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Abstract: Antimicrobial resistance (AMR) is becoming a global concern. Recently, research has
emerged to evaluate the human and environmental health implications of wastewater from medical
facilities and to identify acceptable wastewater treatment methods. In this study, a disinfection
wastewater treatment system using an ozone-based continuous flow system was installed in a general
hospital located in Japan. The effectiveness of antimicrobial-resistant bacteria (ARB) and antimicro-
bials in mitigating the environmental impact of hospital wastewater was evaluated. Metagenomic
analysis was conducted to characterize the microorganisms in the wastewater before and after treat-
ment. The results demonstrated that ozone treatment enables effective inactivation of general gut
bacteria, including Bacteroides, Prevotella, Escherichia coli, Klebsiella, DNA molecules, and ARGs, as
well as antimicrobials. Azithromycin and doxycycline removal rates were >99% immediately after
treatment, and levofloxacin and vancomycin removal rates remained between 90% and 97% for
approximately one month. Clarithromycin was more readily removed than the other antimicrobials
(81–91%), and no clear removal trend was observed for ampicillin. Our findings provide a better
understanding of the environmental management of hospital wastewater and enhance the effective-
ness of disinfection wastewater treatment systems at medical facilities for mitigating the discharge of
pollutants into aquatic environments.

Keywords: antimicrobial resistance (AMR); hospital wastewater; continuous ozonation system;
pilot study; metagenomics; antimicrobials resistant bacteria (ARB); antimicrobial resistance

1. Introduction

In recent years, antimicrobial resistance (AMR) has become dangerously close to our
daily lives, raising concerns about sustainable human development [1–3]. A significant
issue with AMR is that it not only poses a direct health risk of infecting people through
hospital- and community-acquired infections, but also an indirect risk of infecting humans
via the environment [4,5]. O’Neill Commission, under the request of the UK government,
estimated that if effective measures are not taken to combat the prevalence of AMR, annual
global deaths from AMR will increase from 0.7 million in 2014 to 10 million by 2050, surpass-
ing cancer-caused deaths, whereas the economic loss to global GDP will be $100 trillion [6].
According to the latest report in 2022 published in The Lancet, an internationally renowned
medical journal, annual deaths attributable to AMR are anticipated to nearly double in five
years to 1.27 million in 2019 [7]. The World Health Organization (WHO) has proposed the
“One Health” approach as a comprehensive measure for humans-animals-environment
and has called for the formulation of national action plans in each country [8]. In Japan,
action plans have been established and measures are progressing [2,9].
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Previous research has indicated the impact of AMR originating from wastewater entering
the environment, despite the fact that the origins of AMR detected in aquatic environments
are diverse [3,10,11]. Social interest in the risk management of wastewater originating from
medical facilities, such as hospitals, has been rapidly growing [12–14]. Previous studies have
reported antimicrobial-resistant bacteria (ARB) as a problem in clinical practice, suggesting
that hospital wastewater may serve as a reservoir for AMR [15–19]. In addition to ARB,
residual antimicrobials can be detected in hospital effluents [12,20,21]. The pollution load
of hospital wastewater in aquatic environments ranges from several tens to 71%, with rates
varying by country [22–26].

Human environmental risks from AMR environmental contamination include the health
impacts associated with direct inoculation exposure to viable bacteria surviving in the environ-
ment [27–29]. Furthermore, it is important to consider the indirect effects of the propagation
of antimicrobial resistance genes (ARGs) on E. coli, which are widely distributed in the en-
vironment, by encouraging the development of new AMR, even though the direct health
effects of ARGs are considered minor, as is the case with viable bacteria [30–32]. Moreover,
antimicrobials detected in the aquatic environment could be a contributing factor to the un-
expected emergence of AMR from the environment, in addition to the toxic effects on the
river environment [33–35]. Under these circumstances, assessing the actual situation of ARB
and antimicrobials in hospital wastewater and their environmental risk, as well as seeking
initiatives to develop treatments that can reduce or eliminate such risks, would contribute to
protecting human health as well as improving the quality of medical care [36–38]. Further-
more, ARB is considered an important issue in ensuring the safety of the water environment
and watershed preservation to secure healthy drinking and irrigation water [39,40].

