no
mucin exposure), MUC5AC, MUC5B, and mucin-glycans, all of which are present in
different body parts prone to P. aeruginosa infection. Since the experiments were carried out
with strain PAO1, its genes in the transcriptomic dataset were mapped to PA14 orthologs,
and then the data were integrated with the iPau21 model. The integration of the data was
performed using RIPTiDe [73], a tool developed to integrate transcriptomic abundances
using parsimony of overall fluxes to identify the most cost-effective usage of metabolism
that best reflects the maximization of the biomass production, which was the objective
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function. These four conditions led to four context-specific metabolic models that had a
similar growth rate (less than five percent change). Payne’s group compared the metabolic
mechanisms of all four conditions using a non-metric multidimensional scaling (NMDS). It
showed that, even when there was no significant difference in the growth rate, exposure
to mucin MUC5B caused the largest shift in the metabolic pathways utilized for growth,
with MUC5AC in second place. Specifically, the fumarate and propionate metabolism
differed between the control and the MUC5B models. This suggested that such a metabolic
shift might be involved in the resistance mechanism of P. aeruginosa. Thus, they proposed
AMs that target proteins for fumarate and propionate metabolism in order to combat
mucin-resistant bacteria. Dahal et al. [74] recently refined the P. aeruginosa model (iSD1509)
and added a whole new pathway for ubiquinone-9 biosynthesis, required for anaerobic
growth. They validated the model in its totality using experimental data from different
works, including Dunphy’s [75]. In order to understand how the metabolism could change
under AM stress, Dahal et al. [74] performed flux sampling analysis using the biomass flux
as an objective function, but constrained to 90% of the biomass flux value obtained by the
FBA simulation, to mirror the presence of AM stress. In other words, the new biomass flux
was constrained to 0.9 × the biomass flux value from FBA. This method aims to obtain
several flux sets from the space of solutions in order to obtain a more robust result for each
flux sustained by each reaction, and they indeed confirmed previous results in that the TCA
cycle was found to be significantly upregulated in the fumarate-supplemented medium
compared to the glyoxylate-supplemented one. Hence, the model correctly differentiated
between metabolites that increased drug lethality versus those that did not and offered
mechanistic explanations for these responses. In conclusion, confirming Payne’s group’s
results [71], supplementing the medium with fumarate caused a higher oxygen uptake rate
due to a higher TCA cycle activity, leading to a higher drug efficiency.

Just as Payne et al. addressed the environmental–drug interaction scenario, evaluating
how mucins change the metabolic state of bacteria, Chung et al. [76] proposed a different,
metabolism-aware way to treat the multidrug-resistant (MDR) Klebsiella pneumoniae using
polymyxin B in low doses, plus exogenous metabolites as adjuvants, which have a lower
risk of resistance development. Chung’s group reconstructed the GSMM of four differ-
ent K. pneumoniae strains, one polymyxin-resistant, one polymyxin-susceptible, and two
polymyxin-susceptible but MDR. They studied seven different metabolites that were previ-
ously identified as significant metabolites perturbed by the combination with polymyxin B,
at the level of both gene expression and metabolism of the same pathway. In silico predic-
tions using flux sampling (i.e., without imposing an arbitrary objective function) revealed
that the presence of at least three of these exogenous metabolites (3-phosphoglycerate (3PG),
ribose 5-phosphate (R5P), and uridine 5′-diphospho-N-acetylglucosamine (UACGAM)) en-
hanced the central metabolism (higher fluxes of glycolysis, PPP, and TCA cycle), increasing
bacterial growth. Since the growth rate is one of the factors that determines the phenotype
of susceptibility to antimicrobials, with a slow growth rate being associated with low an-
timicrobial activity, 3PG, R5P, and UACGAM were good candidates for a non-antimicrobial
plus polymyxin treatment. Chung’s group confirmed these results with time-kill studies,
where bacteria displayed a decrease in the growth rate when using polymyxin B plus 3PG,
R5P, or UACGAM, but not for the rest of the metabolites. Ultimately, this study provided
evidence of the possibility that an altered metabolism could change the antimicrobial effi-
cacy, also promoting the use of state-of-the-art modeling approaches to fully comprehend
molecular adaptations to antimicrobial exposure.