With the recent remarkable development of science and technology, wastewater treat-
ment systems that are effective in treating hospital wastewater have been developed [41–45].
Among them, ozone treatment has been the focus of research in recent years because it has
strong sterilization and pollutant removal potential, including chemical-free deodorizing
and residue-free wastewater after treatment [46–48]. However, the efficacy of wastewater
systems based on ozone treatment for hospital wastewater has been primarily evaluated
in small-scale (several hundred milliliters to several L) test systems in laboratories [49,50],
with minimal research done on the actual hospital wastewater scale [51,52]. Our research
group installed an ozone-based hospital wastewater treatment system in a hospital facility
located in an urban Japanese region. A medium-scale batch-type treatment tank (effective
volume of 1 m3) was installed in the hospital to evaluate the inactivation effect of ozone
treatment on ARB and antimicrobials. Both ARB and residual antimicrobials were reduced
to ≤1% after 20 min of treatment [21]. If the wastewater treatment of a hospital on a
practical scale is proven to be a feasible solution to environmental AMR concerns, it may
be conceived as an effective mechanism against AMR, thus contributing to the One Health
initiative [32,53,54]. Furthermore, the results can potentially contribute to both the public
interest in regional security and the safety of the local population [55–57].

As part of the efforts to implement a hospital wastewater treatment system in society,
a pioneering trial has begun to verify the effectiveness of measures utilized to reduce
the environmental burden of the hospital wastewater treatment system by conducting
continuous treatment of the entire hospital wastewater before discharging it into the public
sewer system. Therefore, in the present study, a continuous treatment system that can
effectively treat hospital wastewater without interfering with hospital operations was
developed. To achieve more effective treatment, we additionally tested an ultraviolet
light-emitting diode (UV-LED) [58,59], which has recently been shown to be effective in
disinfecting pathogenic microorganisms, including SARS-CoV2 [60–62], and is rapidly
becoming more widely used. The disinfection process, which uses ozone plus an ozone
catalyst, has previously been reported for wastewater treatment plants [63–65]. In cases
such as hospital wastewater where it is virtually impossible to install large-scale treatment
facilities or secure a new hospital site for wastewater treatment, the evaluation of the
effectiveness of direct disinfection treatment for untreated raw hospital wastewater is a new
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challenge of great social interest in terms of hospitals and the environment [66,67]. The effect
of applying disinfection wastewater treatment systems to hospital wastewater to reduce
the burden of AMR in the environment was determined by clarifying the inactivation effect
on ARB, ARGs, and antimicrobials, and analyzing the characteristics of microorganisms in
wastewater before and after treatment using metagenomic analysis.

2. Materials and Methods
2.1. Hospital Wastewater Treatment Using Ozone Treatment Based on the Continuous
Flow System

An ozone inactivation system for bacteria and antimicrobials present in hospital
wastewater based on a continuous flow system was installed at the University Hospital,
Ohashi Medical Center (BN; 35.652578◦ N, 139.683959◦ E), with a capacity of 319 beds, in
Toho University, Tokyo, Japan, as previously reported [21]. Various wastewaters generated
as a result of hospital activities were stored in two underground wastewater tanks (influent)
with a total volume of 22.5 m3. The annual daily inflow of the wastewater tanks was
50 m3/day, which was approximately equal to the volume of the wastewater tanks. The
supernatant was pumped directly into the public sewage system at 2 m3 per discharge
with an average frequency of 25 discharges per day (50 m3/day as outflow). First, hospital
wastewater from one of the two storage tanks was introduced into wastewater treatment
tank 1 (ozone) at a flow rate of 20 L/min, with an effective volume of 1 m3 for ozone
treatment. The ozone-treated wastewater was then flowed into wastewater treatment tank
2 (UV-LED) with an effective volume of 1 m3, which was connected to a UV disinfection
unit for further inactivation owing to overflow inflow at a flow rate of 20 L/min. Finally,
the treated wastewater was returned to the original storage tank on one side using a return
pump (flow rate 150 L/min) for circulation to the original storage tanks (influent). The
appearance and configuration of the ozone treatment system used in this study are shown
in Figure 1, and a three-dimensional (3D) view of the equipment is shown in Figure S1.
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Figure 1. Schematic representation of pilot-scale continuous-flow ozone-based treatment system
implemented in a hospital facility. The picture depicts the appearance of the hospital wastewater
disinfection treatment system equipped with the ozone treatment system tested in this study. The
technical specifications of the equipment used in the system are described in detail below. A 3D view
of the equipment is shown in Figure S1.

Ozone was generated using an ozone generator (Ozonia® TOGC45X, Suez Environment,
Paris, France) equipped with a Pressure Swing Adsorption (PSA) oxygen generator. The
hospital wastewater in the wastewater treatment tank was circulated using a circulation pump
(32LPS5.75E, Ebara Corporation, Tokyo, Japan) at a flow rate of 5 L/min, and ozone gas
was fine-bubbled through fine-bubble generating nozzles (YJ-9, For EARTH Co., Ltd., Tokyo,
Japan) (microbubbles with diameters between 1 µm and 100 µm, using mode 30–50 µm, and
ultrafine bubbles with diameters less than 1 µm in the 50–200 nm [68,69]) and introduced into
the wastewater treatment tank. The ozone treatment was performed at an ozone generation



Antibiotics 2023, 12, 932 4 of 17

rate of 27.5 g/h. UV irradiation was performed using a UV-LED system (DWM13-S06-XX-
K, NIKKISO Co., Ltd., Tokyo, Japan) with a peak emission of 280 nm and an intensity of
43 mW/cm2. A portion (1 L) of the solution in this tank was collected 0, 1, 4, 6, 8, 15, and
29 days after the start of the experiment. Basic water quality parameters (biochemical oxygen
demand (BOD), chemical oxygen demand (COD), suspended solids (SS), and total nitrogen
(TN)) during treatment in this investigation, along with DNA concentration and total reads of
metagenomic DNA sequences, are shown in Table S1. Sodium thiosulfate was immediately
added to mitigate the effects of residual ozone on the samples [70,71]. Samples were stored at
4 ◦C in the dark and processed for 12 h.

2.2. Viable Bacterial Counting of Wastewater Samples

To determine the efficacy of ozone treatment in inactivating potential β-lactam-resistant
bacteria, an aliquot (100 µL) of influent or treated wastewater sample was 10-fold serially
diluted with phosphate-buffered saline, followed by spreading on non-selective media
BTB (Bromothymol Blue, lactose agar; Drigalski Agar, Modified) agar and CHROMagar
ESBL plates (bioMérieux S.A., Marcy-l’Étoile, France) for extended-spectrum β-lactamases
(ESBL) producing bacteria. Colony-forming units per mL (CFU/mL) were determined at
the appropriate dilution for each treatment time point.

2.3. Metagenomic DNA-Seq Analysis of Wastewater Samples

To collect organisms larger than bacteria, ozone-treated wastewater samples were
passed through TPP Rapid Filtermax Vacuum Filtration systems (TPP, Trasadingen, Switzer-
land) in 100 mL bottles fitted with 49 cm2, 0.2 µm polyethersulfone membranes. The
membranes were removed from the bottles and stored at −30 ◦C until DNA extraction.
One-fourth of the collected membrane, corresponding to 25 mL of influent or treated water,
was cut into small pieces and placed in ZR-96 BashingBead Lysis Tubes (0.1 and 0.5 mm;
Zymo Inc., Irvine, CA, USA). Bacterial lysis buffer (800 µL; Roche, Basel, Switzerland) was
added to the bead tube, which was then frozen at−30 ◦C and thawed at 23 ◦C. The tube was
subjected to bead-beating (1500 rpm for 10 min) using a GenoGrinder 2010 homogenizer.
After brief centrifugation (8000× g for 3 min), 400 µL of the supernatant was collected. The
DNA in the supernatant was purified using a Roche MagNa Pure Compact instrument
(DNA_Bacteria_v3 protocol; elution:50 µL). DNA concentration and purity were measured
using a Qubit DNA HS kit (Thermo Fisher Scientific, Waltham, MA, USA).