An additional methodology to look for potential drug targets in different organisms
is the combination of flux simulation-based techniques (e.g., FBA) with protein structure-
based ones, such as structure-based virtual screening (SBVS). The latter is one of the most
promising in silico techniques for drug design due to its robustness, and it is capable of
predicting the most likely interaction between two molecules to form a stable complex [77],
e.g., the drug and its target. Cesur and colleagues [78] used this protocol to find potential
drug targets in K. pneumoniae through the constraint-based analysis of its GSMM. They
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simulated three host microenvironments by setting specific bounds to each reaction flux and
set the biomass production as the objective function. Combining GE and ME analyses on
this GSMM, Cesur’s group performed a preliminary screening that led to the identification
of possible enzymatic targets, for which they identified the cellular compartments/function
and performed a “druggability” assessment, i.e., to estimate the affinity of the protein to
bind drug-like chemical compounds. Out of this selection procedure, one enzyme (encoded
by the kdsA gene) stood out. For this target, using the computer-aided drug design approach
(SBVS), Cesur’s group obtained two possible compounds, one of which showed to be quote
promising as it is a derivative of coumarin with low acute toxicity and already proven
high antimicrobial activity. Nazarshodeh and colleagues [79] also used the SBVS method
to identify drug effectiveness, but for E. coli. To this aim, they used a GSMM-PRO, i.e., a
genome-scale metabolic model integrated with protein structures. Combining GE analysis
(biomass production as the objective function) with a search for informative protein–ligand
complexes, they obtained 70 essential genes, accounting for 92 protein–ligand complexes,
which were proposed as drug targets. To perform SBV screening, the authors used the 3D
structures of FDA-approved drugs and ranked them against each essential target (ideally
more than one for potential polypharmacology cases). Finally, their pipeline suggested
eight known antimicrobials as possible drugs to target the essential genes found, proposing
a new therapeutic indication for these reported drugs (drug repurposing).

A possible advancement for this work is represented by the simulation of drug epista-
sis, as drug combinations can illuminate new possible therapeutic strategies that might be
inaccessible to single-target drugs, possibly eliminating functional redundancies exhibited
by metabolic networks. In 2016, Krueger’s group [80] studied the possibility of extending
FBA modeling in order to simulate drug effects over multiple doses. The methodologies
implemented by this group (FBA-res and FBA-div) optimize the biomass production and
account for the possibility that when a drug inhibits a reaction, (i) accumulated mass
will slow down the upstream reaction thermodynamically (FBA-res), or that (ii) upstream
reactions cannot sense or adjust to an inhibited downstream reaction on the timescale of
the drug inhibition, and the substrate is wasted, creating less biomass over time (FBA-div).
While these two theoretical approaches led to similar results to knockout simulations for
single-agent effects, they had very different predictions for combinations with the approach
simulating a flux-diversion to a waste reservoir (FBA-div), predicting potent antimicrobial
synergies targeting metabolism. Indeed, FBA-div was able to model the strong antimicro-
bial synergies that target serial enzymes within a pathway, being able to predict synergies
between three or more drugs.

2.2. AM-Informed Models

One of the most worrisome threats in clinical microbiology is the increasing frequency
of colistin resistance in A. baumannii [81]. Besides the important quest of new strategies to
tackle the issue, we also chose this case study because, in our opinion, the work performed
in the last years to tackle the issue of AMR in A. baumannii nicely underlines two main
features of genome-scale metabolic modeling: (i) the scalability and versatility of GSMMs
to be used with different experimental (-omics) datasets (even from previous studies, an
important feature in the context of data reuse), and (ii) the possibility to constantly update
and (possibly) improve pre-existing models once new data are available. In 2017, to address
new possible solutions for the treatment of infected patients and to overcome the appear-
ance of resistant phenotypes, Presta and colleagues [82] reconstructed the model of AMR
A. baumannii ATCC 19606 to perform a systems-level study of the antimicrobial response
in this bacterium. Specifically, to propose new targets for AM drugs, they performed GE
analysis. Since the exposure to the antimicrobial might alter the metabotype (Figure 1), the
authors used MADE (Metabolic Adjustment by Differential Expression) [83] to integrate the
transcriptomic data obtained during colistin exposure (after 15 and 60 min of exposure [84])
with A. baumannii’s GSMM, leading [84] to four context-specific metabolic models (treated
and untreated conditions at 15 and 60 min). After an FBA optimization using biomass
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production as the objective function, they compared the flux distributions for each treated
part and its untreated counterpart using the flux ratio and looked for the pathways these
reactions belonged to. The changes were mainly observed at the level of sugar and nu-
cleotide metabolism and fatty acid biosynthesis. Besides the analysis of general trends, the
combination of transcriptomic data and GSMM might in principle lead to the identification
of those genes that become essential under specific growth conditions (context-specific
essential genes), in this case following the exposure to colistin. In other words, the proteins
encoded by these genes might represent promising drug targets when coupled with colistin
treatment. Analyzing the essential genes for each condition, they found 9 and 5 genes
that are essential only after 15 and 60 min of colistin exposure, respectively, and removing
the genes with human orthologues (in order to exclude them as drug targets), they finally
identified five essential genes, whose proteins could represent specific drug targets.

The model reconstructed in this work (iLP844) led to further studies of A. bauman-
nii’s metabolic network. Indeed, it was taken as a reference for the reconstruction of
an improved model of the same strain (ATCC19606) [85] and for an A. baumannii AYE
strain model (iCN718) [86]. Both groups used iLP844 to compare and validate their own
model, by analyzing the shared genes and its growth on different carbon sources. Addi-
tionally, Norsigian’s group [86] used it to check and confirm reaction reversibility, and to
better describe the transport reactions present in both models. This refinement allowed
to interrogate the model on the interplay of multiple metabolic pathways under colistin
treatment in A. baumannii and to shed light on some key points to optimize polymyxin
combination therapy.

Another example is that of Banerjee and Raghunathan [87], who studied the case
of metabolic reprogramming when Chromobacterium violaceum, an opportunistic human
pathogen, is exposed to antimicrobials. They reconstructed C. violaceum’s model (iDB858).
After experimentally measuring several cell rates, they constrained different uptake values
of the model (glucose, violacein secretion, molar growth rate, ATPM, and oxygen) to
represent three different conditions: wildtype and exposure to chloramphenicol and to
streptomycin, both together and independently. Using the biomass production as the
objective function, performing FBA, FVA, and GE, they described a rewired central and
redox metabolism in the presence of each antimicrobial; specifically, high levels of NAD
recycling provided by pyruvate, suggesting a reprogramming of metabolism to compensate
for the stress consequences.