Metagenomic DNA-seq libraries were prepared using the QIAseq FX DNA Library
Kit (Qiagen, Hilden, Germany), followed by short-read sequencing using the NextSeq
500 platform (2 × 150-mer paired-end) (Illumina, San Diego, CA, USA). Adapter and low-
quality sequences were trimmed using Sickle version 1.33 (https://github.com/najoshi/
sickle) considering the following parameters: average quality threshold “−q 20” and
minimum length threshold “−l 40.” Metagenomic DNA-seq analysis was performed using
clean reads for homology searches without de novo assembly for all subsequent analyses.
Detailed scripts and databases are described below.

Taxonomic classification of every read from the metagenomic analysis was performed
using mega-BLAST (e-value threshold, 1E−20; identity threshold, 95%) against the NCBI
nt database using MePIC2 [72] and was subsequently analyzed using MEGAN 6 [73].
Statistical analysis by ozone and subsequent UV-LED treatments was analyzed using
two-way repeated ANOVA (R-Studio 2022.12.0+353).

Resistome analysis using metagenomic DNA-seq reads was performed using ARGs-
OAP v3.2.1 against the implemented ARG database [74,75].

All raw read sequence files are available from the DRA/SRA database (Table S2).

2.4. Analytical Procedures for Antimicrobials

A total of six antimicrobials grouped into five classes, β-lactams (ampicillin), new
quinolones (levofloxacin), macrolides (azithromycin and clarithromycin), tetracyclines
(doxycycline), and glycopeptide (vancomycin) (>98%), were examined in the present inves-

https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
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tigation on the basis of a previous report on their concentrations and detection frequencies
in hospital effluent, wastewater, and river water, both in Japan and around the world [25,76],
as well as on the basis of antimicrobial use in clinical sites in Japan [77,78].

The concentrations of the target antimicrobials in the wastewater were analyzed as
previously described [21,25]. Briefly, 10 mL of wastewater was filtered through a glass fiber
filter (GF/B, 1 µm pore size, Whatman, Maidstone, UK), and the solutions were subjected
to OASIS HLB solid-phase extraction cartridges (Waters Corp., Milford, MA, USA) at a
flow rate of 1 mL/min. The adsorbed antimicrobials were eluted with 3 mL acetone and
3 mL methanol and then evaporated mildly to dryness under a gentle stream of N2 gas at
37 ◦C. The residue was solubilized in 200 µL of a 90:10 (v/v) mixture of 0.1% formic acid
solution in methanol, and 10 µL of this solution was analyzed using an ultra-performance
liquid chromatography–tandem mass spectrometry (UPLC) system coupled to a tandem
quadrupole mass spectrometer (TQD, Waters Corp.). Quantification was performed by
subtracting the blank data from the corresponding data yielded by the spiked sample
solutions to account for matrix effects and losses during sample extraction [79,80]. The
recovery rates of antimicrobials in the wastewater influent ranged from 77% to 108%
(Table S6), and the limits of detection (LODs) and limits of quantification (LOQs) were
calculated as the concentrations at signal-to-noise ratios of 3 and 10, respectively [81,82].

3. Results
3.1. Proportion of Bacteria in Hospital Wastewater after Ozone Treatment

Hospital wastewater was treated with ozone followed by UV-LED irradiation in
a continuous-flow pilot plant (Figure 1) for 0, 1, 4, 6, 8, 15, and 29 days after starting
continuous treatment. The visible brown color of the wastewater disappeared on day 1,
and continuous treatment kept the treated water clear until the end of the treatment on day
29 (Figure 2A). Furthermore, the general water quality parameters (BOD, COD, SS, and
TN) did not decrease or differ after the treatment (Table S1).Antibiotics 2023, 12, x FOR PEER REVIEW  6  of  18 
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Figure 2. Characterization of treated wastewater by bacterial viability. (A) Visual image of the collected
waste or treated wastewater after ozone or UV-LED treatment. (B) Isolation of bacteria from treated
wastewater samples on BTB agar and CHROMagar ESBL. An aliquot (100 µL) of influent, ozone-, or
UV-treated wastewater samples was spread on the agar plate at a 10-fold dilution. (C,D) Colony forming
units per milliliter (CFU/mL) were determined at the appropriate dilution for each treatment time point.