Researchers can take advantage of the already developed GSMMs for the organism
under investigation. In this case, the integration of -omics data for the reconstruction
of context-specific models (representing different metabotypes) can be performed in a
more or less straightforward fashion. This is the case of Dunphy’s group [75], who used
iPau1129 P. aeruginosa’s GSMM [88] and lab-evolved AMR lineages of carbon source uptake
data from a previous work [89] to contextualize the potential impact of gene deletion in
antimicrobial-resistant mutations (by setting the upper and lower bounds of the model
according to the experimental data). Dunphy and colleagues profiled the metabotypes
of four AMR lineages of P. aeruginosa: a lab-evolved phenotype, and piperacillin- (PIP),
tobramycin- (TOB), and ciprofloxacin (CIP)-resistant strains. Each strain had been grown
on 190 unique carbon sources, but there were only 14 growth-supporting carbon sources
common for all four lineages, revealing a strong metabolic reprogramming following the
exposure to each of the tested compounds. Since in Yen’s work they found that the PIP-
evolved lineage contained a large deletion of 343 genes, much higher than for the other
lineages, Dunphy’s group decided to analyze the role of each gene deletion and its impact
on the metabolic functions and cellular growth. They did so by performing a GE analysis in
silico using the biomass production as the objective function and repeated it on M9 minimal
media and 42 different carbon sources, independently. The next step was to look for the
intersection between predicted essential genes and the mutated genes in the PIP-evolved
strain in order to predict resistance-specific essential genes and to identify incorrect model
predictions. In conclusion, although the iPau1129 GSMM did not include several AMR
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genes, it was possible for Dunphy’s group to identify potential mutations impacting growth
phenotypes, such as the loss of L-leucine catabolism in PIP-evolved metabotypes.

Not surprisingly, most of the research concerning the effect of the cellular metabolic
state on antimicrobial resistance emergence and/or antimicrobial efficacy has been carried
out on Escherichia coli. In 2017, Zampieri et al. [23] used the most recent (to date) E. coli
metabolic reconstruction (iJO1366) [90] in order to understand the impact of metabolic
changes in the development of antimicrobial resistance. They selected three antimicrobials
with different modes of action: ampicillin, chloramphenicol, and norfloxacin, and then let
four independent lineages of the wildtype evolve resistance in minimal medium, either
with glucose or with acetate as the sole carbon source. Then, they performed metabolome-
based predictions using E. coli’s GSMM, and systematically maximized or minimized fluxes
for each reaction of the model, i.e., they iteratively changed the objective function to calcu-
late the shadow prices (the estimation of its sensitivity to changes in the availability of all
individual metabolites). Negative shadow prices mean limiting metabolites for the reaction.
In this way, reactions with overrepresentation of altered limiting metabolites could be
those with an active role in the evolution of resistance. They observed that most of the
evolved metabolic characteristics were present in pathways not directly affected by the an-
timicrobial. For the chloramphenicol-glucose-evolved populations, the evolved metabolic
characteristics involved sugar transport, oxygen uptake, and CoA formation, while for
the ampicillin-glucose-resistant populations, they involved nucleotide metabolism, serine
biosynthesis, and cell wall recycling. The authors found an important difference between
the ampicillin-glucose-evolved and ampicillin-acetate-evolved populations, with the first
one being eight times more sensitive to fosfomycin, and the latter more tolerant to it.
Thus, apparently, metabolic adaptation to antimicrobial exposure strongly depends on the
nutritional context.

Recently, several groups have proposed the combination of GSMM and machine
learning (ML) in order to broaden the space of predictions. ML is a method that handles
the automatic learning of machines without explicit programming (black box) and has been
widely used in the field of bioinformatics, and recently, in systems biology as well [91].
For example, in 2020, Kavvas et al. [92] proposed the integration of these two methods to
obtain results to a higher resolution, i.e., not just to analyze gene presence–absence, but
also to analyze the links of allele variations to observed phenotypes, such as antimicrobial
resistance. Kavvas’ group worked with Mycobacterium tuberculosis (TB) and built a genetic
variant matrix (G) containing the information of all drug-tested TB strains and all their
allelic variants. The abundance of AMR genes in the latest TB model (iEK1011) [93]
justified the use of this model for their analysis. The Metabolic Allele Classifier (MAC),
as they named it, is an allele-parameterized form of FBA, which takes the following
as constraints: (i) an antimicrobial-specific objective function, (ii) a steady-state space,
and (iii) upper and lower bounds for each reaction flux, in function to the information
in G. The last two points describe strain-specific separate polytopes for resistance and
susceptible strains within the overall flux space, and the first point is defined by the
objective function that best separates both polytopes, where the optimal solution is the
orthogonal vector to the plane that divides them, which is calculated with ML instead of
the linear program. The MAC yields a drug susceptibility binary status as a final output:
“susceptible” or “resistance” phenotype to a particular drug. Kavvas et al. tested three
different AM compounds: pyrazinamide, para-aminosalicylic acid, and isoniazid, and
performed pathway enrichment analysis out of the 197 alleles obtained, resulting in the
identification of processes that were known AM mechanisms. Overall, Kavvas’ group’s
work shed light on the possibility of studying allele variations–phenotype relations in
a determined strain using just one GSMM of the same bacterium. Another example of
the integration of the two methods (GSMM + ML) was reported by Pearcy et al. [94].
These authors aimed to reveal and describe the systemic relationship between the genetic
determinants of AMR and metabolic evolutionary adaptations in E. coli. Using a set of
unique E. coli genomes to analyze the AMR phenotypic variability, they developed a
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ML-integrated k-mer and SNP approach: they scanned entire genomes against selected
phenotypes, allowing for the identification of arbitrary numbers of genomic features ranked
on the strength of the correlation with the AMR and the susceptible phenotype (named the
Gradient Boosting Classifier). These genetic determinants, such as AMR genes and specific
mutations and alleles to specific phenotypes, were assessed using the GSMM: they used
FBA to constrain the model and predict the effects (different metabotypes, see Figure 1)
of the genetic determinants previously identified by performing gene deletion analysis in
the metabolic network. Pearcy’s group identified 20 genes essential for growth under rich
environment conditions, and the ones that had the highest importance depicted by the
ML method may be promising dual-mechanism antimicrobial targets: they would inhibit
essential metabolic pathways while reducing the bacterium’s ability to adapt.

A problem that is sometimes difficult to address is the impact of the combinations
of different drugs and/or how the drug efficacy (or the efficacy of drug combinations)
changes depending on the growth conditions. To address this issue, Chung et al. [95]
proposed an approach named Condition-specific Antibiotic Regimen Assessment using
Mechanistic Learning (CARAMeL). This method simulates context-specific metabolic fluxes
using GSMMs, constrained with environmental conditions, -omics data, and metabolite
composition from control and mono- or multi-treatments. Obtained (simulated) fluxes are
then used to train a ML model to predict interaction outcomes for novel drug combinations
(using the Random Forests algorithm). Using E. coli’s and M. tuberculosis’ GSMMs, Chung’s
group assessed their methodology using several scenarios with multiple drugs and clinical
trials, inferring a set of differentially regulated genes by calculating the differential fitness
(from chemogenomic data) and expression (from transcriptomic data). Then, they assigned
four scores for each condition and trained ML models to associate the described profiles
to drug combination outcomes, as interaction scores. After comparing the predictions
with experimental data (-omics and literature) and assessing the performance for synergy
and antagonism scenarios, the authors’ approach revealed to be accurate in predicting
combination therapy outcomes. Afterwards, they assessed how a pathogen adapts to a
first drug and how this, in turn, influences its sensitivity to a subsequent drug. Using data
from evolved E. coli in single-drug treatments over different timespans and subsequent
treatments, CARAMeL once again yielded robust predictions, also when addressing the
model sensitivity to a broad range of drug combinations and growing media.

Even when there have been other methodologies that do not use GSMMs [96], the
joint effort of each of the approaches described in this review gives a broad perspective of
the relationship between the metabolic state of bacteria and the effect of an antimicrobial.
As described in the previous section, the nutrient contents of the bacterial medium can alter
the metabolic state of bacteria, inducing different responses under AM stress, just as the
results of 81,93] showed. Additionally, integrating different types of -omics data, GSMM,
and ML, defining a context-specific objective function [92,97], and/or performing GE and
ME analysis not only helps to understand the different AM metabotypes in bacteria, but
also helps to shed light on the drug development and drug repurposing areas [71,74,78,79],
in order to find antimicrobials able to kill bacteria with active metabolism, even if there
is no growth. However, there are still some scenarios to address, such as the study of
non-protein-coding regions, since it has been found that they can confer resistance as
well [94,98].