Although it did not exhibit significant inactivation of the general parameters apart
from the visible color, the treated water collected from the ozone or UV-LED tanks showed
>90% inactivation of viable bacteria on BTB agar after 1 d of treatment (Figure 2B,C), and it
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maintained the level of reduced viable bacteria until day 29 (Figure 2C). In addition, the
original storage tank (influent) had a reduced CFU of viable bacteria because the original
storage tank (influent) received treated water (20 L/min) after ozone/UV-LED treatment
from the bypass route (Figure 1). Compared with the bacterial CFU on BTB agar, the
potential ESBL-producing Enterobacteriaceae on CHROMagar ESBL demonstrated a rather
low susceptibility to ozone/UV-LED treatment, but finally underwent >90% inactivation
on day 29 (Figure 2D).

To characterize the actual susceptibility of bacterial genera to ozone, membrane-
trapped bacteria in the treated sample (corresponding to the 25 mL water sample) were
subjected to genomic DNA extraction (Table S1), and metagenomic DNA-seq analysis was
performed (summarized in Table S3). Notable fecal bacteria, Bacteroides and Prevotella,
showed 90% less detection following ozone treatment compared with the original stor-
age on day 1 (Figure 3). In addition, the most ubiquitous ESBL producers, Escherichia
and Klebsiella, showed >80% less detection from the original storage on day 1 following
treatment (Figure 3). On the other hand, the environmental bacteria Acinetobacter and Pseu-
domonas, which include potential nosocomial pathogens, exhibited increasing CFU after
ozone/UV-LED treatment; however, there were low amounts of inputs from the influent
tank for these two genera (Figure 3). Further taxonomic classification at the species level
using the MEGAN 6 software suggested that possible bacterial isolates, which could be
genetically similar to Acinetobacter sp. WCHAc010034, and Pseudomonas spp. LTGT-11-2Z
significantly increased growth over 100-fold from day 0 onwards (Table S4). Acinetobacter sp.
WCHAc010034 was isolated from hospital sewage in China (BioSample SAMN05356835)
and Pseudomonas sp. LTGT-11-2Z was isolated from the roots of Alhagi sparsifolia Shap. in
the Taklamakan Desert, China (BioSample: SAMN10219285), suggesting that neither were
identified as clinical specimens; however, their pathogenicity remains to be investigated.
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megablast search and subsequent taxonomic classification using the MEGAN 6 application. The
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3.2. Resistome Analysis in Hospital Wastewater Subjected to Ozone Treatment

In addition to the bacterial taxonomic analysis, ARG resistome analysis was performed
using metagenomic DNA-seq reads. The top 12 most abundant ARGs with a combined
display of specific numerical values and a composite display of colored bars are shown
in Figure 4 (all the results obtained for other ARGs are summarized in Table S5). Class 1
integrons (sul1 and qacEdelta), β-lactamase GES variants (blaGES-15, blaGES–14, and blaGES–5),
aminoglycoside acetyl transferase (aac(6′)-31), and tetracycline resistance (tet(39) and tet(36))
were mainly detected in sewage samples. Most of these were significantly inactivated to less
than 10% of the sequencing reads on day 1, consistent with the results of the CFU (Figure 2)
and metagenomic analyses (Figure 3). No increase in the ARGs was observed during
the experiment (Table S5). Additional statistical analysis showed that the effect of ozone
and subsequent UV treatment on the wastewater was significant (adjusted p-value < 0.05,
two-way repeated ANOVA and pairwise t-test) among Bacteroides, Prevotella, Pseudomonas,
Bifidobacterium, and Ruminococcus families, and partial effects on the other bacterial families
were also suggested (Figure S2).
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Figure 4. Metagenomic DNA-seq analysis of antimicrobial resistance genes (ARGs) after ozone-UV-
LED treatment. Notable top 12 ARGs were selected to show the sequencing reads corresponding to
the targeted ARGs using the ARGs_OAP program. DNA conc. (ng/µL) and Metagenomic DNA-seq
(total reads) are shown in Table S1, and all obtained results for other ARGs are summarized in
Table S5.