Lastly, we would like to refer to a case study that used GSMMs predictions to enhance
the killing activity of antibiotics. Brynildsen et al. [67,99] exploited the link existing be-
tween ROS production and antibiotic killing activity and used genome-scale metabolic
modeling to identify metabolic targets that could lead to the overproduction of such ROS
species and that could potentiate the action of several different antibiotics. Specifically,
the metabolic network of E. coli was systematically perturbed (through the simulation of
single-gene knockouts), and its flux distribution was analyzed to identify targets predicted
to increase ROS production, i.e., genes whose removal from the WT would increase the
intracellular ROS concentration. Remarkably, such computationally predicted targets were
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experimentally validated and demonstrated to confer increased susceptibility to oxidants
and to killing by antibiotics. A schematic representation of the overall pipeline used in this
work is reported in Figure 2B.

3. Future Directions

The use of genome-scale metabolic modeling has improved our understanding of
the intertwined relationship between metabolism and antimicrobials. We believe that the
most useful application of GSMMs resides in using them as scaffolds for the interpretation
of -omics datasets, as this helps in reducing the space of possible solutions, for example,
after an FBA simulation, and to identify the most likely set of active reactions in a specific
condition. Indeed, the speed and ease-of-use of constraint-based simulations comes at
the cost of many (sometimes unrealistic) constraints that must be imposed on the model
to make it mathematically solvable. Among them, the one that most impacts the use of
genome-scale metabolic modeling for studying the response of microbial cells to cellular
perturbation is probably the identification of a proper objective function, i.e., the reaction in
the metabolic network that describes the primary objective of the cell in a specific growth
condition [100]. While it seems reasonable to assume that, in laboratory conditions (e.g.,
growth in a bioreactor), the generation of new biomass would be the main cellular objective
of the population, we think that this prerequisite is hardly met in a stressful condition such
as the exposure to antimicrobials. For this reason, FBA simulations that encompass the
use of a biomass-oriented objective function to mimic an antimicrobial-exposed/tolerant
metabotype might not be capable of adequately representing the pool of active reactions in
the cell. While the majority of the studies (also reviewed in this work) have not directly
tackled this issue up to now, others have observed that the exposure to antimicrobials and
the evolution of resistance may introduce novel and still unexplored metabolic constraints
and cellular objectives. This, in turn, hampers the identification of the actual objective
function(s) that drive metabolic adaptation to antimicrobial exposure [23]. Computational
approaches can be used to mitigate this effect, for example, by assuming that altered
metabolite concentrations in antimicrobial-resistant strains may reflect an attempt to redi-
rect intracellular fluxes toward specific but unknown metabolic objectives to drive and
compensate for resistance [23,101]. In [92], the problem of correctly capturing the cellular
objective of the antimicrobial-resistant phenotypes was circumvented by integrating GWAS
information with the E. coli metabolic model and deriving an “antimicrobial-specific objec-
tive” function that provides novel insights regarding the metabolic basis of the mutations
involved in antimicrobial resistance. This was achieved by determining the set of potential
constraints imposed by an allele through discretization of the flux solution space; thus,
deriving the metabotypes that more closely resemble the stressful conditions faced by cells.
To tackle the same issue, i.e., the definition of a proper objective function under stressful
conditions, Montezano et al. [97] studied the response of the M. tuberculosis bacterium
when exposed to mefloquine, and integrated condition-specific proteomic data with its
GSMM model to derive an antimicrobial-informed biological objective function, i.e., the
actual cellular overall objective when facing antimicrobial-induced stress.