3.3. Removal of Antimicrobials by Ozone Treatment

All six targeted antimicrobials were detected in the hospital wastewater before treatment.
The detected concentrations of the antimicrobials ranged from 746 ng/L to a maximum of
37.9 µg/L, and the order of the detected concentrations was different for each compound.
The detected concentration of each antimicrobial at the start of treatment was 17.9 µg/L ±
17.6 µg/L for ampicillin, 13.6 µg/L ± 6.1 µg/L for levofloxacin, 1.8 µg/L ± 1.5 µg/L for
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azithromycin, 1.4 µg/L ± 136 ng/L for clarithromycin, 1.1 µg/L ± 95 ng/L for doxycycline,
and 11.0 µg/L ± 0.8 µg/L for vancomycin. LC–MS/MS parameters and validations of each
antimicrobial and the validation of the recovery rates of antimicrobials in the wastewater
and the limits of detection (LODs) and limits of quantification (LOQs) are summarized in
Tables S6 and S7. Residual antimicrobials detected in hospital wastewater are thought to
originate from antimicrobials used to treat diseases in clinical settings [83]. These values
were largely similar to those reported in a survey conducted in an urban hospital located
in a different region of Japan (734 ng/L to a maximum of 13.4 µg/L) [84], and largely
consistent with those previously reported in other countries [12,85,86]. The time course of
the antimicrobial concentrations in hospital wastewater during treatment is summarized in
Figure 5, and the detailed concentrations are shown in Table S8.
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Figure 5. Time course of antimicrobial concentrations in hospital wastewater during ozone treatment.
Removal of antimicrobials over time during treatment of hospital wastewater. (A): original storage
tank (influent), (B): wastewater treatment tank 1 (ozone), and (C): wastewater treatment tank 2 (UV-
LED). A summary of antimicrobial concentrations at each treatment time is shown in Table S8.

Ozone treatment was effective in removing all the targeted antimicrobials. More
than 99% of azithromycin and doxycycline was removed immediately after treatment and
was not detected in the ozone treatment tank throughout the experiment. The removal
rates for levofloxacin and vancomycin remained between 90% and 97% during treatment.
Clarithromycin was more readily removed than the other antimicrobials (81% to 91%), and
no clear removal trend was observed for ampicillin. In the wastewater treatment tank where
UV-LED irradiation followed ozonation, ampicillin and levofloxacin additionally decreased
from their levels in the ozone treatment tank by an average of 15% and 53%, respectively.
However, no notable changes in the concentration were observed for the other compounds.
Finally, the concentration of antimicrobials before discharge into the public sewage system
decreased during continuous-type treatment. The average removal rates of antimicrobials
in the present study were 71 ± 24% for levofloxacin, 82 ± 16% for azithromycin, 88 ± 10%
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for doxycycline, and 44 ± 42% for vancomycin. However, no clear removal trends for
ampicillin and clarithromycin were observed during the experiment, which was largely
consistent with the removal trend of antimicrobials in the ozone treatment tank.

4. Discussion

The detection of ARB and antimicrobials in hospital wastewater throughout the period
of this treatment test suggests that a certain amount of these pollutants is released from
every hospital into the public sewage system, and that it is vital to implement social counter-
measures on a large scale. The original storage tank (influent) showed an increase/decrease
in the detected concentrations of both ARB and antimicrobials, which was associated with
the continuous inflow of untreated raw hospital wastewater into the original tank.

General gut bacteria, including Bacteroides, Prevotella, E. coli, and Klebsiella, were
significantly inactivated by ozone treatment (Figure 3). However, environmental bacteria,
such as Acinetobacter and Pseudomonas, exhibited notable persistence to ozone, as in a
previous batch treatment trial [21]. Based on the AMR issue, the persistence of Acinetobacter
and Pseudomonas could play a major role in AMR reservoirs, although ozone treatment
might act efficiently. Such persistence remains to be characterized in future studies to
achieve a sustainable treatment process under continuous hospital operation. This study
demonstrated that ozone treatment enabled the effective inactivation of viable bacteria
(Figure 3) and DNA molecules, including ARGs (Figure 4); however, the general water
quality parameters did not differ (BOD, COD, SS, and TN) (Table S1). This finding strongly
suggests that such parameters may not be essential criteria for reducing hospital-associated
AMR factors because ozone causes partial damage to viable organisms and DNA molecules,
leading to dead bacteria and damaged DNA molecules that no longer function.

The characteristics of the components most likely to be removed (>90% removal
after 10 min treatment) were consistent for the antimicrobials and for ampicillin and clar-
ithromycin, which were not adequately removed by the sequential treatment in this study;
the removal rate was 96–100% for these antimicrobials at 40 min after treatment. These data
suggest that it is essential to upgrade the treatment system and conduct demonstration
tests and evaluations at an actual plant scale when developing from a batch (small-scale)
system to the actual treatment of hospital wastewater.

The results of the present investigation show that ozone treatment removes antimicro-
bials, and the treatment time required for removal differs for each compound, supporting
the results reported in previous evaluations of ozonation of pharmaceuticals in environmen-
tal water [87,88]. Antimicrobials, which tended to remain in the treated water compared
to other antimicrobials, such as clarithromycin and ampicillin, could possibly be removed
by increasing the ozone injection volume and prolonged treatment (high ozone exposure
volume) [89,90]. Additionally, it would be effective to combine ozone treatment with other
treatments for environmental pollutants that are difficult to treat effectively with ozone
treatment alone. The fact that the UV-LED treatment in this study further improved the
removal rates of ampicillin and levofloxacin [91,92], which are known to be easily degraded
by light irradiation in the UV region, will prove useful when examining the effectiveness
of the treatment for a wide spectrum of environmental pollutants in wastewater. Some
antimicrobials, including β-lactam antimicrobials such as ampicillin, are attenuated in
water within a few hours [93,94]. Clarithromycin is highly persistent in the environment
as it is not susceptible to attenuation in the aquatic environment through photolysis or
biodegradation [95,96]. Levofloxacin is considered the primary antimicrobial agent that
causes clinical problems with ARB [97]. Previous studies have reported that ozone and/or
UV treatment reduces ecotoxicological effects to approximately 1/10–1/20,000 compared
to untreated compounds [47,98–100]. On the other hand, some researchers pointed out
that the toxicity increases approximately 2–100 fold in some cases [99,100]. It is known
that differences in susceptibility to these toxic effects occur in different target species, and
that under conditions where multiple compounds coexist, weakening or strengthening
effects would occur compared to exposure to a single substance [101,102]. Whole effluent
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toxicity (WET), as recommended by the US Environmental Protection Agency (EPA), which
evaluates the toxic effects of a target water body as a whole using species at different
trophic levels, would be a comprehensive approach to address these issues [103–105]. In
addition, the strong oxidizing action of ozone or hydroxyl radicals can decrease the forma-
tion of transformation products by providing sufficient processing time and by acting in
combination with catalysts, such as UV and hydrogen peroxide [46,106,107]. The results
demonstrated that when antimicrobials with an environmental impact were effectively
removed before flowing into the environment and kept at a low level, they are notable as
an effective measure to reduce the environmental impact caused by AMR.

It is possible to reduce or eliminate the inflow of ARB and antimicrobials as environ-
mental pollutants into the aquatic environment through the advancement of wastewater
treatment systems [3,65,108]. In addition, it is important to conduct further optimization
and refinement tests to maximize the synergistic effect of ozone treatment with an ozone
catalyst, which is often applied to secondary-treated water after biological treatment in
the wastewater treatment area [44,47,109]. However, a practical issue persists in that the
cost of these advanced treatments increases as treatment systems become sophisticated
and/or multiple treatments are combined [13,110]. Research that considers the cost aspects
of actual implementation should be conducted in the future. The operating costs of this
disinfectant system were approximately US $300 for one month using the maximum elec-
tronic power of the system, which could be an affordable cost for AMR disinfectants. The
legalization of the required reduction levels in conjunction with research on environmental
risk assessment for AMR discharge into the aquatic environment, as well as the promotion
of the development of new mitigation strategies for dealing with AMR from an environ-
mental perspective, needs to be emphasized. In addition, it will be challenging to deepen
social understanding and support hospital incentives. Further development and return to
society in both academia and industry are required.

As studies have revealed the antimicrobial-resistant nature of hospital wastewater
and the significant impact of the loads discharged into the environment, more attention is
being paid to how hospital wastewater should be treated [12,56]. However, research on
environmental management and mitigation control of ARB and antimicrobials in hospi-
tal wastewater is still limited worldwide, owing to the general difficulty in researching
hospital wastewater [111–113]. To the best of our knowledge, this is the first report on the
effectiveness of a pilot-scale continuous wastewater treatment system based on ozonation
for the inactivation of ARB and antimicrobials in the entire effluent generated by a hospital.