When experimental information on the cellular state in the presence of antimicrobials
are not available, the exploration of the possible solution space through sampling methods
(e.g., random flux sampling [101–104]) allows to define the possible set of active reactions
without the necessity of defying a biomass-oriented objective function. In particular,
random flux sampling can be used to characterize the solution space within a GSMM,
allowing the identification of a statistically significant number of solutions that have been
uniformly distributed throughout the entire solution space. In this way, an estimated
probability distribution for each reaction’s flux in the network can be obtained without
necessarily assuming growth as the primary objective function. Accordingly, random flux
sampling might be a more reliable approach to simulate the metabolism of bacteria that
are exposed to challenging conditions, such as the presence of antimicrobial molecules, in
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which the survival and the maintenance of basic metabolic functions with minimal cost
may be more realistic objectives.

Population-level metabolic heterogeneity (i.e., cell-to-cell variation in metabolism
within an isogenic population) is known to play a key role in the response of microbes to
antimicrobial stress [105], and several pathogens have been shown to take on a distinct
metabolic state in vivo to tolerate antimicrobials. Canonical genome-scale metabolic mod-
eling approaches typically represent the averaged metabolic state of entire populations
and, as such, are not suited to capture single-cell metabolic differences. Additionally,
this within-population variability seems to have a stochastic basis [106], another feature
whose modeling with a constraint-based approach has been seldomly attempted in the
past. Recently, however, computational methods to tackle both the metabolic heterogeneity
within a population and the stochastic nature of certain cellular processes and their impact
on metabolism have been developed [107,108]. Besides revealing important basic insights
into the possible consequences of the stochasticity that is implicit in some biological cir-
cuits, these methods pave the way for their exploitation in the study of the metabolic state
of bacterial cells in a population in the presence of antimicrobials. Since, for example,
persisters are known for their lowered metabolic state, such an approach could indicate
which pathways should be revived to reduce the fraction of dormant persister cells, and
thus to develop metabolic-oriented and more effective therapies. Indeed, there could
be different and independent ways through which metabolic dormancy is reached (i.e.,
downregulation of different metabolic pathways) within a population, and genome-scale
metabolic modeling might help in identifying which of them is/are actually playing a role
in persisters’ survival. In this context, methods such as BacDrop [109] that permit to eluci-
date the heterogeneous responses of microbial cells to antimicrobial stress using single-cell
RNA-sequencing on millions of single bacterial cells could permit adding a further layer of
information (constraints) to the model, thus refining the predictions. Overall, there seems to
be a methodological gap in the repertoire of computational approaches able to simulate the
(sub-optimal) metabolic landscape of persister cells. Additional effort is thus required to de-
velop tolls and theoretical frameworks to generate testable hypotheses on the mechanisms
through which tolerance/persistence is achieved at the whole population level.

As we saw in the case studies, the modeling of antimicrobial-induced metabolic
changes has recently been boosted by the combination of ML methods with GSMMs.
There are (at least) three different ways for integrating ML with constraint-based metabolic
modeling (see Sahu et al. [110] for a thorough review), and ML can be used to identify
those cellular components (e.g., genes, transcripts, metabolites) that should actually be
included in the corresponding metabolic model [111,112]. Other ML methods can be
directly integrated with the FBA algorithm [113]. Finally, the outcomes (flux distributions)
of an FBA simulation can be analyzed and further refined by using ML. In the context of
antimicrobial stress, a flux-based ML model was recently used to simulate the impact of
metabolic heterogeneity on drug interactions and to predict the outcomes of novel and
unseen combinations of drugs in E. coli and M. tubercolosis. It is important to stress that
the relevance of such hybrid models (and of GSMMs in general) resides in their capability
of providing a mechanistic understanding of how biological circuits (metabolism in this
case) respond to environmental stresses/fluctuations, and which strategies are the most
promising in preventing antimicrobial resistance/tolerance/persistence [114].

Supplementary Materials: The following supporting information can be downloaded at: https:
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76,78–80,82,87,92,94,95] are cited in the Supplementary Materials.
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