5. Limitations

The limitations of this study are as follows: The first is the optimization of wastewater
treatment systems. An ideal wastewater treatment system involves the continuous direct
discharge of treated water into a public sewage system. However, there are still issues that
have not been fully covered in the present investigation in terms of practical aspects, such
as technology, funding, and the need to reconstruct the entire hospital facility to continue
treating the entire hospital wastewater while maintaining a balance with the constant inflow
of untreated wastewater [114,115]. Another issue is the technical restrictions in maintaining
the effect of UV light from UV-LED for a long period because raw hospital wastewater
contains multiple solid organic substances. Further improvements in these aspects of the
processing equipment need to be examined in the future.

Second, the inactivation effects of ARB and antimicrobials were investigated. Neither
ARB nor antimicrobials were completely inactivated during the trial of hospital wastewater
treatment. Under these conditions, microorganisms remain viable in the treated hospital
wastewater. It is essential to elucidate the potential of these microorganisms to form
biofilms in treatment tanks [116] and to evaluate the pathogenicity and environmental
impact of microorganisms that require more ozone than other microorganisms [66,117].

Finally, the treatment effectiveness for the basic general water quality parameters
was noted. For the hospital wastewater treatment in this study, the treatment system
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was found to be capable of inactivating ARB and antimicrobials, which have become
new environmental pollutants of concern in recent years, although some improvements,
including water quality, have not yet been achieved. Improving the treatment to include
these water quality items can be achieved by increasing the amount of ozone injected, but
in some respects, this treatment strategy is not practical or energy-efficient and it would
be more effective in combination with other treatments [118–120]. These issues can be
improved via biodegradation, as it is known that ozone treatment alone makes it difficult to
convert a persistent substance into a biodegradable substance [47,49]. Our results support
the need for further conclusive research considering experimental, technical, and regional
customs, bias, and unknown factors.

6. Conclusions

In the present study, an ozonation-based continuous-flow disinfection wastewater
treatment system was implemented in a core hospital located in the center of Japan, and
its effectiveness in mitigating the environmental impact of AMR associated with hospital
wastewater was evaluated. The results showed that both ARB and antimicrobials that
would have an impact on the environment were effectively removed and maintained at a
low level during treatment, which would be an effective countermeasure to mitigate the
environmental impact caused by AMR. These findings are significant for implementing fea-
sible and effective countermeasures to address AMR in the environment. The overall results
facilitate a comprehensive understanding of the AMR risk posed by hospital wastewater
and provide insights for devising strategies to eliminate or mitigate the burden of ARB
and flow of antimicrobials into aquatic environments. Our findings could help enhance
the effectiveness of introducing wastewater treatment systems, not only in wastewater
treatment plants, but also in medical facilities, to reduce the discharge of pollutants into
rivers, thereby contributing to environmental and human health safety.
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www.mdpi.com/article/10.3390/antibiotics12050932/s1. Figure S1. 3D view of the equipment of the
continuous-flow pilot-scale ozone treatment system implemented in a hospital facility; Figure S2. Two-
way repeated ANOVA of each bacterial family based on the effect of ozone and subsequent UV treatment
on the wastewater (adjusted p-value < 0.05, two-way repeated ANOVA and pairwise t-test). Table S1.
Summary of water quality parameters during hospital wastewater treatment with ozone; Table S2. All
the raw read sequence files were obtained from the DRA/SRA database; able S3. Counts of sequencing
reads were detected for each bacterial genus using metagenomic DNA-seq analysis; Table S4. Counts of
sequencing reads for Acinetobacter or Pseudomonas species detected by metagenomic DNA-seq analysis;
Table S5. Counts of sequencing reads for each antimicrobial resistance gene (ARG) detected using
metagenomic DNA-seq analysis; Table S6. LC-MS/MS parameters and validation of each antimicrobial;
Table S7. Validation of the method characteristics for the analysis of antimicrobials in wastewater;
Table S8. Concentration of targeted antimicrobials in hospital wastewater during continuous-flow
treatment.
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